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Abstract. A simulational model of 6 dof Stewart platform type parallel manipulator is pre-
sented. The manipulator is driven by electrohydraulic actuators. A novel invariant error dy-
namics controller is used. The developed control scheme employs the dynamic and hydraulic 
model of the system. The manipulator model consists of the rigid body equations of motion 
and the hydraulic dynamics of the main elements. Friction is included in the model. Two well-
known software packages, one designed to perform control system simulation and the other 
dedicated to multibody simulation, are simultaneously used to conduct the study. The aim of 
the study is to check, what is the impact of dynamics model accuracy on the quality of control 
process. The simplifications of the model and the problems with finding accurate values of its 
parameters (especially friction parameters) are considered. The study helps to predict what 
are the possible results of inaccurate determination of the crucial model parameters. The 
simulation results show, that inverse dynamics model simplifications consisting in neglecting the 
mass of actuators have relatively little influence on the control quality. The effects of actuators 
masses neglecting can be reduced by appropriate changes in the modeled mass of the platform. The 
study shows that friction effects should be introduced to the inverse dynamics model and the friction 
parameters should be identified with possibly big accuracy. The parameters describing stiction-
friction transition effects are the crucial ones. 



Ioannis Davliakos, Janusz Frączek, Evangelos Papadopoulos, Marek Wojtyra 

1. INTRODUCTION 
Stewart platform type parallel manipulators are quite often driven by electrohydraulic ac-

tuators. Hydraulics drives are commonly used due to their ability to produce large forces at 
high speeds, their high durability and stiffness, and their rapid response. Hydraulic systems 
differ from electromechanical ones, in that the force or torque output is not proportional to 
actuator current. As a result, controllers that have been designed for electrically driven robot 
control cannot be used. A brief overview of control techniques used for electrohydraulic ser-
vosystems can be found in [3]. 

In their earlier studies Davliakos and Papadopoulos have proposed an invariant error dy-
namics controller for a 6-dof electrohydraulic Stewart-platform-type parallel manipulator [3]. 
The developed control scheme employs the dynamic and hydraulic model of the system. The 
manipulator model consists of the rigid body equations of motion and the hydraulic dynamics 
of the main elements. Friction is included in the model.  

Every model is – by nature of modeling process – simplified. The simplifications may be 
bigger or smaller, but in either case the model is not perfect and differs from the reality. The 
aim of presented study was to check, what is the impact of dynamics model accuracy on the 
quality of control process. The simplifications of the model and the problems with finding ac-
curate values of its parameters (especially friction parameters) were considered. The results of 
this study should help to decide how big could be the simplifications of the dynamics model. 
The study should also help to predict what are the possible results of inaccurate determination 
of the crucial model parameters. 

Two well-known software packages, one designed to perform control system simulation 
and the other dedicated to multibody simulation, have been used to conduct the study. These 
packages were collaborating during simulations – both the programs performed all calcula-
tions simultaneously. 
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Stewart Platform Simplified Platform Model 

 

Figure 1: Schematic view of the simulational model. 

The manipulator forward dynamics has been modeled using a multibody package, which 
automatically generates and solves the equations of motion. Therefore it is relatively easy to 
introduce changes into the model and to take into account various factors, for example joint 
friction or interactions with environment. There is no need for tedious and difficult process of 
deriving and programming manually the necessary equations. Therefore, crude simplifications 
of the multibody model are not required. The additional benefit of using multibody package 
was the possibility to create and watch animations of the manipulator in motion. 

The control system and the electrohydraulic servovalves have been modeled in the control 
software package. Since the model-based control scheme is adopted, the inverse dynamics 
problem must be solved within the control system. Friction effects are included in the inverse 
dynamics model. The model utilized by the control system is simplified, to enable fast calcu-
lations.  
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The model scheme is shown in Fig. 1. It is worth noting, that hydraulic actuator dynamics 
is included in the control package, whereas the rigid body mechanics is modeled in the multi-
body package. 

2. MANIPULATOR KINEMATICS 
The kinematic diagram of manipulator is presented in Fig. 2. To simplify the picture, only 

one hydraulic actuator is presented.  
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Figure 2. Simplified kinematic scheme of the manipulator. 

The coordinates of position vectors dj (j = 1,…, 6) are constant in the π0 frame, and coor-
dinates of position vectors )1(

js  (j = 1,…, 6) are constant in the π1 frame. 

2.1. Desired trajectory generation 

The position of local frame π1 (established on the moving platform) in the global frame π0 
(established on the basis of manipulator) is described by vector r, and the orientation of π1 
frame with respect to π0 frame is given by three Euler (z–x’–z’’) angles: ϕ1, ϕ2, ϕ3. The coor-
dinates of vector r and angles ϕ1, ϕ2, ϕ3 are assumed functions of time.  

For given values of Euler angles, the direction cosine matrix (rotation matrix) describing 
the π1 frame orientation with respect to the π0 frame, can be calculated as follows:  
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The linear velocity of π1 origin with respect to π0 is obtained by differentiation of r with 
respect to time: 

rv &= , (2)

and the angular velocity of π1 frame can be calculated as follows: 
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The linear acceleration of π1 frame origin is obtained by differentiation of velocity vector: 
rva &&& == , (4)

and the angular velocity is given by: 
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2.2. Inverse kinematics 
The inverse problem of kinematics consists in searching for the actuators motion (lengths, 

velocities and accelerations), when the platform motion is given (position, velocity, accelera-
tion).  

Since in the inverse kinematics problem vector r and matrix R are given, vector lj from 
point Aj to point Bj can be calculated as:  

jjj dRsrl −+= )1( . (6)

The length of li can be obtained as: 

j
T
jjl ll= . (7)

Let a unit vector of actuator j be defined as: 

jjj llu = . (8)

Let the lengths of all six actuators form an algebraic vector L: 
[ ]Tll 61 L=L . (9)

Differentiating Eq. (6) with respect to time and taking into account the rotation matrix 
properties, results in: 

jjjj sωvRsωvsRrl ~~ )1()1( +=+=+= &&& . (10)

In the above equation sj is the vector pointing form frame π1 origin to point Bj, its coordi-
nates are resolved in frame π0 ( )1(

jj Rss = ). 
The length of unit vector uj is equal to one. Thus, the time derivative of the unit vector uj is 

orthogonal to the vector itself. It can be denoted as follows: 
1=j

T
j uu , (11)

0=j
T
j uu & . (12)

The lj vector can be expressed as: 

jjj l ul = . (13)

Differentiating Eq. (13) with respect to time we obtain: 

jjjjj ll uul &&& += . (14)
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Premultiplying the above equation by T
ju  and utilizing Eq. (12) and Eq. (11) yields: 

jj
T
jjj

T
jjj

T
j lll &&&& =+= uuuulu . (15)

Substituting Eq. (10) into Eq. (15) results in: 
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In the above equation Jj denotes j-th row of manipulator Jacobian matrix: 

[ ]j
T
j

T
jj suuJ ~−= . (17)

Unknown actuator velocities can be calculated using Eq (16). Let the velocities of all six 
actuators form an algebraic vector L& : 

[ ]Tll 61
&L&& =L . (18)

Differentiating Eq. (10) with respect to time yields: 

jjjjjjj sωωsεaRsωωRsωvsRωRsωvl ~~~~~~~~ )1()1()1()1( ++=++=++= &&&&&&& . (19)

Differentiating (15) with respect to time results in:  

j
T
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T
jjl lulu &&&&&& += . (20)

Vector ju&  can be calculated using Eq. (14): 
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1 . (21)

Substitution of Eq. (19) into Eq. (20) gives: 
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Unknown actuator accelerations can be calculated using the above equation. Let the accel-
erations of all six actuators form an algebraic vector L&& : 

[ ]Tll 61
&&L&&&& =L . (23)

2.3. Direct kinematics 
The direct problem of kinematics consists in searching for the platform motion (position, 

velocity, acceleration), when the actuators motion is given (lengths, velocities and accelera-
tions). 

Numerical method will be employed to solve the position problem. To simplify the nota-
tion it is convenient to have homogenous names of unknown parameters describing platform 
position and orientation (vector r coordinates and Euler angles corresponding to matrix R). 
Thus, let us introduce the following symbols: 

[ ] [ ] [ ]TTTT
zyx

T rrrqqqqqq ϕrq ≡≡≡ 321654321 ϕϕϕ . (24)

Substituting Eq. (6) into square of Eq. (7) yields: 

( ) ( )jj
T

jjj
T
jjl dRsrdRsrll −+−+== )1()1(2 . (25)
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The above equation can be written for each of the six actuators (j = 1, … , 6). The obtained 
set of six equations should be solved for the unknown quantities r and R. Six scalar equations 
(25) can be rewritten as one vector equation:  

( ) ( ) ( )[ ] 1661 ×=≡ 0qqqΦ TΦΦ L ,  (26)

with jΦ  defined as: 

( ) ( ) ( )( ) ( )( ) 0, 2)1()1( =−−+−+≡≡ jjj
T

jjjj ldsRrdsRrrq ϕϕϕΦΦ .  (27)

The above set of six nonlinear algebraic equations will be solved using an iterative New-
ton–Raphson method. Several solutions can be found, however we are interested only in this 
one, which corresponds to the admissible configuration of the manipulator. That is why the 
initial guess q0 should be chosen carefully. It was found, that good results are obtained, when 
the iterations start from point q0, which represents the central point of the manipulator work-
space. Some numerical tests have proven, that iterations are converging to the proper solution. 
The Newton–Raphson iteration process uses the following formula: 

( )[ ] ( )kkkk qΦqΦqq q
11 −+ −= .  (28)

The Newton–Raphson method requires vector function (26) to be differentiated with re-
spect to the vector of unknown coordinates q. Let us start with partial derivatives of rotation 
matrix (1):  

( )( ) ( ) ( ) ( )3211
ϕϕϕϕ zxzz RRRΩR =ϕ , 

( )( ) ( ) ( ) ( )3212
ϕϕϕϕ zxxz RRΩRR =ϕ , 

( )( ) ( ) ( ) ( )3213
ϕϕϕϕ zzxz RΩRRR =ϕ ,  

(29)

where constant Ωx and Ωz matrices are defined as: 
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We can use the above formulas when differentiating Eq. (27). Finally we obtain (for 
j = 1, … , 6): 
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Let us recapitulate the position problem. The equations to be solved are given by formulas 
(27). Matrix qΦ  elements can be calculated using Eq. (31) and Eq. (32). The iterations are de-
scribed by (28).  

After solving the position problem, vector r and matrix R are known. Equations (6), (7), (8) 
and (17) (for j = 1, … , 6) can be used to calculate the manipulator Jacobian matrix J. Six sca-
lar equations (16) can be rewritten as one vector equation: 
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In the direct problem actuator velocities jl&  are given. The unknown platform velocities v 
and ω one can found solving linear equations set (33).  

After solving the position and velocity problems, quantities r, R, v and ω are known. 
Equations (10) and (21) (for j = 1, … , 6) can be utilized to calculate jl&  and ju& . Scalar equa-
tions (22), for j = 1, … , 6, can be combined into one vector equation: 
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The actuator accelerations jl&&  are known in the direct problem, hence unknown platform 
linear and angular accelerations (a and ε) can be calculated from linear equations set (34).  

3. MANIPULATOR DYNAMICS 

3.1. Forward dynamics 
The forward dynamics problem consists in searching for the mechanism motion, when 

forces articulating the mechanism are known. The forward dynamics of manipulator has been 
modeled using multibody package. This program automatically generates and solves multi-
body system equations of motion. Thus, there is no need to derive the motion equations in a 
full (i.e. not simplified) form.  

3.2. Inverse dynamics (simplified) 
The inverse problem of dynamics consists in searching for driving forces, which are neces-

sary to obtain the requested motion of mechanism. The manipulator control system employs 
the simplified inverse dynamics model. To simplify calculations, it was assumed that all the 
parts of mechanism, except for the moving platform, are massless. Moreover, friction in joints 
was neglected (the only exception was friction in the hydraulic actuators, which is described 
in section 3.3).  

It was assumed that platform center of mass coincides with the origin of π1 frame. The 
platform is characterized by mass m and inertia matrix I(1). The matrix I(1) elements are calcu-
lated with respect to the local (moving with the platform) frame π1, thus they are constant. 
The inertia properties calculated with respect to the center of mass and axes parallel to the 
global frame π0 are not constant and depend on the platform instantaneous orientation. The 
inertia matrix (with respect to axes parallel to π0 frame) can be calculated using the following 
equation: 

TRIRI )1(= . (35)

The Newton law relates the total force acting on the platform with the platform mass and 
center of mass linear acceleration:  

aF m= . (36)
The Euler equation relates the total torque about the platform center of mass with the plat-

form angular velocity, acceleration and inertia matrix:  
ωIωεIM ~+= . (37)
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For assumed platform motion, force F and torque M can be calculated directly from equa-
tions (36) and (37).  

The manipulator Jacobian matrix J relates forces Pj developed by actuators with total force 
F and total torque M [1, 8]:  

PJ
M
F T−=








,     [ ]TPP 61 K=P . (38)

To solve the inverse problem of dynamics it is sufficient to perform calculations according 
to Eq. (35) ÷ (37) and then to solve the linear set of equations (38).  

3.3. Friction in actuators 

The actuator output force Pj differs form resultant hydraulics force H
jP , which is applied to the 

piston. The difference is caused by the presence of friction effects in actuator. The following model 
of j-th actuator friction force F

jP  has been used by the control package during simulations: 
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 , (39)

where b is the viscous friction coefficient, FC is the Coulomb friction force, FS is the maximal 
stiction force, and ext

jP  is the external force. 

4. ELECTROHYDRAULIC ACTUATOR 

4.1. Governing equations 
The equations describing actuator with electrohydraulic servovalve presented in [4] and 

[5], with some modifications however, were utilized in this study. Control of a hydraulic sys-
tem is achieved through the use of servovalves, see Fig. 3(a). Only the resistive effect of a 
valve is considered here, since their natural frequency is much higher than that of the me-
chanical load. It is also assumed that the geometry of the valve is ideal, e.g. the valve has 
sharp edges and zero cross leakage, [2,7]. 

A typical hydraulic servovalve consists of four symmetric and matched servovalve orifices 
making up flow paths through four nonlinear resistors, modulated by the input voltage, see 
Fig. 3(a). Thereby, the servovalve is modeled as the hydraulic equivalent of a Wheatstone 
bridge, see Fig. 3(b). When the servovalve input current is positive, i > 0, flow passes through 
the orifices 1 and 3 (path P – A – B – T), and flow leakages exist in the valve orifices 2 and 4. 
Similarly, when the servovalve input current is negative, i < 0, flow passes through the path 
P – B – A – T, and flow leakages exist in the valve orifices 1 and 3. This model is described 
by: 

,),,(,),,(

,),,(,),,(

122222

211111

TdgSdf

TdgSdf

ppCigQppCifQ

ppCigQppCifQ

−=−=

−=−=

ρρ

ρρ
 (40)

where Qf1, Qf2, Qg1 and Qg2 are the servovalve flows through the orifices 1, 2, 3 and 4 respec-
tively, pS and pT are the power supply and return pressure of the servosystem, correspond-
ingly, i is the servovalve motor current (control command), and f1(i, Cd, ρ), f2(i, Cd, ρ), 
g1(i, Cd, ρ) and g2(i, Cd, ρ) are nonlinear functions in the servovalve motor current, the dis-
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charge coefficient Cd and the mass density of the fluid, ρ. In general, the discharge coefficient 
is as function of the Reynolds number and valve geometry. However, fluid density and Rey-
nolds dependencies are weak for turbulent flow and therefore only the current dependency is 
significant here, [5]; therefore, the functions f1(i, Cd, ρ), f2(i, Cd, ρ), g1(i, Cd, ρ) and g2(i, Cd, ρ) 
are reduced to f1(i), f2(i), g1(i) and g2(i), correspondingly. Because of servovalve symmetry, 
the current functions are given by: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ).

,

1122

2211

igifigif
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−=−==
−=−==

 (41)
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Figure 3. (a) A drawing of a real servovalve, (b) Schematic model of servovalve. 

Experimental results [3] showed that it is a good approximation to assume that these func-
tions are linear functions of the input current, when flow passes through the main path, and 
have a constant value when flow passes through the leakage flow path. For instance, when 
i > 0, the main flow path passes through the orifices 1 and 3 and therefore the functions of 
Eqs. (40) are written as: 

( ) ( )
( ) ( ) ,

,

022

1011

Kigif
iKKigif

==
⋅+==

 (42)

where K1 and K0 are positive constants, which correspond to the main and leakage valve flow 
paths. In the above equations constant coefficient K1 corresponds to the main valve flow path, 
and constant coefficient K0 corresponds to the leakage valve flow path. Due to symmetry of 
the valve, the coefficients K1 and K0 are the same for all the flow paths. 

The flow through the piston side chamber port of hydraulic cylinder (Q1) and the flow 
through the rod side chamber port (Q2) can be calculated as: 

Q1 = Qf1 – Qg2 , 
Q2 = Qg1 – Qf2 . 

(43)

The flows Q1 and Q2 depend on l&  – the velocity of the piston with respect to the cylinder: 

., 2211 lAQlAQ && ==  (44)

where A1 is the piston side area, and A2 is the rod side area.  
The resultant hydraulics piston force can be calculated as: 

2211 ApApPH −= . (45)
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4.2. Actuator force calculation 
During the manipulator motion simulation it is necessary to calculate the actuators forces. 

The force generated by actuator depends on two factors: the control current and the actuator 
velocity.  

Substituting Eq. (44) and (40) into Eq. (43) yields: 

011211 =−−−− lAppgppf TS
& , (46)

022221 =−−−− lAppfppg ST
& . (47)

The first of the above equations enables to calculate pressure p1, and the second pressure 
p2. Equation (46) can be raised two times to the power two, to obtain a quadratic equation in 
p1. Solving the quadratic equation results in the following (the solution belonging to the inter-
val [pT, pS] is the only being considered):  
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Solving equation (47) for p2 yields: 

( ) ( ) ( )( )
( )22

2
2

1

22
2

2
1

2
2212

22
2

2
1

2
2

4
2

4
1

2
1

2
2

2

2

+gf

lAgfpplAgflAgffpgpgfpp
p TSSTST

&&& −+−±−−+++
= . (49)

It is worth noting that equations (46) and (47) have been two times raised to the power two, 
to obtain quadratic equations. Thus, it can happen that pressures p1 and p2 fulfill the appropri-
ate quadratic equations, but do not fulfill the original equations (46) and (47). That is why it is 
necessary to check whether the pressures p1 and p2 obtained from Eq. (48) and (49) fulfill Eq. 
(46) and (47). 

Having pressures p1 and p2 calculated, the force can be found directly from Eq. (45).  
The equations presented in this section enable us to calculate actuator force as a function of 

control current and actuator velocity. This characteristic is presented in Fig. 4. During calcula-
tions the pressures have been confined to the interval [pT, pS]. 
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Figure 4. Actuator force as a function of control current and velocity. 
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4.3. Control current calculation 
The control system solves the inverse dynamics problem and determines the forces re-

quired to perform desired motion. Then, for given actuator velocity and required actuator 
force, appropriate control current must be calculated.  

The dependency between required force PH and control current i could be found in analyti-
cal form by substituting Eq. (48) and (49) into Eq. (45), and then utilizing Eq. (42). Unfortu-
nately, the obtained equation would be too complicated to solve it analytically. Therefore a 
numerical method was used.  

To find the unknown control current i a bisection method was used. The procedure calcu-
lating force PH, for given current i and velocity l&was utilized (see previous section). In our 
problem velocity l&  is given, thus function ),( liPH & can be treated as a function of one variable, 
namely current i. The unknown control current must belong to the interval [–imax, imax]. The 
plot in Fig. 4 shows, that for selected value of l& , the force PH is a monotonic function of cur-
rent i That is why it is possible to use the bisection method. 

The bisection procedure works properly, if for required force H
DP  and given velocity l&  the 

following condition is fulfilled:  

),(),( maxmin liPPliP HH
D

H && << . (50)

In the other case, the required force is out of admissible range. As a result of calculations 
we obtain control current equal to imax (or –imax), which corresponds to maximal (or minimal) 
available force.  

5. CONTROL SYSTEM 
A novel model-based controller for six-dof electrohydraulic Stewart platforms is developed [4]. 

Desired Cartesian trajectories yield the desired actuator trajectories using mechanism inverse kine-
matics. The control law provides the current sent to the linear hydraulic servoactuator servovalves, 
so that the error dynamics converge asymptotically to zero, independent of load variations. The de-
veloped control analysis is based on the system dynamic and hydraulic models; therefore, it is as-
sumed that the dynamic terms of the system are known. In this approach, force, pressure or 
acceleration feedback is not required..  

The control law is designed to reduce the control errors on position and velocity levels si-
multaneously. The control currents are calculated to satisfy the following error dynamics 
equation: 

0eKeKe =++ pv &&& , (51)

where LLe −= D  is the position error ( DL  is a 6-element vector of desired actuator lengths), 

66×= IK pp k  and 66×= IK vv k  are diagonal matrices of control gains. The gain coefficients kp 
and kv are selected to achieve the critical damping of the system described by equation (51). 

At the beginning of computation the required motion of the platform is calculated. Then 
the inverse kinematics problem is solved to find the actuator desired lengths DL , velocities 

DL&  and accelerations DL&& .  
In the real manipulator the actual actuators lengths L and velocities L&  are measured by 

appropriate sensors. In the simulational model these values are computed by the multibody 
package, to provide feedback for the control system model.  
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The next step of computations consists in accelerations calculation. For given vectors of 

DL , DL& , DL&& , L and L& , the vector of accelerations L&& , which satisfies equation (51), is calcu-
lated: 

( ) ( )LLKLLKLeKeKLL −+−+=++= DpDvDpvD
&&&&&&&&& . (52)

Then the inverse problem of dynamics is solved. The driving forces necessary to produce 
the required motion (described by L, L&  and L&& ) are calculated. Friction forces in actuators are 
taken into account. The inverse dynamics calculations must be preceded by direct kinematics 
solution, to obtain the platform motion. The last step of computations consists in calculation 
of control currents for all actuators.  

6. SIMULATION RESULTS 
Schematic view of the simulational model is presented in Fig. 1. Several simulations were 

performed in order to check, what is the impact of the inverse dynamic model simplifications 
on the quality of control process.  

The same platform desired trajectory has been used in all the simulations. The moving 
platform desired Cartesian trajectory was described by the following equations: 
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r  (53)

where parameters  x, y, z, z1, α, β, γ, f are constant values and time [ ]τ0∈t . 
The manipulator in different stages of motion is presented in Fig. 5.  

 

Figure 5. Superimposed view of platform in motion. 

The quality of control process assessment was based on the position error LLe −= D  (dif-
ference between desired and obtained actuator lengths) and velocity error LLe &&& −= D . The 
control errors e and e&  are time-varying six-element vectors. In order to make the simulation 
comparison less difficult, the following mean errors have been defined: 

( ) ( )∫=
τ

τ 0

1 dttte T
p ee ,           ( ) ( )∫=

τ

τ 0

1 dttte T
v ee && . (54)
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Several variants of simulations were performed. The simulations descriptions and concise 
results, i.e. mean errors ep are ev presented in table 1.  

 

 Control system inverse dy-
namics (control software) 

Simulational model  
(multibody software) ep [mm] ev [mm/s]

A. Friction neglected Friction neglected  
Actuator masses neglected 0.18 0.68 

B. Friction neglected Friction neglected  
Actuator masses included 3.50 4.03 

C. Friction neglected Friction included 
Actuator masses neglected 7.77 33.11 

D. Friction neglected Friction included  
Actuator masses included 8.52 31.92 

E. Friction included Friction included  
Actuator masses included 3.50 4.19 

F. Friction included 
Platform mass corrected 

Friction included  
Actuator masses included 0.65 2.15 

G. Friction neglected 
Platform mass corrected 

Friction included  
Actuator masses included 7.70 31.73 

H. Friction underestimated 
Platform mass corrected 

Friction included  
Actuator masses included 4.04 19.14 

I. Friction overestimated 
Platform mass corrected 

Friction included  
Actuator masses included 3.89 14.68 

J. Friction included 
Platform mass corrected 

Friction included  
Actuator masses included 
Geometrical parameters changed by 1%

1.33 6.20 

K. Friction included 
Platform mass corrected 

Friction included  
Actuator masses included 
Payload attached to the platform 

10.80 14.56 

L. Friction included 
Platform mass corrected 

Friction included  
Actuator masses included 
Payload flexibly attached  

6.30 11.02 

M. 
Friction included 
Platform mass corrected 
kp and kv enlarged 

Friction included  
Actuator masses included 
Payload flexibly attached  

1.62 2.94 

Table 1: Simulation characteristics and results  

To enable proper interpretation of the data presented in table 1, some important issues must 
be emphasized: 
• All simulations were performed for the same control gains kp = 64π2 and kv = 16π. The 

only exception was simulation L, for which the gains were greater: kp = 256π2, kv = 32π. 
• The actuator masses were neglected in the inverse dynamics model. The moving platform 

was the only system element with non-zero mass. In majority of the simulations, the mul-
tibody model performing the direct dynamics calculations was not neglecting the masses 
of actuators. Only during simulations A and C the actuator masses were set to zero.  

• In the inverse dynamics model, which is employed by the control system, the actuator 
masses may be considered in the simplified way, by appropriate enlargement of the mov-
ing platform mass. The platform mass correction was done in simulations F÷M.  

• The friction forces can be neglected or taken into account both in the multibody package 
direct dynamics model (used to simulate manipulator motion) and in the control software 
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inverse dynamics model (utilized by the model-based control system). The friction pa-
rameters are difficult to measure, and moreover, they can be unstable. This was the reason 
to perform two simulations, during which the friction parameters used by the inverse dy-
namics model were different than friction parameters used by the direct dynamics model. 
Simulation H was performed for underestimated (by 50%) friction parameters, and simu-
lation I was performed for overestimated (by 50%) friction parameters.  

• The geometrical parameters of platform model used by the control system can differ from 
the real platform parameters. Simulation J was performed to investigate the effects of er-
roneous parameter estimation, the platform parameters differed by 1% from those used in 
the controller.  

• The manipulator in three simulations has carried a payload. In the case of simulation K a 
50 kg mass was rigidly attached to the moving platform. In the cases of L and M simula-
tions, a 30 kg mass was attached to the moving platform via spherical joint and a system 
of springs and dampers.  

The table 1 presents only concise information about the simulations and the obtained con-
trol quality. Some interesting results are discussed below in a more detailed way.  

Simulation A refers to the situation in which the inverse dynamics model fully corresponds 
to the forward dynamics model. The obtained control errors are almost zero. During simula-
tion B the actuators (in the multibody package model) were not massless anymore. Thus the 
inverse dynamics model utilized for model-based control was simplified and did not fully cor-
respond with the manipulator dynamics. During simulation C actuator friction force was ne-
glected in the inverse dynamics model, but was taken into account in the direct dynamics 
calculations. In other words, the model based control neglected friction effects, which were 
present in the manipulator. The results of simulations A, B and C comparison leads to the 
statement, that neglecting the friction effects causes much bigger control problems, than ne-
glecting the actuator masses in the inverse dynamics calculations.  
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Figure 6. Simulations E and F: position errors vs. time. 

The problems caused by neglecting actuator masses in the inverse dynamics model can be 
partially neutralized by making appropriate enlargement of the moving platform mass. The 
position error during simulation E is presented in Fig. 6. In this simulation the platform mass 
in the inverse dynamics model remained unchanged. It is worth noting, that the position errors 
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oscillate around a mean value of approximately 1.5 mm. In the same figure the results of 
simulation F are presented. During this simulation the platform mass in the inverse dynamics 
model was enlarged by sum of the piston-side masses of the actuators. It is clearly visible that 
this time the position errors oscillate around a close-to-zero value. The error oscillation ampli-
tudes obtained in both simulations have similar magnitudes.  
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Figure 7. Simulations F, G, H and I: velocity errors vs. time. 

Employing a friction model in the model-based control inverse dynamics calculations can 
reduce the problems caused by actuators friction. It should be stated, however, that friction is 
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a complicated phenomenon and its computational models are usually severely simplified. 
Moreover, the friction parameters are usually difficult to measure and quite often are time-
varying. Thus, it should be expected that the friction model utilized during the inverse dynam-
ics calculations would not be accurate. A series of simulations was preformed in order to 
check, what is the influence of friction forces and friction model inaccuracies on the obtained 
quality of control.  

Simulation F refers to the situation, in which the friction model used for the inverse dy-
namics calculation fully corresponds to the friction effects in manipulator (modeled in multi-
body package). During simulation G the friction effects were neglected in the inverse 
dynamics calculations (but still present in the manipulator). The results of friction neglecting 
are clearly visible as “peaks” on the velocity error diagram in Fig. 7. Friction-stiction transi-
tion effects at actuators velocities close to zero cause the biggest problems. Simulation H 
shows what happens, when friction model is utilized by the control system, but friction pa-
rameters are underestimated (reduced by half). Comparing with simulation G, the improve-
ment of control quality is visible, however the problems with stiction are still present. During 
simulation I the friction parameters have been overestimated (enlarged by 50%). The results 
show, that the velocity errors are greater than observed during simulation F, but significantly 
lesser than observed during simulation G. 

Simulation J was performed to investigate the effects of erroneous estimation of the plat-
form geometrical parameters. During this simulation the multibody model parameters differed 
by 1% from those used in the controller. It was found that relatively small changes of the 
geometrical parameters led to relatively big control errors. The error estimates presented in 
the table 1 are based on the actuators’ position and velocity errors. It should be noted, that in 
the case of simulation J, the most significant are the position and velocity errors in the Carte-
sian space. In the case of erroneous geometrical parameters, accurate actuators motion does 
not results in accurate platform motion.  

The inverse dynamics model employed by the model-based control system is tuned to an 
average mass of payload. The changes of the payload mass or external force application are 
treated as the control disturbances. Simulations K and L have been performed in order to 
check the influence of payload carrying on the quality of control. In the case of simulation K a 
50 kg cylinder was rigidly fixed to the moving platform. In the case of simulation L a 30 kg 
inverted pendulum of length 0.2 m was attached to the platform via spherical joint. The pen-
dulum is supported by a system of springs and dampers. The flexible mounting of pendulum 
enabled testing the manipulator subjected to non-constant loads.  

               
Figure 8. Models used during simulations K (left), L and M (right). 

The results of simulation L are presented in Fig. 9. It is visible, that the position errors do 
not stabilize to be close to periodical functions (as it was observed in the other simulations). 
This is a result of changes in external loads, caused by the pendulum motion. Moreover the 
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position errors are greater than errors observed during simulation F (Fig. 6).  It should be 
pointed out that additional masses of 50 kg or 30 kg are relatively big in comparison with 
platform mass (300 kg). In consequence the observed control errors are significant as well. 

All the discussed earlier simulations were characterized by the following control gains: 
kp = 64π2 and kv = 16π. The proper choice of gains kp and kv is crucial for the quality of con-
trol. The kp and kv gains influence on the control errors is usually greater than the influence of 
inverse dynamics model simplifications and other factors discussed above. Simulation M was 
performed to show the importance of control gains kp and kv. The only difference between 
simulations L and M is, that in the second case the control gains were the following: 
kp = 256π2 and kv = 32π. The obtained position errors were significantly smaller in the case of 
simulation L, as it is shown in Fig. 9. 
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Figure 9. Simulations L and M: position errors vs. time. 

7. CONCLUDING REMARKS 

The presented simulational model of parallel manipulator with electrohydraulic actua-
tors and model-based control system enables to analyze various problems concerning the sys-
tem behavior. The presented study was focused on checking what is the influence of 
dynamics model simplifications and model parameter uncertainties on the quality of control 
process. 

The obtained results have shown, that inverse dynamics model simplifications consist-
ing in neglecting the mass of actuators have relatively little influence on position errors and 
even smaller influence on velocity errors. It was also found, that the effects of actuators 
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masses neglecting can be reduced by appropriate changes in the modeled mass of the plat-
form.  

It was found that friction effects should be introduced to the inverse dynamics model, 
since it importantly improves the quality of control. The simulation results have shown, that 
the friction parameters should be identified with possibly big accuracy. If the friction model 
parameters are not accurate enough, the quality of control does not improve. It was also found 
during investigations, that the parameters describing stiction-friction transition effects are the 
crucial ones.  

Note that the developed presented model was run for off-line simulations. However 
selected procedures (namely: direct kinematics, inverse dynamics and control currents compu-
tations), can be implemented in a controller running under a real-time environment. This is 
due to the fact that the computation time of the direct kinematics, inverse dynamics and con-
trol procedure is estimated to be between 5 to 15 ms, i.e. small enough to satisfy the require-
ments for a real-time mechanical system. 

At the end it is worth noting, that the presented simulational model can be easily modi-
fied, thus it can be used to model the manipulator interactions with the environment.  
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