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ABSTRACT 

In this work we study the attitude dynamics and the control of legged robots using tail-like 
appendages during the aerial phases of high speed locomotion. A free floating two-body system 
is used to describe the dynamics of a large body controlling its attitude using a rotating 
appendage. The equations of motion for a tail and a reaction wheel are given, and the meaning 
of the generalized coordinates being ignorable or palpable is discussed in detail. A thorough 
discussion on the holonomy of the system is also included. Analytical expressions are given for 
a further reduced dynamical model and model-based controllers are then proposed. Finally, we 
present a series of simulation results, and we derive conclusions that can serve as guidelines 
when designing such systems. 
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1 INTRODUCTION 

Over the last five years, research in legged robotics has drawn again the attention of the robotics 
research community, as universities and companies came up with impressive accomplishments, 
especially in the field of quadrupedal locomotion. Although much research has been conducted 
concerning the design and control of legs of various morphologies, attitude control of the body 
is yet poorly investigated. However, most of the tasks assigned to legged robots, such as high 
speed galloping or jumping over obstacles, require precise control of the robot’s attitude. So far, 
attitude control is mostly achieved indirectly through the motion of the legs, a technique that 
assigns more tasks to the legs forcing them to trade-offs that may lead to low performance.  

To better mitigate this challenge, dedicated appendages with greater moment of inertia (MoI) 
can be used. Interesting ideas can be derived from biology; one quickly thinks of animal tails. 
Many quadruped mammals have long tails, which aid to balance and maneuver at high speeds, 
[1]. Kangaroo rats use their long tails for righting and turning in midair. Black rats can 
impressively enter a building by balancing along a 2mm wire. Moreover, studying hopping by 
kangaroos, one may be amazed to see how they use their tails to counteract the body pitching 
induced by the motion of their legs, [2]. In general, legged animals mostly use their tails for fine 
adjustments to perturbations, when their legs are otherwise occupied. 

While numerous legged robots have been designed, only a minority employ dedicated 
appendages for angular momentum management, such as tails or reaction wheels, [3-7]. A 
number of studies have also dealt with attitude control under conservation of angular 
momentum, and methods that can lead a mechanism from an initial configuration to a desired 
final one have been developed, [8-10]. However, to the authors’ knowledge, no methodology 
has been proposed concerning the design of such tail-like mechanisms. 

In this work, we use a free floating two-body system to describe the dynamics of a large body 
controlling its attitude using a rotating appendage. The equations of motion are next given for 
all cases, and the meaning of the ignorable and palpable coordinates is discussed in detail. To 
this end, we also clarify several issues concerning the holonomy of the system and its 
implications on attitude control. The model is then further reduced and model-based controllers 



are proposed. Finally, we present a series of simulation results, and we derive conclusions that 
can serve as guidelines when designing such systems. 

2 DYNAMICS AND ANGULAR MOMENTUM 

2.1 Dynamics 

We introduce a simple planar template of two coupled bodies, i.e. a body and a tail in aerial 
phase (see Table 1). By body we mean the body with the four legs and the head of a legged 
robot, except for the tail. This is a reasonable assumption if one considers zero leg MoI and a 
rigid spine. The uniform gravitational field allows separation of the system center of mass 
(CoM) motion and the relative motion into two decoupled pieces. Therefore we can decouple 
the system CoM motion, and obtain a reduction to the system CoM frame. We parameterize the 
configuration space only by the absolute pitch angle of the body 1Sθ ∈ , and the relative hinge 
angle of the tail 1q S∈ . Let 0 0( , ) m I  and 1 1( , ) m I  denote the mass and the MoI about each body 
CoM, for the body and the tail respectively. Let r be the distance from the body CoM to the 
joint, and l be the distance from the tail CoM to the joint. Finally, let τ be the control torque that 
the body exerts on the tail, with the motor modelled as an ideal torque source.  

The equations of motion (EoM) are given in Table 1 for every possible case, including both 
reaction wheel and tail cases, with a reaction wheel being any symmetrical body hinged at its 
own CoM. We note that the two masses appear only in the form of an important quantity 

1 2 1 2( ) / ( )m m m mµ = + , that we call the system effective mass. In all cases, the generalized 
coordinates are characterized as ignorable or palpable, since this distinction can help the 
analysis. A coordinate is called ignorable or cyclic when it does not appear in the Lagrangian, 
and palpable or positional otherwise. In practice, when a coordinate is ignorable, we can write 
the EoM without this coordinate. We note that when the hinge is transferred to the body CoM, 
the shape angle q turns from palpable to ignorable, with important implications on the system’s 
holonomy, which are discussed next thoroughly. 

2.2 Conservation of Angular Momentum 

We note that the generalized momentum associated with the ignorable coordinate θ is conserved 
( /L constθ∂ ∂ =ɺ , where L is the Lagrangian), yielding: 

 2 2 2
0 1 1 0( 2 cos ) ( cos )I r I l rl q I l rl q q hµ µ µ θ µ µ+ + + + + + + =ɺ ɺ  (1)

which is in fact the equation for the conservation of the system’s angular momentum about its 
CoM, with 0h  being the system initial angular momentum. 

2.3 Integrability of the Constraint and System’s Holonomy 

As thoroughly discussed in [11], the general case of a planar free-floating open kinematic chain 
is nonholonomic for 2n>  bodies. However, in literature, the two-body system is often 
incorrectly considered either holonomic or nonholonomic without the appropriate analysis. In 
this work, the problem is addressed in detail, and it is shown that the system’s holonomy 
depends on the system's geometry and the system's initial angular momentum. 

Equation (1) can take the form of an acatastatic Pfaffian constraint, which is nonholonomic only 
when , 0 r l ≠  and 0 0h ≠  at the same time. This means that for zero initial angular momentum, 
the conservation equation is analytically integrable independent of the position of the hinge. 
When time enters as a third variable through the initial angular momentum, the constraint is 
integrable only if the tail is pinned at the body CoM ( 0)r= , or if the appendage is a reaction 
wheel. Α holonomic constraint is in fact a geometric one and thus each θ corresponds to a 
specific q, while a nonholonomic constraint makes the whole configuration manifold accessible, 



Table 1. EoM for systems of different geometries. 
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Tail hinged at distance r from body CoM (I1=0) 
θ: ignorable, q: palpable 
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Tail hinged at body CoM (I1=0, r=0) 
θ: ignorable, q: ignorable 
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Reaction wheel hinged at distance r from body 
CoM (l=0) 
θ: ignorable, q: ignorable 
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Reaction wheel hinged at body CoM - “Elroy’s 
Beanie”, [12], (l=r=0) 
θ: ignorable, q: ignorable 
 

0

1 0

0 1

I

I I
q

I I

θ τ

τ

=−

=
+

ɺɺ

ɺɺ
                                                             (6) 

 

and any pair (θ, q) can be achieved. Next, we present the holonomic cases, and we give 
analytical results based on the analysis in [13]. 

Zero Initial Angular Momentum 

In this case, the conservation equation is integrable for all geometries. Integrating (1) with 

0 0h =  yields: 

 1 1 0
0 0

1
( ) tan ( tan ) tan ( tan )

2 2 2
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q q

C C C C
θ θ − −= − − − +

 
(7)



where 
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This is a rather involved expression that gets much simpler when 0r=  (the appendage is hinged 
at the body’s CoM), or 0l=  (the appendage rotates about its CoM, i.e. it is a reaction wheel). 

Nonzero Initial Angular Momentum 

For nonzero angular momentum, the more general case in which (1) is integrable is when the 
appendage is hinged at body CoM. Integrating (1) with 0r=  yields: 

 2 2
0 1 0 1 0 0 0( )( ) ( )( ) ( )I I l I l q q h t tµ θ θ µ+ + − + + − = −  (8)

Conclusions 

- When both generalized coordinates are ignorable, the conservation equation is always 
integrable and the system holonomic. 

- When both coordinates are ignorable, the inertia matrix becomes independent of the shape 
variable q, the EoM can be written decoupled, and analytical solutions can be derived. 

- When the initial angular momentum is zero, the system is holonomic for every geometry. 
Hence, it is not possible to achieve any pair of θ and q. 

- When the appendage is a reaction wheel, the system is always holonomic. 

- The system is nonholonomic only when a tail ( 0)l≠  is hinged at a distance 0r≠  from the body 

CoM and the initial angular momentum is nonzero. 

3 REDUCED DYNAMICS AND CONTROL 

Being difficult to control both θ and q with a single control input τ, we develop model-based 
controllers to control θ when we need to control the body attitude, and q when we need to 
position the tail to a desired angle. 

3.1 Control of the Tail Angle q 

For all cases θ is an ignorable coordinate; we can derive the reduced EoM in the form of a 
single equation where only ,  q qɺ  and  qɺɺ  appear (see Appendix for the full expressions): 

 2
0( ) ( , ) ( , )D q q C q q q G q h τ+ + =ɺɺ ɺ ɺ  (9)

Using (9) the following feedback linearization control scheme can be applied in order to control 
the tail angle q, where eq is the error in tail angle, and , v pk k  are the gains of a PD controller: 

 2
0( )( ) ( , ) ( , )d v q p qD q q k e k e C q q q G q hτ = + + + +ɺɺ ɺ ɺ ɺ  (10) 

3.2 Control of the Unactuated Body Angle θ 

In order to control θ one should eliminate  qɺɺ  from the second EoM (1), yielding a single 
equation of the form (see Appendix for the full expressions): 

 *( ) *( , , )D q C q qθ θ τ+ =ɺɺ ɺɺ  (11) 

Similarly to the previous case, a model-based controller is developed for θ, achieving desθ θ=ɺɺ ɺɺ : 

 *( )( ) *( , , )d v pD q k e k e C q qθ θτ θ θ= + + +ɺɺ ɺɺ ɺ  (12) 



Trajectory planning is implemented using a quintic polynomial of the following form (see 
Appendix for the full expressions): 

 2 3 4 5
0 1 2 3 4 5( )des t a a t a t a t a t a tθ = + + + + +  (13) 

The control scheme described here was used in all the experiments included in this work. 

4 DESIGN PRINCIPLES 

The analysis above is important for the attitude control of a legged robot, and provides the basic 
guidelines for building a design methodology for tail-like systems. On this basis, steps for 
selection of the key parameters of reaction wheels and tails have been proposed in [13]. In this 
section we focus on tail design, since a tail has been proved to be more effective than a wheel, 
[13]. The main parameters to be selected are the mass and the length of the tail, while the motor 
characteristics are also of great importance. Depending on the case, several criteria can be used 
for the calculation of these parameters. These concern: (a) the maximum change of the body 
angle that can be achieved during a flight phase, (b) the maximum body angular velocity that 
can be rejected through the tail’s motion, (c) the maximum accelerating or decelerating force 
appearing at the tail joint, and (d) the maximum change on body’s angular momentum induced 
by leg motion. The design principles introduced herein are mainly based on the first criterion. 

Suppose the body needs to perform a maneuver ∆θ in a specific time interval ∆t in roll, pitch or 
yaw direction. In this case, a suitable torque profile τ(t) must be provided by the tail-like 
appendage to rotate the body. The device can only deliver the torque needed, if a motor can 
accelerate the appendage by exerting on it the opposite torque. As expected, when the desired 
torque is exerted on a low MoI appendage, high angular acceleration and thus high angular 
velocity results, and this greatly affects the characteristics that the motor should have. For 
instance, a demanding task requires the motor to work in high torque (in order to rotate the 
body), and high speed (the speed that the lower MoI appendage reaches). Besides, the 
appendage's mass must be the lowest possible, so that a robot can use it without significantly 
increasing its total mass. These facts reveal the importance of the proper appendage design, and 
how this affects the selection of the driving motor. 

In most cases, the rotation of the tail is mechanically constrained, as also observed in animal 
tails, and thus every maneuver must be completed while the appendage is within its mechanical 
bounds, i.e. min max[ , ] q q q∈ . Considering the conservation equation in the zero initial angular 
momentum case, when ∆q is bounded, ∆θ is also bounded, i.e. not every desired maneuver can 
be performed. Hence, the parameters consisting this equation are significant for a proper design 
and determine the capabilities of the final device. On this basis, an expression for the tail mass 
calculation has been proposed in [13], which is also used in this work. At this point, we reach 
the following conclusions that we will validate through simulation experiments in section 5: 

- By choosing the tail mass after maximizing the tail length, one chooses the maximum body 
maneuver ∆θ that can be performed when the system total angular momentum is zero, or the 
maximum initial body angular velocity that can be rejected in a time interval ∆t, when the 
system initial angular momentum is nonzero. 

- The time interval to complete a maneuver is determined by the torque provided by the tail; the 
higher the torque, the faster the maneuver. Moreover, the lower the tail mass, the higher the tail 
acceleration under a certain torque profile, and therefore, the greater the power needed. 

5 SIMULATION EXPERIMENTS 

In our previous work, we have shown that a tail hinged at distance r from the body CoM is a 
better solution than a reaction wheel hinged at the same position; since the required motor 
power, and torque are significantly reduced in the tail case, [13]. Therefore, in this section, we 
present a series of simulation experiments of bodies performing maneuvers with tails of various 



morphologies, to better understand the nature of the problem. Zero initial angular momentum 
was considered in all experiments, in order to reach conclusions easier. We were mostly 
interested in the control torque profile, and the maximum tail angular speed since, these are the 
parameters that mainly determine the motor selection. Considering DC actuators, the selection 
of a motor-gearbox-amplifier combination that can perform such maneuvers, is difficult or 
sometimes impossible. The speed – torque characteristics for a demanding maneuver often 
exceed the capabilities of typical DC actuators, and even if there is a suitable actuator for the 
task, its mass can be unacceptable. These difficulties lie mainly on the need to control the 
attitude of a large MoI body by rotating a small MoI appendage in a very short time interval. 
These facts make the following analysis valuable, since the limits regarding the actuators and 
the possible maneuvers are revealed through numerous experiments. The parameters of the 
simulations were chosen according to data obtained from animal and robot locomotion, [13]. 

5.1 Experiments varying the Tail Mass 

First, we consider a body of mass m0=30kg and MoI I0=2kgm2, performing a ∆θ=3ο maneuver 
in 0.15s using a tail hinged at distance r=0.4m from the body CoM, with tail length l=0.4m, tail 
mass varying from 0.5 to 4 kg, and I1=0. We use the expression given in [13] to calculate a 
minimum value for the tail mass, and with this in mind, we try greater values to see how other 
parameters, such as motor torque, speed, and power change. This is the first experiment, since 
the mass of the tail is the easiest parameter to change in a real robot. Simulation results are 
shown in Fig. 1. 

Conclusions 

In Figures 1(c) and 1(d), we see that for greater tail mass the maximum motor speed decreases, 
while the maximum torque slightly increases. Furthermore, the power that the motor has to 
deliver is much greater for lower tail mass, see Fig. 1(f). We conclude that the greater the tail 
mass, the better for the actuator, provided that the maximum torque can be supplied by the 
actuator, and the extra mass can be carried by the robot. Therefore, a good choice for the tail 
mass would be m1=1.5kg, and thus this is the value used in the following experiments. 

5.2 Experiments varying the Tail Length 

Except for changing the tail mass, another way to change the tail MoI about its hinge is by 
changing the tail length l. In this series of simulations, we use the same parameters as above, 
with a tail mass of 1.5kg, and a tail length varying from 0.2m to 0.5m, to achieve a ∆θ=3ο 
maneuver in 0.15s. Simulation results are shown in Fig. 2. 

Conclusions 

We reach similar conclusions with the previous case, in which we varied the tail mass, i.e. the 
greater the tail mass, the better for the actuator, provided that the maximum torque can be 
supplied, see Fig. 2(e). However, in this case, a limit exists for the tail length mostly due to the 
robot's geometry. For instance, it cannot be much greater than the leg's length. 

5.3 Experiments varying the Body CoM – Hinge Distance 

In this section we present simulation results from experiments of a ∆θ=10ο maneuver in 
∆t=0.2s, and different hinge positions, varying the body CoM – hinge distance r from 0m to 
0.45m. The rest of the parameters are kept similar to the ones in the previous simulations. The 
results are shown in Fig. 3. 



(a) (b)

(c) (d)

(e) (f)

m

m

m

m

m

 

Figure 1. A body of m0=30kg, I0=2kgm2, with a tail of length l=0.4m, MoI I1=0, and mass m1 varying 
from 0.5kg to 4kg, hinged at distance r=0.4m from the body CoM, performs a maneuver of ∆θ=3ο in 

∆t=0.15s. 

Conclusions 

As shown in Figures 3(c), 3(d), and 3(f), the torque, speed and power profiles are symmetric 
when the tail is hinged at the body CoM. In every other case, where 0r ≠ , the hinge force 
creates a torque that breaks this symmetry and helps the motor perform the maneuver. As a 
result, the motor torque, speed and power decrease as the body CoM – hinge distance increases, 
i.e. the greater this distance is, the easier for the actuator to perform a certain maneuver. 

5.4 Experiments varying the Time of the Maneuver 

It is evident so far that the time interval chosen for a certain maneuver is a key parameter of the 
task, and strongly affects the motor selection. In this series of simulations we address this topic 
systematically by performing a ∆θ = 10ο maneuver in different time intervals ∆t, varying from 
0.15s to 0.4s. The body and tail parameters are: m0=30kg, m1=1.5kg, I0=2kgm2, I1=0, l=0.4m, 
and r=0.4m. The results are presented in Fig. 4. 
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Figure 2. A body of m0=30kg, I0=2kgm2, with a tail of mass m1=1.5kg, MoI I1=0, and length l varying 
from 0.2m to 0.5m, hinged at distance r=0.4m from the body CoM, performs a maneuver of ∆θ=3ο in 

∆t=0.15s. 

Conclusions 

Figures 4(c), 4(d), and 4(f) show that by decreasing the time available for the maneuver, the 
motor power, torque and speed increase. The very short time interval is the main reason for the 
need of powerful motors that would be of no use for longer time intervals. The torque and 
power requirements decrease significantly even for a desired time of 0.4s. Moreover, the tail 
angle – time diagram reveals the time invariance of the holonomic angular momentum 
constraint (note that the initial angular momentum is zero in this experiment), since the change 
in tail angle is the same for all experiments, see Fig. 4(b). 

5.5 Experiments varying the Body MoI 

Legged robots are systems that must be able to move successfully with varying inertia 
properties. Two typical reasons are the need to carry different cargos, and the uncertainty 
regarding the knowledge of the robot's real inertia properties. This fact justifies the analysis 
presented in the section, which includes simulation experiments with bodies of different MoI 
controlling their attitude with identical tails. Maneuvers of ∆θ=3ο in ∆t=0.15s are performed by  
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Figure 3. A body of m0=30kg, I0=2kgm2, with a tail of mass m1=1.5kg, MoI I1=0, and length l=0.4m, 
hinged at a distance r from body CoM, which varies from 0m to 0.45m, performs a maneuver ∆θ=10ο in 

∆t=0.2s. 

bodies of MoI from 1.6 to 2.4 kgm2. The other simulation parameters are: m0=30kg, m1=1.5kg, 
I1=0, l=0.4m, and r=0.4m. The results are shown in Fig. 5. 

Conclusions 

As expected, for bodies of greater MoI, greater power, torque and speed are requested from the 
motor, see Figures 5(c), 5(d), and 5(f). Hence, the greater the body MoI, the harder for the 
actuator to perform a certain maneuver, see Fig. 5(e). 
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Figure 4. A body of m0=30kg, I0=2kgm2, with a tail of mass m1=1.5kg, MoI I1=0, and length l=0.4m, 
hinged at a distance r =0.4m from the body CoM, performs a ∆θ=10ο maneuver in time intervals ∆t 

varying from 0.15 to 0.4s. 

6 CONCLUSIONS 

In this paper we studied the attitude dynamics and the control of legged robots using tail-like 
appendages during the aerial phases of high speed locomotion. A free floating two-body system 
was introduced to describe the dynamics of a large body controlling its attitude using a rotating 
appendage. The equations of motion for a tail and a reaction wheel were given, and the meaning 
of the ignorable and palpable coordinates of the system was discussed in detail. The holonomy 
of the system was also discussed thoroughly. Analytical expressions were given for a further 
reduced dynamical model and model-based controllers were proposed. A series of simulation 
experiments were finally carried out for various system parameters, and important conclusions 
were derived concerning the design of such systems. 
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Figure 5. A body of m0=30kg, and MoI I0 varying from 1.5 to 3.5kgm2, with a tail of length l=0.4m, MoI 

I1=0, and mass m1=1.5kg hinged at r=0.4m from body CoM performs a ∆θ=3ο maneuver in ∆t=0.15s. 
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APPENDIX 

Terms of the reduced EoM (9), when written as functions of ,  ,  q q qɺ ɺɺ : 
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Terms of the reduced EoM (11), when written as functions of ,  ,  q θ θɺ ɺɺ : 
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Terms of the quintic polynomial used for trajectory planning in (13): 
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