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Impedance Model-Based Control for an Electrohydraulic Stewart

Platform
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In this paper, a novel model-based impedance controller
for a 6-degree-of-freedom (dof) electrohydraulic
Stewart platform mechanism is developed. Rigid body
and experimentally developed electrohydraulic models,
including servovalve, friction and leakage models are
employed and described by a set of integrated system
equations. Despite the fact that an electrohydraulic
servoactuator is not a source of force, as is the case
with electric actuators, an impedance controller is
developed for the electrohydraulic platform. This
controller consists of a feedback and a model-based
feedforward loop that compute servovalve currents.
An impedance filter modifies the desired trajectory
according to a specified behavior. This trajectory is fed
to a system model in the controller aiming at a
reduction of the effects of the nonlinear hydraulic
dynamics. Simulations results compare system response
of the developed and of a proportional-derivative (PD)
controller for the electrohydraulic platform. Results
during interactions with the environment show that the
impedance controller is superior to available PD
controllers, and that its response is smooth.

Keywords: Impedance model-based control, electro-
hydraulic servosystem control, electrohydraulic
interaction control.

1. Introduction

Since the original 6-degree-of-freedom (dof) Stewart–
Gough platform has been developed [9, 21], and used
as a flight simulator [24], a number of studies on this
electrically or hydraulically driven mechanism and its
variations have been published, i.e., [27]. The kin-
ematics and dynamics of the Stewart platform have
been studied by a number of researchers [7, 15, 16, 28].
However, none of these studies considered its actu-
ation dynamics. Although electrohydraulic Stewart
platforms have been used extensively, little published
work on their full dynamics including actuation or
their control, exists.

Impedance control is considered to be an active
compliant motion control method, important in cases
where force interactions with the environment occur
and in industrial applications such as Computer
Numerical Control (CNC), milling machines, etc.
[10, 11]. Such a method is designed to offer good force
accommodation and flexibility and is preferable when
interactions or collisions may occur. However,
impedance controllers were designed for use in sys-
tems with electromechanical actuation, since these
controllers require actuators that act as force/torque
sources.

Hydraulics science combined with controls, has
given new thrust to hydraulics applications. The main
reasons why hydraulics are preferred to electromech-
anical drives in a number of industrial and mobile
applications, include their ability to produce large
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forces at high speeds, their high durability and stiff-
ness, and their rapid response [14,17]. The hydraulic
domain differs from the electromechanical one, in
that actuator force or torque output is not propor-
tional to input current. Therefore, hydraulic actuators
cannot be modeled as force/torque sources, but rather
as variable impedances. As a result, controllers that
have been designed for robot control, under the
assumption that actuator force/torque can be set as
desired, cannot be applied in electrohydraulic systems.

A unified approach to the control of an electric
manipulator applicable to free motions, kinematically
constrained motions, and dynamic interaction between
the manipulator and its environment has been studied
in [13]. Techniques for implementing a desired manip-
ulator impedance and for choosing the impedance
appropriate to a given application using optimization
theory were presented, [13]. Two spatio-geometric
methods for controlling the mechanical impedance for
a class of electromechanically driven Gough–Stewart
platforms were presented and their response simulated
in [6]. The first was based on global potential energy
functions, while the second used the exponential map to
associate finite displacements of the platform from
equilibrium with twist displacements.

Control techniques can be used to compensate
for the nonlinearities of electrohydraulic servosystems.
Researchers have proposed nonlinear adaptive
motion control techniques for hydraulic servosystems
assuming linearization, [8], and backstepping, [23],
approaches. A robust force controller design based on
the nonlinear Quantitative Feedback Theory, has
been implemented on an industrial hydraulic actuator,
taking into account system and environmental un-
certainties, [18].

A simulated model-based impedance control of a
3-dof redundant hydraulic parallel manipulator is
presented in [22]. Further, a position-based impedance
controller for an industrial hydraulic manipulator has
been developed in [11]. In these works, the model is
incomplete since it does not include the hydraulic
dynamics and assumes that the actuators are
sources of force. Initial studies on impedance control
of a high-performance hydraulic joint driven by a
hydraulic motor with a jet pipe servovalve [2], and of
a single-dof hydraulic servo [4], have been presented.
Further, impedance controllers have been studied and
implemented on teleoperated hydraulic servosystems
for heavy duty works, i.e., backhoe excavators,
[10, 25]. The control of excavator-based machines is
still primitive and not servo-based; therefore the
position control has not got the required accuracy yet,
and a rather poor performance is obtained. Moreover,
in [25] the hydraulic model is not included.

In this paper, a model-based impedance controller
for a 6-dof electrohydraulic Stewart platform is
developed. Rigid body and experimentally developed
electrohydraulic models, including servovalve, friction
and leakagemodels are employed and described by a set
of integrated system equations. Despite the fact that an
electrohydraulic servoactuator is not a source of force,
as is the case with electric actuators, a novel impedance
controller is developed. This controller computes ser-
vovalve currents and consists of a feedback and a
model-based feedforward loop. An impedance filter
modifies the desired trajectory according to a specified
behavior. This trajectory is fed to a system model in
the controller aiming to reduce the effects of the non-
linear hydraulic dynamics. Simulations results compare
system response of the developed and of a proportional-
derivative (PD) controller for electrohydraulic systems.
It is shown that during interactions with the environ-
ment, the impedance controller is superior to PD con-
trollers, while its response is smooth.

2. System Modeling

An electrohydraulic Stewart platform servomechan-
ism is a 6-dof closed kinematic chain mechanism
consisting of a fixed base and a moving platform, with
six hydraulic actuators supporting it, see Fig. 1. In this
section, the dynamic model of a Stewart platform is
developed.

2.1. Mechanical Dynamics

The rigid body equations of motion for a Stewart
platform are derived using a Lagrangian formulation
and are in the following form,

MðxÞ€xþ Vðx; _xÞ þGðxÞ þ Ffrð _xÞ ¼ � ð1Þ

where x ¼ x0; y0; z0; p; q; rð ÞT is the 6� 1 vector of
the platform generalized coordinates, see Fig. 1.
The x0, y0, z0, are the platform center of mass (CM)
Cartesian coordinates, p, q, r are the platform Euler
angles,MðxÞ is the 6� 6 positive definite mass matrix
of the system, Vðx; _xÞ is a 6� 1 vector that includes
centrifugal and Coriolis forces/torques,GðxÞ is a 6� 1
vector that includes forces/torques due to gravity,
Ffrð _xÞ is the 6� 1 vector of friction forces/torques,
and � is the 6� 1 vector of the generalized applied
forces.

The generalized applied forces can be written as a
function of the hydraulic actuator forces, [27],

� ¼ JTFp; ð2Þ
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where J is the overall Jacobian 6� 6 matrix of the
platform, and Fp is a 6� 1 vector representing actu-
ator forces given by,

Fp ¼ Fp;1; Fp;2; . . . ; Fp;6

� �T
; ð3Þ

where Fp;j; j ¼ 1; 2; . . . ; 6 are individual hydraulic
forces acting on the platform.

Using mechanism differential kinematics, see
Appendix A, and Eq. (2), Eq. (1) is transformed to its
joint space and written as,

M�ðxÞ€‘þ V�ðx; _xÞ þG�ðxÞ þ F�
frð _‘Þ ¼ Fp;

ð4Þ
where ‘ ¼ ‘1; ‘2; . . . ; ‘6ð ÞT is the 6� 1 vector of
actuator displacements, M�ðxÞ is a 6� 6 positive
definite mass matrix, V�ðx; _xÞ is a 6� 1 vector that
contains the centrifugal and Coriolis forces, G�ðxÞ is a
6� 1 gravity forces vector, and F�

frð _‘Þ is a 6� 1 vector
that contains joint space frictional forces. The terms

M�ðxÞ, V�ðx; _xÞ and G�ðxÞ are given, respectively by
(see Appendix A),

M�ðxÞ ¼ ½JðxÞT��1
MðxÞ JðxÞ�1 ð5aÞ

V�ðx; _xÞ ¼ ½JðxÞT��1 ½Vðx; _xÞ �MðxÞ _Jðx; _xÞ � _x�
ð5bÞ

G�ðxÞ ¼ ½JðxÞT��1
GðxÞ ð5cÞ

A number of methods exists, that can be used to
model friction [12]. A widely accepted method models
friction F�

frð _‘Þ, as,
F�
frð _‘Þ ¼ F�

vð _‘Þ þ F�
cð _‘Þ þ F�

s ; ð6Þ

where F�
vð _‘Þ, F�

cð _‘Þ and F�
s are the viscous, Coulomb

and static friction vectors, with elements,

F�
v;jð _‘jÞ ¼

0; _‘j ¼ 0; j ¼ 1; 2; . . . ; 6

bj _‘j; _‘j 6¼ 0; j ¼ 1; 2; . . . ; 6

�
ð7aÞ

Fig. 1. (a) Schematic view of a six-dof Stewart platform, (b) orientation of moving platform.
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F�
c;jð _‘jÞ ¼

0; _‘j ¼ 0; j¼ 1; 2; . . . ; 6

Fc0;j sgnð _‘jÞ; _‘j 6¼ 0; j¼ 1; 2; . . . ; 6

�
ð7bÞ

F�
s;j ¼

Fext;j; Fext; jj j < Fs0;j; _‘j ¼ 0; €‘j ¼ 0;

j ¼ 1; 2; . . . ; 6

Fs0;j sgnðFext;jÞ; Fext;j

�� �� > Fs0;j; _‘j ¼ 0; €‘j 6¼ 0;

j ¼ 1; 2; . . . ; 6

0; _‘j 6¼ 0;

j ¼ 1; 2; . . . ; 6

8>>>>>>>>><
>>>>>>>>>:

ð7cÞ
where bj is the jth parameter for the viscous friction
element, Fc0;j is the jth parameter for the Coulomb
friction element, Fext; j is the jth external force element,
Fs0; j is the jth breakaway force element, and

sgnð _‘jÞ ¼
þ1; _‘j > 0; j ¼ 1; 2; . . . ; 6

0; _‘j ¼ 0; j ¼ 1; 2; . . . ; 6

�1; _‘j < 0; j ¼ 1; 2; . . . ; 6

8<
: ð8Þ

2.2. Hydraulic Dynamics

The electrohydraulic actuation servosystem of the
platform consists of pistons, servovalves, controllers,
sensors and a hydraulic power supply. Models of the
major components are introduced next.

Servo hydraulic supplies include constant pressure
piston pumps, driven by induction electric motors.
Therefore, the pump is modeled as a constant pressure
source. Supplies may also include accumulators for
filtering pressure pulsations from the pump, and for
allowing the use of smaller rating pumps by providing
additional flow when needed. Such an accumulator, is
modeled as a hydraulic capacitor [20].

A single rod hydraulic servocylinder is illustrated
schematically in Fig. 2. The equations relating mech-
anical to hydraulic variables are described by,

Q1 ¼ A1
_‘þ C1

_P1 þ Gp;inðP1 � P2Þ ð9aÞ

Q2 ¼ A2
_‘� C2

_P2 þ Gp;inðP1 � P2Þ ð9bÞ

A1P1 � A2P2 ¼ Fp ð9cÞ

Fact ¼ Fp � Ffr; p; ð9dÞ

where Q1, Q2 are the flows through the two cylinder
chamber ports, P1, P2 are the chamber pressures, A1 is
the piston side area, A2 is the rod side area, C1, C2 are
the fluid capacitances in the cylinder chambers,
(modeling fluid compressibility), Gp;in represents
cylinder internal leakage conductance, ‘ is the total
length of actuator, Fp is the hydraulic force, Ffr;p is the
actuator friction force, and Fact is the net actuator
output force. In the case of a hydraulic cylinder with a
double rod, the two areas A1 and A2 are equal and
therefore, Eq. (9) are simplified.

Fig. 2. Schematic model of a hydraulic servoactuator.
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Control of a hydraulic servo is achieved through the
use of servovalves, see Fig. 3a. Since their natural
frequency is much higher than that of the mechanical
load, only the valve resistive effect is considered here.
It is also assumed that the valve geometry is ideal, e.g.,
the valve has sharp edges and zero cross leakage,
[3,26].

A high-performance critical center hydraulic ser-
vovalve consists of four symmetric and matched ser-
vovalve orifices making up flow paths through four
nonlinear fluid resistors, modulated by the input
voltage, see Fig. 3a. Thereby, the servovalve is mod-
eled as the hydraulic equivalent of a Wheatstone
bridge, see Fig. 3b. When the servovalve input current
is positive, i > 0, flow passes through the orifices 1
and 3 (path P� A� B� T), while flow leakages pass
through valve orifices 2 and 4. Similarly, when the
servovalve input current is negative, i < 0, flow passes
through the path P� A� B� T, and flow leakages
through orifices 1 and 3. This model is described
analytically by,

Qv1 ¼ CG1
ði;Cd; �Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�PG1

p
ð10aÞ

Qv2 ¼ CG2
ði;Cd; �Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�PG2

p
ð10bÞ

Qv3 ¼ CG3
ði;Cd; �Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�PG3

p
ð10cÞ

Qv4 ¼ CG4
ði;Cd; �Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
�PG4

p
ð10dÞ

where i is the servovalve current (control input), �PGj

is the pressure drop across, Qvj is the servovalve flow

through orifice j, (j ¼ 1; . . . ; 4), CGj
ði;Cd; �Þ, is a

nonlinear function in the servovalve motor current,
the discharge coefficient, Cd, and the mass density of
the fluid, �; ðj ¼ 1; . . . ; 4Þ. In general, the discharge
coefficient is a function of the Reynolds number and
valve geometry. However, fluid density and Reynolds
dependencies are weak for turbulent flow and there-
fore only the current dependency is significant here,
[17]. In addition, because of servovalve symmetry, the
CG functions are given by the following equations,
depending on the sign of the current i,

� If i > 0, the main flow path passes through the
orifices 1 and 3, see Fig. 3b, and,

CG1
ðiÞ ¼ CG3

ðiÞ � CGsv;main
ðiÞ ð11aÞ

CG2
ðiÞ ¼ CG4

ðiÞ � CGsv;leak
ðiÞ ð11bÞ

� If i < 0, the main flow path passes through the
orifices 2 and 4, see Fig. 3b, and,

CG2
ðiÞ ¼ CG4

ðiÞ � CGsv;main
ð�iÞ ð12aÞ

CG1
ðiÞ ¼ CG3

ðiÞ � CGsv;leak
ð�iÞ ð12bÞ

where CGsv;main
and CGsv;leak

represent current functions
for the main and leakage flows of the servovalve,
respectively.

In previous works, servovalve behavior was
neglected or was studied using a linearized analysis
about a particular operating point, [17]. However, we
have found that the servovalve model is of critical

Fig. 3. (a) Cutout of a servovalve, (b) schematic model of servovalve.
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importance to the controller performance. A fair, but
not accurate enough, servovalve model was employed
in our previous work, in which the servovalve orifice
functions CGj

ðj ¼ 1; . . . ; 4Þ were linear with respect to
the current, [5]. Fig. 4a displays the servovalve current
when a linear valve model is used; inaccurate peaks of
numerical nature appear when the valve closes or
opens.

To avoid these problems, we introduce here a valve
nonlinear model. Based on our experimental work, a
good approximation of the current functions for the
main and leakage flows of the servovalve, see Eqs. (11)
and (12), is given by second- and third-order poly-
nomials, as follows,

CGsv;main
ðiÞ ¼

K1;mainiþ K0;main ;

ij j > i0;main

k2;maini ij j þ k1;main iþ k0 ;

ij j < i0;main

8>>><
>>>:

ð13aÞ

CGsv;leak
ðiÞ ¼

K0;leak ; ij j > i0;leak

k3;leaki
3 þ k2;leaki ij j þ k1;leak iþ k0 ;

ij j < i0;leak

8><
>:

ð13bÞ
where the coefficients K1;main, K0;main and K0;leak are
positive constant parameters, and the coefficients
k1;main, k2;main, k1;leak, k2;leak, k3;leak and k0 are constant
parameters. The i0;main, i0;leak are characteristic
threshold servovalve current values, for the main and
leakage valve paths, respectively. With this model, the
peaks in Fig. 4a are eliminated completely and the
transition from opening to closing of the valve is
smooth, see Fig. 4b (areas B). To estimate the coeffi-

cients in Eq. (13), a least squares analysis method
using data from an experimental 1-dof electro-
hydraulic servosystem was employed. The resulting
functions for a two-land-four-way spool Moog
G761–3004 Series high-performance servovalve are
illustrated in Fig. 5. The values of the identified valve
parameters are shown in Table 1.

Hydraulic hoses are modeled as compressible
hydraulic lines, [20]. The equations that describe the
hose dynamics are given by,

PC;‘in � PC;‘out ¼ I _Q‘;out þ RQ‘;in ð14aÞ

ð _PC;‘in � R _Q‘;inÞC ¼ Q‘;in �Q‘;out ð14bÞ

where PC;‘in and PC;‘out are hose pressures at the input
and output point, respectively, Q‘;in and Q‘;out are the
flows through the hose at its input and output corre-
spondingly, and R, I, C are the hose resistance, iner-
tance and capacitance, respectively.

2.3. Integrated System Equations

The hydraulic and mechanical load dynamics of the
platform are described by the integrated system
equations derived using a systems approach, such as
the Linear Graph, [20], or Bond Graph methods, [19].
To this end, one needs to provide expressions trans-
forming pressure differences to forces, see Eq. (9c),
and velocities to flows, see Eq. (9a,b).

Here, the Linear Graph method is employed, [20].
The linear graph of the full model of the 6-dof
hydraulic servosystem is depicted in Fig. 6. The
application of continuity and compatibility laws,
along with individual element equations, leads to a set

Fig. 4. Servovalve current response using (a) a linear model, (b) a nonlinear model.
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of 48 nonlinear first-order differential equations, as
follows,

_P1;j ¼ 1

C1
� ½QI;‘1 �Qv2ðiÞ �Qv4ðiÞ

� Gp;in � ðP1 � P2Þ � A1v�
��
j
; j ¼ 1; 2; . . . ; 6

ð15aÞ

_P2;j ¼ 1

C2
� ½Qv2ðiÞ þQv4ðiÞ �QI;‘2

þ Gp;in � ðP1 � P2Þ þ A2v�
��
j
; j ¼ 1; 2; . . . ; 6

ð15bÞ

_PC;‘1;j ¼ 1

C‘1
� ½ R‘1

Ps � PC;‘1
�QI;‘1�

����
j

; j ¼ 1; 2; . . . ; 6

ð15cÞ

_PC;‘2;j ¼ 1

C‘2
� ½QI;‘2 � R‘2

PC;‘2 � PT
�
����
j

; j ¼ 1; 2; . . . ; 6

ð15dÞ

_QI;‘1;j ¼ 1

I‘1
� ½PC;‘1 � P1 ��PG1

ðiÞ���
j
; j ¼ 1; 2; . . . ; 6

ð15eÞ

_QI;‘2;j ¼ 1

I‘2
� ½P2 � PC;‘2 ��PG3

ðiÞ���
j
; j ¼ 1; 2; . . . ; 6

ð15fÞ

_vj ¼ ½m�
��
��
j
�ðFp � V� �G� � F�

frÞ; j ¼ 1; 2; . . . ; 6

ð15gÞ

_‘j ¼ vj; ð15hÞ

whereQI;‘1;j,QI;‘2;j are the jth flows in the jth hydraulic
pressure and return line correspondingly, Ps, PT are
the power supply and return pressure of the servo-
system, respectively, PC;‘1;j, PC;‘2;j are correspondingly
the jth pressures of jth hydraulic power and return line
regarding with the lines’ capacitances, I‘1;j, R‘1;j, C‘1;j

are the jth inertance, resistance and capacitance of jth
hydraulic power line respectively, I‘2;j, R‘2;j, C‘2;j are
the jth inertance, resistance and capacitance of jth
hydraulic return line respectively, vj is the velocity of
the jth piston, which corresponds to the jth element of
the vector, and ½m�

��
��
j
is a 1� 6 row-matrix which

Fig. 5. (a) Experimental valve functions in main and leakage path for a Moog G761-3004 Series high-performance servovalve (b) zoom
in the nonlinear valve functions-valve current area.

Table 1. Experimental values of the Moog G761-3004
servovalve parameters

Servovalve parameter Value

K1;main 1:50� 10�5 m7=2=ðAkg1=2Þ
K0;main 5:13� 10�9 ðm7=kgÞ1=2
k1;main 0
k2;main 6:80� 10�3 m7=2=ðA2 kg1=2Þ
k0 1:34� 10�8 ðm7=kgÞ1=2
k0;leak 3:48� 10�9 ðm7=kgÞ1=2
k1;leak �1:32� 10�5 m7=2=ðAkg1=2Þ
k2;leak 5:81� 10�3 m7=2=ðA2 kg1=2Þ
k3;leak �0:84m7=2=ðA3 kg1=2Þ
i0;main 1mA
i0;leak 1.5mA
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corresponds to the jth line of the matrix ðM�Þ�1.
Finally, �PG1

ðiÞjj, �PG3
ðiÞjj are the jth pressure drops

of the jth servovalve orifices 1 and 3, respectively.

These are determined using the flow continuity laws,
along with actuator and servovalve elements equa-
tions, see Appendix B, and are given by,

Fig. 6. Full linear graph of the 6-dof electrohydraulic Stewart platform.

�PG 1
ðiÞjj¼

QI;‘1CG 1
ðiÞ � CG 2

ðiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

I;‘1 þ ½C2
G 1
ðiÞ � C2

G 2
ðiÞ� � ðP1 � P2Þ

q
C2

G 1
ðiÞ � C2

G 2
ðiÞ

0
@

1
A

2
�������
j

; j ¼ 1; . . . ; 6 ð16aÞ

�PG3
ðiÞjj¼

QI;‘2CG 3
ðiÞ � CG 4

ðiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

I;‘2 þ ½C2
G 3
ðiÞ � C2

G 4
ðiÞ� � ðP1 � P2Þ

q
C2

G 3
ðiÞ � C2

G 4
ðiÞ

0
@

1
A

2
�������
j

; j ¼ 1; . . . ; 6 ð16bÞ
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Note that due to servovalve symmetry, see Eqs. (11)
and (12), the current functions CG1

and CG2
, as well as

CG3
and CG4

are not be equal for the same current i,
and therefore the functions in Eq. (16) exist always.
Further, the flows Qv2ðiÞ and Qv4ðiÞ in Eq. (15a,b) are
given by continuity as,

Qv2;jðiÞ ¼ ½QI;‘1 � CG 1
ðiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�PG 1

ðiÞ
p

�
���
j
; j ¼ 1; 2; . . . ; 6

ð17aÞ

Qv4;jðiÞ ¼ ½QI;‘2 � CG 3
ðiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�PG3

ðiÞ
q

�
���
j
; j ¼ 1; 2; . . . ; 6:

ð17bÞ
The actuator displacements xp;j and velocities vp;j
represent system outputs, which are determined by
integrating twice Eq. (15g) and once Eq. (15h),
respectively.

3. Impedance Controller Design

In systems actuated by electric motors, actuator
Lorentz forces are proportional to actuator currents.
This simplifies control laws and allows one to
achieve second-order error dynamics converging
exponentially to zero. However, such a relationship
between force and current does not exist in electro-
hydraulic systems. Here, a relationship of servovalve
currents, in analytical form is achieved, using an
impedance model-based control design.

In this section, an impedance model-based control
design for a 6-dof electrohydraulic Stewart platform is
developed. Impedance control essentially allows a
physical system to emulate a simpler one, under the
assumption that the desired behavior is within the
capabilities of the physical system. An impedance
controller serves to keep interaction forces well-

behaved, without the need for switching algorithms.
In designing an impedance controller, we are interes-
ted in the following: (i) forces should be limited, (ii) no
consecutive collisions should result, (iii) no contact
instability and (iv) there must be a method for
achieving these by adjusting the controller gains.

The developed controller computes servovalve
currents and consists of (i) model-based feedforward
part and (ii) a feedback loop part. The model-based
part helps in producing the proper inputs without the
need for large feedback gains. In the proposed
impedance model-based controller, a new trajectory is
computed using an impedance filter. It serves as a new
command to an inner position control loop and keeps
the system from undesired interactions with the
environment. The control design uses the integrated
system dynamic and hydraulic models; therefore, it is
assumed that M�ðxÞ;V�ðx; _xÞ;G�ðxÞ, and F�

frð _‘Þ, in
Eq. (4), are known.

3.1. Feedforward Control Part

In the feedforward control part, a new desired tra-
jectory that accommodates interaction forces is com-
puted and derived by an impedance filter. The 6� 1
servovalve current vector must be determined such
that the physical plant behaves like the desired one in
both the noncontact and contact regimes. Schemat-
ically, the feedforward controller is depicted in Fig. 7.
The design of this new trajectory includes a set of
impedance parameters, which are responsible for the
good behavior of the tracking performance. A typical
response system behavior is given by a second-order
system, [13].

Here, the output of the impedance filter approach,
‘e, chosen for the electrohydraulic platform, depends
on feedback of the interaction forces with the envir-
onment and is determined from,

Fig. 7. The impedance model-based controller block diagram of the 6-dof electrohydraulic Stewart servomechanism.
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Mdesð€‘e � €‘desÞ þ Bdesð _‘e � _‘desÞ þ Kdesð‘e � ‘desÞ ¼ Fenv;

ð18Þ
where Mdes is the desired 6� 6 inertia matrix, and
Bdes, Kdes are the 6� 1 damping and stiffness vectors,
respectively (i.e., desired impedance matrix and vector
parameters) describing the desired second-order
behavior, ‘e is the 6� 1 impedance desired trajectory
vector as given by the impedance filter, which depends
on the desired one, ‘des, and the contact force, and Fenv

is a 6� 1 environment force vector acting on the
system, which can be measured by a force sensor and
approximated by,

Fenv ¼ Kenvð‘env � ‘Þ ð19Þ

In the above equation, Kenv is a diagonal 6� 6 envir-
onment stiffness matrix with positive elements, and
‘env is a 6� 1 vector, which represents a virtual point
of the environment. The desired behavior can be
extended considering the virtual point position as a
time function and including the velocity, acceleration
and force error in the control law scheme, in general.
To compute desired actuator length trajectories from
desired Cartesian trajectories of the moving platform,
the feedforward controller uses the mechanism inverse
kinematics, given in Appendix C.

Next, we focus our attention in finding a simplified
relationship between servovalve current and piston
accelerations. This is achieved using a reduced
hydraulic model, in which the leakage flows and
the cylinder chamber compressibility are neglected.
Thereafter, the flows through the orifices of the servo-
valve described by Eq. (10a,c) are equal to the flows
through cylinder chamber ports, see Eq. 9a,b, and are
written as,

Qv1 ¼ Q 1 ¼ A 1
_‘ ð20aÞ

Qv3 ¼ Q 2 ¼ A 2
_‘: ð20bÞ

Further, neglecting the servovalve leakage flows, the
pressure drops of the servovalve orifices 1 and 3, see
Eq. (16), can be written as,

�PG1
ðiÞ ¼ Ps � P1 ð21aÞ

�PG3
ðiÞ ¼ P2 � PT: ð21bÞ

Using Eqs. (10) (11), (12), and (20), the servocylinder
chamber pressures are computed as,

P1jj¼ ½Ps � A2
1

C2
Gsv;main

ðiÞ �
_‘e _‘e
�� ���

�����
j

; j ¼ 1; 2; :::; 6

ð22aÞ

P2jj¼ ½PT þ A2
2

C2
Gsv;main

ðiÞ �
_‘e _‘e
�� ���

�����
j

; j ¼ 1; 2; :::; 6

ð22bÞ
where ‘e;j is the jth element of vector ‘e, ij is the current
(control input) for the jth valve/actuator assembly.
Combining Eq. (22a,b) is received,

½A1P1 � A2P2�jj ¼ ½A1Ps � A2PT � A3
1 þ A3

2

C2
Gsv;main

ðiÞ �
_‘e _‘e
�� ���

�����
j

;

j ¼ 1; 2; :::; 6

ð23Þ

The terms ½A1P1 � A2P2�jj are the resulting jth
actuator forces, see also Eq. (9c). Eq. (23) is also
function of the velocity of the actuators, _‘e;j. Sub-
stituting Eq. (23) in the system equation of motion,
Eq. (4), the following equations of motion are
derived,

M�ðxÞ€‘e þ V�ðx; _xÞ þG�ðxÞ þ F�
frð _‘eÞ

¼

½A1Ps � A2PT � A3
1
þA3

2

C2
Gsv;main

ðiÞ � _‘e _‘e
�� �������

1

:

:

:

½A1Ps � A2PT � A3
1
þA3

2

C2
Gsv;main

ðiÞ � _‘e _‘e
�� �������

6

2
666666666664

3
777777777775
:

ð24Þ

Solving last equation for CGsv;main
ðiÞ��

j
, we obtain,

CGsv;main
ðiÞ��

j
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA3

1 þ A3
2Þ � _‘e j _‘ej

A1Ps � A2PT � Fp

s ������
j

; j ¼ 1; 2; :::; 6

ð25Þ

where Fp;j is the jth element of vector M�ðxÞ€‘eþ
V�ðx; _xÞ þG�ðxÞ þ F�

frð _‘eÞ, see Eq. (25). Combining
Eqs. (13) and (25) the components of the feedforward
servovalve current vector, iff ¼ ðiff;1; iff;2; . . . ; iff;6ÞT,
are computed as,
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iff;j ¼

_‘e
K1;main

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A3
1 þ A3

2

A1Ps � A2PT � Fp

s
� K0;main

K1;main

" #�����
j

;

iff; j 	 i0;main; j 	 0; j ¼ 1; 2; . . . ; 6

�k1;main þ
ffiffiffiffiffiffiffi
�þ

p
2k2;main

� �����
j

;

0 < iff;j < i0;main; j; j ¼ 1; 2; . . . ; 6

�
_‘e

K1;main
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3

1 þ A3
2

A1Ps � A2PT � Fp

s
� K0;main

K1;main

" #�����
j

;

iff;j < �i0;main;j < 0; j ¼ 1; 2; . . . ; 6

�k1;main �
ffiffiffiffiffiffiffi
��

p
2k2;main

� �����
j

;

�i0;main;j < iff;j < 0; j ¼ 1; 2; . . . ; 6

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð26Þ
where

�þjj �

(
k21;main � 4k2;main

"
k0 � _‘e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3

1 þ A3
2

A1Ps � A2PT � Fp

s #)�����
j

;

j ¼ 1; 2; :::; 6

ð27aÞ

��jj �

(
k21;main � 4k2;main

"
k0 þ _‘e �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3

1 þ A3
2

A1Ps � A2PT � Fp

s #)�����
j

;

j ¼ 1; 2; :::; 6

ð27bÞ

Eq. (26) corresponds to the impedance model-based
feedforward controller that yields the servovalve
current vector for a given desired trajectory. The
controller includes a model of both the mechanism
and the electrohydraulic actuation dynamics.
The developed feedforward part requires position,
velocity, acceleration, piston chamber pressures, and
interaction force feedback and therefore, the corre-
sponding sensors. The difference with controllers for
electromechanical systems is that here we require the
additional use of pressure sensors. Position and velo-
city feedback are available, while acceleration terms
can be dropped since for the application at hand, they
are typically small or even zero (for constant velocity
motions).

3.2. Feedback Control Part

A feedback control signal is added to further reduce
the effects of parametric uncertainty. The feedback
controller computes the feedback servovalve currents,

ifb;j, j ¼ 1; 2; . . . ; 6, as a function of the impedance
desired lengths ‘e . This loop can include a number of
terms depending on the robustness and performance
required. A controller that has been used in the past is
the following,

ifb ¼ Kvð _‘e � _‘Þ þ Kpð‘e � ‘Þ ð28Þ

where ifb is the 6� 1 servovalve current vector, Kp and
Kv are 6� 6 diagonal matrices, which represent the
control gains of the system, and ‘e is determined by
Eq. (18).

This feedback control law increases the bandwidth
with respect to the previous feedforward controller.
Position and velocity are required for feedback, see
Fig. 7.

3.3. Full Control Scheme

The full control law scheme of the 6-dof servosystem is
given by the total 6� 1 servovalve current vector of
the feedback and feedforward current, that were
computed above,

it ¼ ifb þ iff: ð29Þ

We first note that if the feedforward control input is
applied to the servovalve, the system behavior is con-
trolled by Eq. (18), which is stable by design, given a
proper impedance matrix selection. The feedback loop
is meant to eliminate small errors due to modeling
errors, noise, etc. This loop is position-based and has
been shown to be stable by a number of works, for
example [1]. When both loops operate simultaneously,
one can show by linearization that the controller is
stable. However, showing that the controller is stable in
conjunction with the full nonlinear hydraulic system is
not trivial and will be addressed in the future.

4. Simulation Results

The tracking performance of the controller is eval-
uated next. Usually, in Stewart platform mechanisms,
the platform mass is much larger than the mass of the
actuators. Due to this fact, and to simplify the terms in
the equations of motion for the needs of this paper,
the terms MðxÞ;Vðx; _xÞ and GðxÞ of Eq. (1) are sim-
plified by neglecting actuator masses. The resulting
matrices and vectors, i.e., MðxÞ;Vðx; _xÞ and GðxÞ are
given in Appendix D, see Eqs. (D1) – (D3).

The configuration of the 6-dof symmetric Stewart
mechanism is illustrated in Fig. 8. The system
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parameters are shown in Table 2. The joints of the
movable platform and fixed base lie at equal peri-
pheral distances, see Fig. 8. Friction parameters were
experimentally computed using a single dof electro-
hydraulic servomechanism setup, [5]. According to the
identification experimental results shown in Fig. 9,
these values are presented in Table 3. Mechanical
parametric uncertainties are neglected here, as the
controller performance is not sensitive to these.

Simulations runs were obtained using a number of
desired trajectories. To compute the control gains, we
first require that the response of the piston is critically
damped, i.e., �j ¼ 1; j ¼ 1; 2; . . . ; 6. Next, we require a
settling time of about ts ¼ 1s, yielding !j ¼ 2� rad=s;
j ¼ 1; 2; . . . ; 6. The matrix gain elements are computed
as, Kp;j ¼ 4�2A=m; Kv;j ¼ 4�As=m; j ¼ 1; 2; . . . ; 6.
The environment stiffness elements are selected as
Kenv;j ¼ 5� 104N=m; j ¼ 1; 2; . . . ; 6. The desired
impedance filter parameters were selected so that
the valve current saturation is avoided. According to
selection methodology of [2], impedance parameter
are selected as, Kdes;j ¼ 103N=m;Bdes;j ¼ 20Ns=m and
Mdes;j ¼ 100kg; j ¼ 1; 2; . . . ; 6. Finally, the system

natural frequencies were determined by !n;j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kdes;j=Mdes;j

p ¼ 3:16 rad=s; j ¼ 1; 2; . . . ; 6.

In Fig. 10, the moving platform is being raised
along the Z-axis and a stiff wall is present at
zenv ¼ 0:27 m. The six servoactuators follow the same
trajectories because of mechanism symmetry. The
piston displacement and velocity responses, the

Table 2. System parameters

System parameter Value

Ps (supply pressure) 110 bar
PT (return pressure) 1 bar
A1 (piston side area) 2:56� 10�4m2

A2 (rod side area) 6:41� 10�4m2

m (platform mass) 300 kg
Ixx (moment of inertia about the
platform CM)

25 kgm2

Iyy (moment of inertia about the
platform CM)

25 kgm2

Izz (moment of inertia about the
platform CM)

50 kgm2

r1 (see Fig. 8) 0.5 m
r0 (see Fig. 8) 1.0 m
d1 (see Fig. 8) 0.2 m
d0 (see Fig. 8) 0.3 m

Fig. 8. Assembly configuration of the 6-dof Stewart platform employed.
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environment force response, the input current signals,
as well as servoactuator power and chamber pressure
histories for the actuators are shown in Fig. 10. As
shown in Fig. 10(a), the piston displacements are such
that the platform remains in contact with the envir-
onment in a controlled way. An expected, steady-state
error due to the wall results. The force, after a short
transient, settles to a low contact force as expected, see
Fig. 10(c). The other system variables exhibit a similar
response.

Next, a PD controller is compared to the developed
impedance controller assuming a large increase in the
payload. For example, we assume that the load is now
30% larger than its true value. The PD control gains
are selected such that the maximum control effort
between the model-based and the PD algorithms is the
same while the damping is critical. Then, the control
gains are, Kp;j ¼ 100�2rad2=s2, and Kv;j ¼ 20�rad=s;
j ¼ 1; 2; . . . ; 6. Fig. 11(a,b) shows the results using a
PD controller in the case of a ramp response. One can
see that a poor position tracking performance is
obtained; the PD results in undesirable oscillations
while a significant steady-state position error remains.
On the other hand, as shown in Fig. 11(c,d), using the
impedance model-based controller for the same piston

command, a very good system tracking performance
occurs.

Next, the PD and the developed impedance algo-
rithm are compared in the case of erroneous para-
meter estimation. It is assumed that all joint locations
for both the movable platform and fixed base differ by
15% from their true values. These are rather strong
assumptions, especially for the kinematic errors, as
such platforms are designed at high tolerances for
ensuring smoothness of operation. Fig. 12(a,b) shows
the results of the PD controller. It is easy to see that a
poor position tracking performance is obtained. On
the other hand, the robustness of the developed con-
troller is demonstrated in Fig. 12(c,d). Despite these
errors, as shown in Fig. 12, the controller leads the
system to the desired location in a well-behaved
transient. It can be seen that the response is similar to
that in which all parameters are known.

It is also interesting to see the controller perform-
ance in the case of sensor noise, especially of noise in
the pressure sensors. To this end, noise with amplitude
equal to 15% of the initial chamber pressure values is
added to the pressure measurements. Fig. 13(a) dis-
plays the chamber pressures, while Fig. 13(b) the cor-
responding piston displacement response. Fig. 12(b)
shows that the position response remains unaffected
in the presence of noise.

The above examples demonstrate that an imped-
ance controller can be developed for an electro-
hydraulic system, despite the intrinsic nature of the
system. Although parameters may not be known
exactly, the proposed controller still works in the
presence of relatively large parametric uncertainty.
Obviously, a better knowledge of the parameters
improves the response, and this is to be expected.
Reducing parameter uncertainty beyond some

Fig. 9. Experimental results of a hydraulic cylinder friction force vs. piston velocity.

Table 3. Experimental values of servocylinder friction
parameters

Friction
parameter Value

Piston
expansion ( _‘ > 0)

Piston
compression ( _‘ > 0)

b 760.0 Ns/m 945.6 Ns/m

FC;0

�� �� 71.0 N 16.5 N

Fs;0

�� �� 245.0 N 210.0 N
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threshold requires either the use of a parameter
identification method or of an adaptive controller.

5. Conclusions

The development of a novel impedance model-based
controller for a 6-6 electrohydraulic Stewart platform
with symmetric joint locations was studied. Dynamic
models were used that described the rigid body
equations of the Stewart platform and the hydraulics

dynamics of its actuation system. Servovalve models
and friction were included in the model. The
developed control algorithm employed rigid body and
actuation dynamics and yielded the servovalve input
current vector, in analytical form. The control law
consisted of two parts, a feedback and a feedforward
one. An impedance filter modified a desired trajectory
according to a specified behavior. The modified tra-
jectory was fed to the system model to reduce the
effects of the nonlinear hydraulic dynamics. The per-
formance of the developed controller was illustrated

Fig. 10. Simulation results. (a) Piston displacement responses, (b) piston velocity responses, (c) environment force response at Z-direction,
(d) input current signals, (e) actuator power history, (f) chamber pressure histories.
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Fig. 11. (a,b) Undesirable oscillations of PD controller with a load increase of 30%; (a) piston displacement responses, (b) piston velocity
responses. (c,d) A very good tracking performance of impedance model-based controller with a load increase of 30%; (c) piston displacement
responses, (d) piston velocity responses.

Fig. 12. (a,b) Undesirable system response of PD controller with a parametric error of 
 15%; (a) piston displacement responses, (b) piston
velocity responses. (c,d) Robustness demonstration of impedance model-based controller with a parametric error of 
 15%; (c) piston
displacement responses, (d) piston velocity responses.
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using typical trajectories. The proposed methodology
can be extended to electrohydraulic serial or closed-
chain manipulators and simulators.
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Appendix A

The 6� 6 overall Jacobian matrix, JðxÞ, combines the
generalized velocities, _x, with the actuator velocities,
_‘ ¼ _‘1; _‘2; . . . ; _‘6

� �T
via the relationship [27],

_‘ ¼ JðxÞ � _x ðA1Þ

This equation leads to,

_x ¼ ½JðxÞ��1 � _‘ ðA2aÞ

€x ¼ ½JðxÞ��1 � €‘� ½JðxÞ��1 _Jðx; _xÞ � _x ðA2bÞ

Finally, substitution of Eq. (A2b) in Eq. (1), yields
Eq. (4).

Appendix B

In this Appendix, the proof for Eq. (16) is outlined.
The pressure drops of the servovalve orifice 1 and 2,

see Fig. 3b, are given by,

�PG1
ðiÞ ¼ C�1

G1
�Qv1 Qv1j j ðB1aÞ

�PG2
ðiÞ ¼ C�1

G 2
�Qv2 Qv2j j ðB1bÞ

The flow Qv1 is found using the flow continuity law,
along with servovalve input, i.e.,

Qv1ðiÞ ¼ QI;‘1 �Qv2ðiÞ ðB2Þ

Substituting Eq. (B2) in (B1a), is following results,

�PG1
ðiÞ ¼ C�1

G1
� ðQI;‘1 �Qv2Þ ðQI;‘1 �Qv2Þ

�� ��
ðB3Þ

Further, the pressure drop of the servovalve orifice 2 is
written as,

�PG2
ðiÞ ¼ �PG1

ðiÞ þ P1 � P2 ðB4Þ
Taking into account the Eq. (B1b), the last equation is
written as,

C�1
G2

�Qv2 Qv2j j ¼ �PG1
ðiÞ þ P1 � P2 ðB5Þ

Eqs. (B3) and (B5) are two nonlinear algebraic equa-
tions in the unknowns pressure drop �PG1

ðiÞ, and
flow Qv2. Solving this system, Eq. (16a) is obtained.
Eq. (16b) is obtained similarly.

Appendix C

The actuator lengths are determined using inverse
kinematics of the mechanism. Given the generalized
coordinates, x ¼ x0; y0; z0; p; q; rð ÞT, the actuator
lengths are expressed by,

‘i ¼ fx2Bi
þ y2Bi

þ z2Bi
þ ðXAi

� x0Þ2 þ ðYAi
� y0Þ2

þ ðZAi
� z0Þ2 � 2 ½ðr 11xBi

þ r 12yBi
þ r 13zBi

Þ
� ðXAi

� x0Þ þ ðr 21xBi
þ r 22yBi

þ r 23zBi
Þ

� ðYAi
� y0Þ þ ðr 31xBi

þ r 32yBi
þ r 33zBi

Þ
� ðZAi

� z0Þ�g1=2 ; i ¼ 1; 2; . . . ; 6

ðC1Þ
where XAi

;YAi
;ZAi

are the coordinates of joints Ai

relative to XYZ frame, see Fig. 8, xBi
; yBi

; zBi
are

the coordinates of joints Bi relative to xyz frame,
see Fig. 8, and r11; r12; . . . ; r33 are the elements of
rotation matrix of the platform, which are given by,

r11 ¼ cos p cos q cos r� sin p sin r ;

r12 ¼ � cos r sin p� cos p cos q sin r ;

r13 ¼ cos p sin q

ðC2aÞ

r21 ¼ cos q cos r sin pþ cos p sin r ;

r22 ¼ cos p cos r� cos q sin p sin r ;

r23 ¼ sin p sin q

ðC2bÞ

r31 ¼ � cos � sin q ; r32 ¼ sin q sin r ;

r33 ¼ cos q

ðC2cÞ
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Appendix D

The 6� 6 mass matrix of the platform, M, and 6� 1
vectors V and G of the Stewart mechanism, in case
that the dynamics of mechanism actuators is neglec-
ted, are given by,

M ¼

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Mð4; 4Þ Mð4; 5Þ Izz cos q
0 0 0 Mð5; 4Þ Mð5; 5Þ 0
0 0 0 Izz cos q 0 Izz

0
BBBBBB@

1
CCCCCCA

ðD1aÞ

V ¼ 0; 0; 0; Vð4; 1Þ; Vð5; 1Þ; Vð6; 1Þð ÞT
ðD1bÞ

G ¼ 0; 0; 0; mg; 0; 0ð ÞT ðD1cÞ
where,

Mð4; 5Þ ¼ Mð5; 4Þ ¼ 1

2
ðIyy � IxxÞ � sin q � sin 2r

ðD2aÞ

Mð4; 4Þ ¼ 1

4
½Ixx þ Iyy þ 2Izz � ðIxx þ Iyy � 2IzzÞ

� cos 2qþ 2 � ðIxx � IyyÞ � cos 2r � sin2 q�
ðD2bÞ

Mð5; 5Þ ¼ 1

2
½Ixx þ Iyy þ ðIyy � IxxÞ � sin 2r�

ðD2cÞ
and,

Vð4; 1Þ ¼ 1

2

n
ðIyy � IxxÞ _q2 cos q � sin 2r

� 2Izz _q _r sin q� 2 ðIxx � IyyÞ
� _q _r sin q � cos 2rþ ½Ixx þ Iyy � 2Izz

þ ðIxx � IyyÞ cos 2r� � _p _q sin 2q
þ ðIyy � IxxÞ _p _q _r sin2 q � sin 2r

o
ðD3aÞ

Vð5; 1Þ ¼ 1

4

n
½2Izz � Ixx � Iyy � ðIxx � IyyÞ

cos 2r� _p2 cos 2qþ 4 ½Izz þ ðIyy � IxxÞ
cos 2�� _p _r sin qþ 4 ðIxx � IyyÞ _q _r sin 2r

o
ðD3bÞ

Vð6; 1Þ ¼ 1

2

n
ðIxx � IyyÞ _p2 sin2 q � sin 2r

� 2½Izz þ ðIyy � IxxÞ � cos 2r� _p _q sin q

� ðIxx � IyyÞ _q 2 sin 2r
o

ðD3cÞ
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