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ABSTRACT

In this work we study the attitude dynamics and ¢betrol of legged robots using tail-like
appendages during the aerial phases of high speethbtion. A free floating two-body system
is used to describe the dynamics of a large bodyraliing its attitude using a rotating
appendage. The equations of motion for a tail arehation wheel are given, and the meaning
of the generalized coordinates being ignorable adpable is discussed in detail. A thorough
discussion on the holonomy of the system is alsluded. Analytical expressions are given for
a further reduced dynamical model and model-basetralers are then proposed. Finally, we
present a series of simulation results, and weveleronclusions that can serve as guidelines
when designing such systems.
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1 INTRODUCTION

Over the last five years, research in legged robdtas drawn again the attention of the robotics
research community, as universities and comparie® aip with impressive accomplishments,
especially in the field of quadrupedal locomotigithough much research has been conducted
concerning the design and control of legs of vagimorphologies, attitude control of the body
IS yet poorly investigated. However, most of thektaassigned to legged robots, such as high
speed galloping or jumping over obstacles, requieeise control of the robot’s attitude. So far,
attitude control is mostly achieved indirectly thgh the motion of the legs, a technique that
assigns more tasks to the legs forcing them te@tadfts that may lead to low performance.

To better mitigate this challenge, dedicated appges with greater moment of inertia (Mol)
can be used. Interesting ideas can be derived lfiolagy; one quickly thinks of animal tails.
Many quadruped mammals have long tails, which @aibalance and maneuver at high speeds,
[1]. Kangaroo rats use their long tails for riglgtimnd turning in midair. Black rats can
impressively enter a building by balancing alongnam wire. Moreover, studying hopping by
kangaroos, one may be amazed to see how they eisddits to counteract the body pitching
induced by the motion of their legs, [2]. In genglegged animals mostly use their tails for fine
adjustments to perturbations, when their legs Hreravise occupied.

While numerous legged robots have been designely, anminority employ dedicated

appendages for angular momentum management, suthls®or reaction wheels, [3-7]. A

number of studies have also dealt with attitudetrobnunder conservation of angular
momentum, and methods that can lead a mechanismédroinitial configuration to a desired
final one have been developed, [8-10]. Howeverth® authors’ knowledge, no methodology
has been proposed concerning the design of sudtkéamechanisms.

In this work, we use a free floating two-body syst describe the dynamics of a large body
controlling its attitude using a rotating appendafee equations of motion are next given for
all cases, and the meaning of the ignorable angap#d coordinates is discussed in detail. To
this end, we also clarify several issues concernhmg holonomy of the system and its

implications on attitude control. The model is tHarther reduced and model-based controllers



are proposed. Finally, we present a series of sitiaul results, and we derive conclusions that
can serve as guidelines when designing such systems

2 DYNAMICS AND ANGULAR MOMENTUM

2.1 Dynamics

We introduce a simple planar template of two cotdiidedies, i.e. a body and a tail in aerial
phase (see Table 1). By body we mean the body tiwéhfour legs and the head of a legged
robot, except for the tail. This is a reasonabkuagption if one considers zero leg Mol and a
rigid spine. The uniform gravitational field allovgeparation of the system center of mass
(CoM) motion and the relative motion into two deplad pieces. Therefore we can decouple
the system CoM motion, and obtain a reduction ¢osystem CoM frame. We parameterize the
configuration space only by the absolute pitch amdlthe bodyd € S', and the relative hinge
angle of the tailge S'. Let (m,, I,) and(m, I,) denote the mass and the Mol about each body
CoM, for the body and the tail respectively. kebe the distance from the body CoM to the
joint, andl be the distance from the tail CoM to the joinndty, letz be the control torque that
the body exerts on the tail, with the motor modkHs an ideal torque source.

The equations of motion (EoM) are given in Tabléd every possible case, including both
reaction wheel and tail cases, with a reaction Wheig any symmetrical body hinged at its
own CoM. We note that the two masses appear onlhenform of an important quantity
u=(mm,)/(m+m,)), that we call thesystem effective mass. In all cases, the generalized
coordinates are characterized igaorable or palpable, since this distinction can help the
analysis. A coordinate is called ignorable or ayelihen it does not appear in the Lagrangian,
and palpable or positional otherwise. In practigben a coordinate is ignorable, we can write
the EoM without this coordinate. We note that whies hinge is transferred to the body CoM,
the shape anglg turns from palpable to ignorable, with importamiplications on the system’s
holonomy, which are discussed next thoroughly.

2.2 Conservation of Angular Momentum

We note that the generalized momentum associatdcdthe ignorable coordinateis conserved
(6L /00 =const , whereL is the Lagrangian), yielding:

(I g+ 21+l 2+ 2ur) cosq P+ (+ud *+url cog §=h, (1)

which is in fact the equation for the conservatidrihe system’s angular momentum about its
CoM, with h, being the system initial angular momentum.

2.3 Integrability of the Constraint and System’s Holonony

As thoroughly discussed in [11], the general cdse mlanar free-floating open kinematic chain
is nonholonomic forn>2 bodies. However, in literature, the two-body systés often
incorrectly considered either holonomic or nonholmic without the appropriate analysis. In
this work, the problem is addressed in detail, &h@d shown that the system’s holonomy
depends on the system's geometry and the systatidsangular momentum.

Equation (1) can take the form of an acatastatffidh constraint, which is nonholonomic only
whenr, | #0 and h, = 0 at the same time. This means that for zero indrejular momentum,
the conservation equation is analytically integeainldependent of the position of the hinge.
When time enters as a third variable through tligainangular momentum, the constraint is
integrable only if the tail is pinned at the bodgM (r=0), or if the appendage is a reaction
wheel. A holonomic constraint is in fact a geometric one #imus eachy corresponds to a
specificq, while a nonholonomic constraint makes the wholafiguration manifold accessible,



Table 1 EoM for systems of different geometries.

General case: 2-body free floating system
6. ignorable g: palpable

(g +ur®+ 1+ 24 %+ 2ur) cosy P+ (,+4d >+ prl cog §
—url sig @+ 80 ¥ 0 (2)
(I, +2d% + i cosq P+ (+ 44 Y+ ur) sirgd®=z

Tail hinged at distancer from body CoM (11=0)
0: ignorable g: palpable

(g +ur®+p*+2prl cosq P+ (ul >+ prl cosy §
—url sig ¢+ B89 ¥ O (3)
(2l ®+ prl cosq P+ pil 2+ pur| sim@*=r

Tail hinged at body CoM (1:=0, r=0)
0. ignorable g: ignorable

| 1l _, (4)

Reaction wheel hinged at distance r from body
CoM (1=0)
0: ignorable g: ignorable

(|0+ur2)é:—r
Llotar?) o )
Lo+l +ur?

Reaction wheel hinged at body Col - “Elroy’s
Beanie”, [12], [zr=0)
6. ignorable g: ignorable

Ioéz—z'
&qzr (6)
lo+1,

and any pair {, g) can be achieved. Next, we present the holonomiesgasnd we give
analytical results based on the analysis in [13].

Zero Initial Angular Momentum

In this case, the conservation equation is intdgrétr all geometries. Integrating (1) with
h,=0 yields:

1 A, ., B q, A, __ q
0=0.-=(g-q,)-—tan* (< tan— »— tan' g tar>
b= (A-00)~ 5 ( tan r o 5 (7)



A=+l * =1 —pr?, B=1 g+l +u(-r)?
C=J(lg+ 1+ 2>+ pur )= (2url )?

This is a rather involved expression that gets nsaigtpler whenr =0 (the appendage is hinged
at the body’s CoM), ot=0 (the appendage rotates about its CoM, i.e. itr@aation wheel).

where

Nonzero Initial Angular Momentum

For nonzero angular momentum, the more general ioagtich (1) is integrable is when the
appendage is hinged at body CoM. Integrating (1 wi=0 yields:

(o + 1,441 ?)(0—=0)+(1 + 11 ?)(A-0g)=h(t-t ) (8)
Conclusions

- When both generalized coordinates are ignorable, the conservation equation is always
integrable and the system holonomic.

- When both coordinates are ignorable, the inertia matrix becomes independent of the shape
variable g, the EOM can be written decoupled, and analytical solutions can be derived.

- When the initial angular momentum is zero, the system is holonomic for every geometry.
Hence, it is not possible to achieve any pair of 4 and g.

- When the appendage is a reaction wheel, the system is always holonomic.

- The system is nonholonomic only when a tail (1+0) ishinged at a distance r=0 from the body
CoM and the initial angular momentum is nonzero.

3 REDUCED DYNAMICS AND CONTROL

Being difficult to control both andq with a single control input, we develop model-based
controllers to controb when we need to control the body attitude, gn@then we need to
position the tail to a desired angle.

3.1 Control of the Tail Angle gq

For all cased is an ignorable coordinate; we can derive the ceduEoM in the form of a
single equation where only, ¢ and § appear (see Appendix for the full expressions):

D(a)4+C(q,4)q+G(q,h¢)=r 9)

Using (9) the following feedback linearization carhtscheme can be applied in order to control
the tail angleg, wheree, is the error in tail angle, ank}, k, are the gains of a PD controtler

7=D(0)(d, +k &, +k,€,)+C(a,9)a+G(a,hY) (10)

3.2 Control of the Unactuated Body Angled

In order to controlf one should eliminatef from the second EoM (1), yielding a single
equation of the form (see Appendix for the full eegsions):

D*(d+C(q g Q) =r (11)

Similarly to the previous case, a model-based otiatris developed fof, achievingé:édes:

7=D*(0)(6,+k,8 +k,&) +C*(a ¢ 6) (12)



Trajectory planning is implemented using a quirgdynomial of the following form (see
Appendix for the full expressions):

0. ()=a+at+at’*+at’+at’+at® (13)

The control scheme described here was used iheaétperiments included in this work.

4 DESIGN PRINCIPLES

The analysis above is important for the attitudeties of a legged robot, and provides the basic
guidelines for building a design methodology foil-lite systems. On this basis, steps for
selection of the key parameters of reaction whaetbtails have been proposed in [13]. In this
section we focus on tail design, since a tail heenbproved to be more effective than a wheel,
[13]. The main parameters to be selected are tss awad the length of the tail, while the motor
characteristics are also of great importance. Déipgnon the case, several criteria can be used
for the calculation of these parameters. These amonda) the maximum change of the body
angle that can be achieved during a flight phasethe maximum body angular velocity that
can be rejected through the tail’s motion, (c) th@ximum accelerating or decelerating force
appearing at the tail joint, and (d) the maximurargde on body’s angular momentum induced
by leg motion. The design principles introducedeireare mainly based on the first criterion.

Suppose the body needs to perform a maned@én a specific time intervaht in roll, pitch or
yaw direction. In this case, a suitable torque ifof(t) must be provided by the tail-like
appendage to rotate the body. The device can allyed the torque needed, if a motor can
accelerate the appendage by exerting on it thesigptorque. As expected, when the desired
torque is exerted on a low Mol appendage, high kmgacceleration and thus high angular
velocity results, and this greatly affects the eloteristics that the motor should have. For
instance, a demanding task requires the motor ik Wwo high torque (in order to rotate the
body), and high speed (the speed that the lower Bfipendage reaches). Besides, the
appendage's mass must be the lowest possibleasa tlobot can use it without significantly
increasing its total mass. These facts revealtipwitance of the proper appendage design, and
how this affects the selection of the driving motor

In most cases, the rotation of the tail is mechalhicconstrained, as also observed in animal
tails, and thus every maneuver must be completeld wie appendage is within its mechanical
bounds, i.eqelq,,. q,.] - Considering the conservation equation in the zeittal angular

momentum case, whexy is boundedAd is also bounded, i.e. not every desired maneuaer c
be performed. Hence, the parameters consistingetuation are significant for a proper design
and determine the capabilities of the final deviDa.this basis, an expression for the tail mass
calculation has been proposed in [13], which i alsed in this work. At this point, we reach
the following conclusions that we will validate dligh simulation experiments in section 5:

- By choosing the tail mass after maximizing the tail length, one chooses the maximum body
maneuver 46 that can be performed when the system total angular momentum is zero, or the
maximum initial body angular velocity that can be rejected in a time interval At, when the
systeminitial angular momentumis nonzero.

- Thetime interval to complete a maneuver is determined by the torque provided by the tail; the
higher the torque, the faster the maneuver. Moreover, the lower the tail mass, the higher the tail
acceleration under a certain torque profile, and therefore, the greater the power needed.

5 SIMULATION EXPERIMENTS

In our previous work, we have shown that a tailgkuh at distance from the body CoM is a

better solution than a reaction wheel hinged atghme position; since the required motor
power, and torque are significantly reduced intthiecase, [13]. Therefore, in this section, we
present a series of simulation experiments of lsopgéforming maneuvers with tails of various



morphologies, to better understand the nature @fpttoblem. Zero initial angular momentum
was considered in all experiments, in order to leaonclusions easier. We were mostly
interested in the control torque profile, and theximum tail angular speed since, these are the
parameters that mainly determine the motor selecttmnsidering DC actuators, the selection
of a motor-gearbox-amplifier combination that cagrform such maneuvers, is difficult or
sometimes impossible. The speed — torque charstitsrifor a demanding maneuver often
exceed the capabilities of typical DC actuators] awen if there is a suitable actuator for the
task, its mass can be unacceptable. These difésulie mainly on the need to control the
attitude of a large Mol body by rotating a small IMgppendage in a very short time interval.
These facts make the following analysis valuahbilgsesthe limits regarding the actuators and
the possible maneuvers are revealed through numesgperiments. The parameters of the
simulations were chosen according to data obtdied animal and robot locomotion, [13].

5.1 Experiments varying the Tail Mass

First, we consider a body of mass=30kg and Moll;=2kgn¥, performing aAd=3° maneuver

in 0.15s using a tail hinged at distame®.4m from the body CoM, with tail lengtk0.4m, tail
mass varying from 0.5 to 4 kg, amgc0. We use the expression given in [13] to caleukat
minimum value for the tail mass, and with this imd) we try greater values to see how other
parameters, such as motor torque, speed, and phaage. This is the first experiment, since
the mass of the tail is the easiest parameter &mgeh in a real robot. Simulation results are
shown in Fig. 1.

Conclusions

In Figures 1(c) and 1(d), we see that for greatitmtass the maximum motor speed decreases,
while the maximum torque slightly increases. Fumitare, the power that the motor has to
deliver is much greater for lower tail mass, seg E{f). We conclude that the greater the tail
mass, the better for the actuator, provided thatrttaximum torque can be supplied by the
actuator, and the extra mass can be carried byothat. Therefore, a good choice for the talil
mass would benw=1.5kg, and thus this is the value used in th@fadlhg experiments.

5.2 Experiments varying the Tail Length

Except for changing the tail mass, another wayhange the tail Mol about its hinge is by
changing the tail length In this series of simulations, we use the samarpaters as above,
with a tail mass of 1.5kg, and a tail length vagyimom 0.2m to 0.5m, to achieve A&=3°
maneuver in 0.15s. Simulation results are showsign2.

Conclusions

We reach similar conclusions with the previous casevhich we varied the tail mass, i.e. the
greater the tail mass, the better for the actugimyided that the maximum torque can be
supplied, see Fig. 2(e). However, in this casénd kxists for the tail length mostly due to the
robot's geometry. For instance, it cannot be muehtgr than the leg's length.

5.3 Experiments varying the Baly CoM — Hinge Distance

In this section we present simulation results frerperiments of aAd=10" maneuver in
At=0.2s, and different hinge positions, varying tteelyo CoM — hinge distance from Om to
0.45m. The rest of the parameters are kept sirtdldéine ones in the previous simulations. The
results are shown in Fig. 3.
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Figure 1. A body ofmy=30kg, |o=2kgn?, with a tail of lengti=0.4m, Moll;=0, and masay varying
from 0.5kg to 4kg, hinged at distanced.4m from the body CoM, performs a maneuveA&£3° in
At=0.15s.

Conclusions

As shown in Figures 3(c), 3(d), and 3(f), the t@gspeed and power profiles are symmetric
when the tail is hinged at the body CoM. In evetlgeo case, where=0, the hinge force
creates a torque that breaks this symmetry ands bl motor perform the maneuver. As a
result, the motor torque, speed and power deciEsatiee body CoM — hinge distance increases,
i.e. the greater this distance is, the easietf@ractuator to perform a certain maneuver.

5.4 Experiments varying the Time of the Maneuver

It is evident so far that the time interval cho$ana certain maneuver is a key parameter of the
task, and strongly affects the motor selectiorthla series of simulations we address this topic
systematically by performing 49 = 10 maneuver in different time intervald, varying from
0.15s to 0.4s. The body and tail parameters rage30kg, mi=1.5kg, lo=2kgn¥, 1:=0, [=0.4m,
andr=0.4m. The results are presented in Fig. 4.
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Figure 2. A body ofmy=30kg, lo=2kgn?, with a tail of massm=1.5kg, Moll1=0, and length varying
from 0.2m to 0.5m, hinged at distane®.4m from the body CoM, performs a maneuveA@£3° in
At=0.15s.

Conclusions

Figures 4(c), 4(d), and 4(f) show that by decreasire time available for the maneuver, the
motor power, torque and speed increase. The veny 8me interval is the main reason for the

need of powerful motors that would be of no uselforger time intervals. The torque and

power requirements decrease significantly evenafdesired time of 0.4s. Moreover, the tail

angle — time diagram reveals the time invariancetr® holonomic angular momentum

constraint (note that the initial angular momentsmaero in this experiment), since the change
in tail angle is the same for all experiments, Bige 4(b).

5.5 Experiments varying the Body Mol

Legged robots are systems that must be able to msaceessfully with varying inertia
properties. Two typical reasons are the need toy adifferent cargos, and the uncertainty
regarding the knowledge of the robot's real ineptiaperties. This fact justifies the analysis
presented in the section, which includes simulaggperiments with bodies of different Mol
controlling their attitude with identical tails. Mauvers oA6=3"in At=0.15s are performed by
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Figure 3. A body ofmy=30kg, lo=2kgn?, with a tail of massm=1.5kg, Moll;=0, and lengtt=0.4m,
hinged at a distanaefrom body CoM, which varies from Om to 0.45m, peris a maneuvekd=10C in
At=0.2s.

bodies of Mol from 1.6 to 2.4 kginThe other simulation parameters arg=30kg, m=1.5kg,
[1=0,1=0.4m, and'=0.4m. The results are shown in Fig. 5.

Conclusions

As expected, for bodies of greater Mol, greater gmworque and speed are requested from the
motor, see Figures 5(c), 5(d), and 5(f). Hence, greater the body Mol, the harder for the
actuator to perform a certain maneuver, see F&. 5(
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Figure 4. A body ofmy=30kg, lo=2kgn?, with a tail of massm=1.5kg, Moll;=0, and lengtt=0.4m,
hinged at a distanae=0.4m from the body CoM, performaA#=10> maneuver in time intervalst
varying from 0.15 to 0.4s.

6 CONCLUSIONS

In this paper we studied the attitude dynamics thedcontrol of legged robots using tail-like
appendages during the aerial phases of high speethbtion. A free floating two-body system
was introduced to describe the dynamics of a laagy controlling its attitude using a rotating
appendage. The equations of motion for a tail ar@hation wheel were given, and the meaning
of the ignorable and palpable coordinates of tistesy was discussed in detail. The holonomy
of the system was also discussed thoroughly. Awmalyexpressions were given for a further
reduced dynamical model and model-based controller® proposed. A series of simulation
experiments were finally carried out for variousteyn parameters, and important conclusions
were derived concerning the design of such systems.
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Figure 5. A body ofm=30kg, and Mol varying from 1.5 to 3.5kgfwith a tail of lengtd=0.4m, Mol
1,:=0, and masey=1.5kg hinged at=0.4m from body CoM performs&9=3° maneuver imt=0.15s.
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APPENDIX
Terms of the reduced EoM (9), when written as fiomst of g, q, ¢ :
D(Q):(doodn_dloz)/(d oo+d 11+2d 19
C(0 )= (0o +d3o)(dy+d,0d 1/ (d oot p2d
G(a, h§):aloh02/(d oo+d11+ 2d 10)2
Aoy =l o+ur?, dy=I+u?, d,=url coxy,d,=url sin

Terms of the reduced EoM (11), when written as fions of g, 0, 6

. d;,(d,,+d,+2d
D*(d) =- H ((); _Hljl 10)=dll+d10
117 Y10
in .2 <A .
C*(q, ¢, 9) :w_’_dm@z
117 Y10

With d,,, d,,,d,, andd,, defined abo

Terms of the quintic polynomial used for trajectptgnning in (13):
. 1
8y=0,, a,=0,, azzzeo

ag:%(zo(gf ~0,)- (8, +1D, ¥, — (Fy-0,)? )

f

1 o .
3, :F (_30(‘9f _‘90 )+ (149f + 1690 )f + (@o_ yo t)? )

f

1 .. .
aszf (lz(ef _‘90 )_ 6(‘9f +(90 lf + ((90—490)f )
f



