
 

 

 

  

Abstract— Localization and path planning for obstacle 

avoidance are two fundamental aspects of mobile robots 

navigation. In this paper, we improve the localization ability of 

a robot through odometry, and present and extend a path 

planning method for such robots. To improve the odometry 

accuracy of the robot, we propose a new odometry calibration 

method, and we evaluate the replacement of the differential 

drive robot caster with an omniwheel. A path planning method 

in implemented which yields path planning with simultaneous 

obstacle avoidance, with extended applicability. The odometry 

improvement method is applied to a differential drive mobile 

robot but it can be also applied to any other mobile robot if the 

corresponding kinematic model is used. Experiments show that 

the calibration method yields improved results. 

I. INTRODUCTION 

NDUSTRIAL robots have been used by industry during 

the last five decades, demonstrating their usefulness. 

However, most of these have their base fixed, and hence 

a limited workspace. Mobile robots represent an evolution of 

these, since they can move freely in dynamic environments, 

see for example Fig. 1. The proliferation of mobile robots is 

subjected to tackling two major problems. The first problem 

is localization, i.e. where the robot is at some time instance, 

while the second is its path planning with obstacle 

avoidance, i.e. how to reach a destination avoiding collision 

with obstacles. 

 

Figure 1. Differential drive mobile robot. 

 
Manuscript received October 16, 2006 

E. Papadopoulos is with the Department of Mechanical Engineering, 

National Technical University of Athens (NTUA), Greece (corresponding 

author, phone: +(30) 210-772-1440; fax: +(30) 210-772-1455; e-mail: 

egpapado@central.ntua.gr). 
M. Misailidis is with the Department of Mechanical Engineering, 

National Technical University of Athens, Greece (e-mail: 

m_misailidis@yahoo.gr). 

During the past few years many suggestions have been made 

to address the localization problem. One of the first methods 

introduced, and still used mainly as a subsidiary method in 

many projects, is odometry. Its advantages are the low cost 

of the sensors needed, its good accuracy for short distances, 

and its compatibility with other positioning methods. Up to 

date, two main efforts have been made in order to improve 

the odometry accuracy. For many years, the only available 

method for odometry calibration was the UMBmark, 

proposed by Borenstein and Feng, [3], [4]. According to this 

method, developed for differential drive robots, the robot 

moves along a rectangular shape path two times, one 

clockwise and one counterclockwise. At the end of each 

path, the distance from the initial position is measured, and 

the odometry parameters are corrected accordingly. The 

advantages of the method are its simplicity and the fact that 

there is no need for additional sensors. One of its 

disadvantages is the use of a path, which consists only of 

straight paths and on-the-spot rotations. Another 

disadvantage is that the initial and final positions of the 

robot must coincide. Also, it is assumed that the mean value 

of the wheel radius is considered known. This results in an 

uncertainty about the length of the traveled path. 

Aiming at a correction of odometry errors, a new 

method, called the PC-Method, has been proposed by Hod, 

Choset and Kyun. This method can be used for systematic 

and non systematic odometry errors, [7]. According to it, the 

mobile robot moves along a path and its position is 

estimated by both the odometry and another localization 

method. The odometry model is calibrated so that the 

difference between the estimated position with odometry and 

the other localization method is the least. The advantage of 

this method is its great accuracy and the fact that it is not an 

end point localization method as the UMBmark, but it uses 

all trajectory points. A drawback of this method is the 

necessity of employing additional sensors and the use of a 

closed path with the same initial and final point as in the 

UMBmark method. 

Concerning the path planning with obstacle avoidance 

problem, several researchers have proposed various 

methods. Jacobs and Canny have proposed the design of 

paths as a combination of arcs and straight lines, [5]. Mirtich 

and Canny developed a method that keeps a robot at the 

maximum distance from obstacles and considers the 

nonholonomic constraint of mobile robots, [6]. 

C. Schlegel has developed a method that takes into 

account kinematic constrains and the dynamics of the robot 

and which achieves velocities up to 1m/s, [1]. Quinlan and 

Khatib developed a method that produces smooth 
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trajectories and can be used for obstacle avoidance, [11]. 

Fox, Burgard and Thrun have proposed a method that 

considers a robot’s velocity and allows its motion at high 

speeds, [2]. 

Finally, Philippssen and Siegwart have developed a 

method that is based on the combination of DWA (Dynamic 

Window), elastic band and NF1, [10]. The method performs 

smooth motions efficiently, both computationally and in the 

sense of goal-directedness. 

In this paper, we propose a method to improve the 

localization ability of a robot that relies on odometry and 

improve a method of path planning in order to become more 

flexible and easily applicable. To address the localization 

problem, we first apply an odometry calibration method. 

According to that method, we integrate odometry errors 

throughout a path traveled by the robot and we produce new 

improved odometry parameters. The method employed is an 

end point method with different initial and final points, 

which does not need additional sensors. An important 

advantage of the method is that it can fit to any odometry 

model. 

The accuracy of the proposed method is similar to the 

one achieved by PC-Method, but in contradiction to it, it 

does not use sensors other from the wheel encoders. Our 

studies showed that to some extent, odometry errors are due 

to the caster wheel used in mobile robots. Therefore, we 

examine the influence of the caster to the odometry errors. 

We consider the caster as a systematic odometry error 

source, and replace it by an omnidirectional wheel. 

Comparison results are presented. 

Next, the path planning method proposed by 

Papadopoulos and Poulakakis is studied. This method takes 

into account the workspace obstacles, and the nonholonomic 

constraint of the differential drive mobile robot to produce a 

smooth path. Up to now the path was determined by the 

initial and final points of the path. The method proposed 

here, allows the definition of intermediate points, which 

makes the resulted path shorter, more natural, while 

avoiding the need to have the robot stop at intermediate path 

points. 

II. ODOMETRY CALIBRATION METHOD 

In this section, we first estimate the odometry parameters of 

an experimental mobile robot. The robot we employ is a 

Pioneer 3 DX differential drive robot, shown in Fig. 1. This 

robot has two independently driven wheels with tires and a 

caster wheel for stability. The driven wheels are equipped 

with encoders and the angular readings become available 

through simple routine calls. 

The three major odometry parameters of such a mobile 

robot are the radius of its right and left wheels, Rr and Rl  

respectively and the distance  D  between its wheels, see Fig. 

2. In order to estimate these parameters, we express the 

velocity of the robot in terms of these parameters as well as 

of the angular velocities of its right and left wheels, r  and 

l  respectively. Odometry is based on the integration of the 

following kinematic equations:  
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The parameters Rr  and Rl  are the actual radii of the right 

and left wheel respectively, and D  the actual distance 

between the center of the wheels. Integrating (1) yields the 

position and orientation of the mobile robot. However, the 

results depend heavily on the values of the parameters in (1). 

If these are not known accurately, then large and growing 

estimation errors result. 

 

Figure 2. Mobile manipulator schematic and variable definitions. 

Denoting by 
  
R

r
,  R

l
, and  D  the estimates of the 

corresponding parameters, the errors in these are defined as, 

 

Rr = R̂r Rr

Rl = R̂l Rl

D = D̂ D

 (3) 

Using (1) and the errors in (3), the errors in linear and 

angular velocities due to parameter estimation errors are 

given by, 
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or, in matrix form, 
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Setting, 
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 (8) 

and using (2), matrix  A  is written as, 
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We assume that the actual values of Rr , Rl  and D are 

constant, thus X is fixed. Then, arithmetic integration with 

time along a path yields: 

 

x

y = A

Rr
Rl
D

 (10) 

or, 

 B = A X  (11) 

Equation (11) describes the fact that small variations in the 

wheel radius Rr , Rl   and the distance D  between the wheel 

centers result in errors in estimated robot position and 

orientation. 

Exploiting the above analysis, the robot is commanded 

to move along a path, while its wheel rotational velocities 

r (t) , and l (t)  are recorded. In addition, the robot’s final 

position and orientation is measured with respect to the 

global coordinate system. Next, the robot’s wheel rotational 

velocities are imported in a robot simulator software, such as 

the one provided by ActivMedia, and the expected position 

and orientation of the robot is found. In this way, the vector 

B is found. The array A is subsequently calculated from 

  r
(t)  and 

  l
(t) . Then, the vector X is computed from (11), 

by inverting matrix A. In this way we obtain a better 

estimation of 
 
R

r
, 

 
R

l
 and  D . 

In order to reduce the influence of random errors, we 

employ the above procedure more than once. Each time the 

robot travels a different path and we get different arrays Ai  

and Bi . Then (11) becomes: 
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To solve (12), we use the pseudoinverse of A , which 

solves (12) with the least squares method. Since A  is 

invertible, this method always yields a solution for the 

unknown parameter errors X. Finally, we obtain the real 

values of the robot parameters through equations 
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Because of the fact that the difference between real and 

estimated values of 
 
R

r
, 

 
R

l
 and  D  is not small enough, we 

have to employ the previous method repeatedly until 
  
R

r
,  R

l
 

and  D converge to certain values which we consider the real 

values of the parameters. 

Another problem that has to be faced is the uncertainty 

about the parallelism of robots longitudinal axis and x-axis 

of the global coordinates system. This uncertainty is 

modeled with an additional unknown parameter , which 

represents the initial angle between the robots longitudinal 

axis and the x-axis of the global coordinates system. The 

angle  has to be found and its nominal value is zero. (1) 

becomes: 
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and array A: 
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Equation (11) becomes: 
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and is used in obtaining an equation of the form of (12). The 

solution for the errors is as above. 

The method described above has a number of 

advantages when compared to the UMBmark and the PC-

methods. Firstly, the proposed method allows the calculation 

of the exact values of each robot wheel whereas with the 

UMBmark method we can find only their ratio, resulting in 

an uncertainty in the estimation of the distance traveled. 

Another advantage of the method described here, is that it 

does not require a particular shape of path like the 

UMBmark. Instead, it can use paths with the same 

characteristics as the ones that the robot will follow in its 

designated use. Finally an important advantage of the 

method versus the UMBmark, is that it can be implemented 

in every mobile robot whose kinematic model is known. An 

advantage of the method versus the PC-method is that it 

does not require the employment of additional sensors able 

to estimate accurately the robot’s position over the whole 

path traveled. This is due to the end-point type of the method 

employed. 

III. CASTER REPLACEMENT WITH OMNIWHEEL 

In the previous section, we assumed that the difference 

between the real and the nominal values of Rr , Rl  and D  

are sources of systematic errors and we modeled the robot’s 

motion so as to find a better estimation of these values. In 

this section, we examine the caster wheel and assume that it 

is a source of systematic errors for reasons described below. 

As a complete modeling of the caster wheel would be a very 

complex task, instead we propose its replacement with an 

omniwheel. Finally, we discuss the advantages and 

drawbacks of using an omniwheel in a mobile robot. After 

careful observation and analysis, it became evident that the 

systematic odometry errors originating from the use of a 

caster, appear due to the fact that the caster revolution axis 

(not the wheel axis) is not absolutely vertical as it is 

supposed to be, see Fig. 3. 

 

Figure 3. Due to constructive inaccuracies the caster axis is not vertical 

to the ground. 

The reaction F  of the ground to the wheel is analyzed 

in two components 
  
F

1
 and F2 , see Fig. 4. F2 is parallel to the 

caster axis where as F1  is perpendicular to it and tends to 

revolve the caster. As soon as the caster turns, a friction 

force T  appears, see Fig. 5, which tends to make the caster 

parallel to the movement plane. Although small, this force 

T  influences the robot throughout its whole path. The 

magnitude and direction of T  depends on the angle between 

the caster plane and the vertical plane which passes through 

the caster axis. 

 

Figure 4. The reaction F  of the ground is decomposed to a parallel 

and vertical force. 

 

Figure 5. The vertical force tends to rotate the caster and friction T 

appears in order to make caster’s plane perpendicular to movement 

direction. 
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Because modeling this influence is a complex task with 

uncertain practical gains, we decided to replace the caster 

with an omniwheel, i.e. a wheel that can be moved in 

directions parallel to its wheel axis by rolling and without 

sliding, see Fig. 6. 

 

Figure 6. The ground reaction component pushes the barrel to the left. 

 

The main advantage of the omniwheel is that it acts as a 

support point with a negligible shift and that the effects 

described above are minimized. 

Another significant advantage is that the disturbance 

forces caused by the omniwheel are random and 

consequently the resulting errors are non-systematic and 

therefore less severe for odometry. 

The main disadvantage of the particular omniwheel used 

was its low quality. Firstly, its projection was not completely 

circular. Secondly, its barrels were allowed to move along its 

longitudinal axis. This movement was quite rough and 

occurred when the barrel’s axis changed inclination. 

This is demonstrated in Figs. 6 and 7. When the 

inclination of the barrel’s axis is as shown in Fig. 6, the 

component 
  
T

2
 of the reaction of the ground pushes the 

barrel on the left until it reaches the left edge. When the 

omniwheel rotates, the inclination of the barrel’s axis 

changes, and a force F2  is needed to counterbalance the new 

force 
  
T

2
. 

This force cannot be exerted until the barrel reaches its 

right edge and therefore the axis of the barrel, and along 

with it the whole omniwheel, slips on the barrel until the 

barrel contacts the right edge. 

These wheel imperfections cause disturbance forces that 

oppose odometry accuracy. However, they appear only when 

the inclination of the barrel’s axis changes and not 

continuously. 

In addition, their appearance is rather random unlike the 

forces that appear due to the caster’s imperfections, which 

influence the robot throughout its entire motion and in a 

systematic way. 

 

Figure 7. When the omniwheel rotates, T2 changes direction and pushes 

the barrel to the right. 

IV. EXPERIMENTAL RESULTS 

Using a Pioneer 3 DX mobile robot, we conducted four 

groups of measurements aiming at (a) the calibration of the 

odometry, (b) the calculation of Rr , Rl  and D , (c) the 

evaluation of the odometry improvement achieved by 

calibration and by the use of the omniwheel. 

Each group of measurements included following five 

different trajectories for the calculation of Rr , Rl  and D , 

and a final trajectory for the evaluation of the obtained 

accuracy. In all five calibration trajectories, the robot was 

placed at exactly the same initial location and with the same 

initial orientation on a smooth surface. At the end of each 

trajectory, the final position and orientation of the robot was 

marked and the differences x , y  and  were calculated. 

The calibration trajectories were of arbitrary shape and 

length. After all the five trajectories were executed the errors 

Rr , Rl , D  and  as well as the corresponding 

parameters Rr , Rl , D  and , were calculated with the 

method described in section II. 

To evaluate the accuracy of the obtained parameters, the 

error between the real and the estimated position of the robot 

was calculated using the following equation, 

 
  
d = x

real
x

estimated( )
2

+ y
real

y
estimated( )

2

 (16) 

In the two first groups of measurements, the caster 

wheel was used, while in the third and fourth group, the 

omniwheel replaced the caster wheel. Also, in the first and 

third group, the path’s radii of curvature was greater than 

one meter. In the second and fourth group the path included 

parts of smaller radii of curvature and on-the-spot rotations. 

To evaluate the accuracy of the obtained parameters we 

had the robot travel a long path of at least 120 m. At the end 

of the path the distance between the real position of the robot 

and the position estimated by odometry before and after the 

calibration was calculated. This is shown in Table I. 

Looking only at the second column of Table I, the 

following conclusions can be drawn. By comparing the 

results of the first to the second group, and those of the third 

to the fourth one, we conclude that decreasing the curvature 

radii of the path, increases the resulting odometry errors. In 
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our experiments, the error increases drastically when the 

radii of curvature are smaller than 1 m. Furthermore, 

comparing one and three, or two and four, in Table I, we can 

conclude that the use of an omniwheel improves the 

accuracy of the robot’s odometry. 

Table I. Average odometry experimental results. 

Group 
No 

Odometry 
error 

before 
calibration 

(cm) 

Odometry 
error after 

calibration 
(cm) 

Average 
Path 

length (m) 

Notes 

1 35.59  4.17  126.5  
r >1 m, 
caster 

2 60.87  44.48  124.9  
r <1 m, 

caster 

3 16.10  7.44  126.2  
r >1 m, 

omniwhe

el 

4 37.03  14.14  124.8  
r <1 m, 

omniwhe

el 

 

As far as the calibration method is concerned, a 

comparison between the second and third column in Table I 

shows that odometry improvement is achieved in all cases. 

However, when comparing the first to the second group, we 

notice that odometry improvement is mush better for the first 

group, i.e. when the radius of curvature is greater than 1 

meter. Taking into account that these two paths have been 

traveled with the caster, we conclude that odometry errors 

caused by the caster are much more prevalent when the 

radius of curvature is small. This is to be expected, since 

according to the explanation given in Section III, the 

variations of the force F1  are bigger when the caster turns 

for a wider angle. Also, if we compare the third to the fourth 

group, we see that the odometry error in both cases is about 

half the error without calibration. 

The inability of the calibration method to improve the 

accuracy of the odometry in the 2
nd

, 3
rd

, and 4
th

 group 

beyond the accuracy obtained for the 1
st
 group, is attributed 

to non-systematic errors, especially in the case of the 3
rd

 and 

4
th

 group. 

V. PATH PLANNING METHOD IMPROVEMENT 

Apart from the localization challenge that we discussed 

above, one has to deal with the path planning problem. A 

method has been developed by [9] which is fast in 

computing point-to-point trajectories that can avoid 

obstacles. 

However, one disadvantage of the method is that in 

some cases, the paths that occur can be very long. This 

problem can be tackled by using intermediate points from 

which the path should pass. If such points were used, the 

robot should stop at these before resuming its motion. 

Obviously, this was a drawback that needed to be rectified. 

Here, we suggest an improved version of the method in [9], 

which allows the creation of more flexible paths with 

continuous speeds. 

The original path planning method is based on the 

transformation of the nonholonomic constraint of the 

differential drive robots 

 
  
sin dx cos dy = 0  (17) 

to the equation 

   du + vdw = 0  (18) 

where u, v, w are functions of x, y and . This can be 

achieved with the following invertible transformation: 

 
  
u(x, y, ) = x sin y cos  (19)  

  
  
v(x, y, ) = x cos y sin  (20) 

 
  
w(x, y, ) =  (21) 

The idea here is that the planning is done in the u-v-w space, 

without the need to tackle the nonholonomic constraint, and 

then the result is converted back to the x-y-  space. 

Function w is selected to be some time function, while u 

and v are functions of w, as is shown below 

 
  
w = f (t)  (22) 

 
  
u = g(w)  (23) 

 
  
v = -

du

dw
= -g (w)  (24) 

Notice that due to (24), this selection automatically 

satisfies the nonholonomic constraint. Function f is selected 

to be polynomial function and its coefficients are determined 

by the boundary conditions: 
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where the subscript o indicates the beginning and f the end 

of the path. Given the above boundary conditions, f must be 

a fifth order polynomial function, of the form, 

 
  
f (t) = a

5
t5
+ a

4
t4
+ a

3
t3
+ a

2
t2
+ a

1
t + a

0
 (26) 

The boundary conditions for g are: 
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and g therefore is a third order polynomial: 
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g(w) = b

3
w3

+ b
2
w2

+ b
1
w1

+ b
0
w  (28) 

This method allows the use of intermediate points, under the 

assumption that at the end of each sub-path, the vehicle 

angular velocity is zero. This results in a zero robot 

translational velocity, as is shown beneath. 

After differentiation, (19) and (20) yield 

 

   

x = cos w w u + sin w u + sin w w v cos w v

y = sin w w u cos w u cos w w v sin w v
  

and using (18) we get 

 

   

x = cos w w u cos w v

y = sin w w u sin w v
 

Replacing w from (21)  

 

   

x = cos u( ) cos v ( )

y = sin u( ) sin v ( )
 (29) 

As shown by (29), setting 
 

 to zero, also results in a zero 

translational velocity of the robot. If it is not acceptable to 

have the robot stop at intermediate points, then it must be 

ensured that there is continuity of the robot’s translational 

velocity. 

Next, we consider the motion from one point to another, 

with the requirement of passing through a number of 

intermediate points without a stop. The resulting path is 

comprised of a number of sub-paths whose end-points are 

the desired intermediate points. If we examine the problem 

variables, we can observe that the continuity of 

   
(t),  (t) and u( )  can be ensured by the use of proper 

boundary conditions. In order to ensure the continuity of v , 

another boundary condition must be added to (27) so that the 

initial value of v  at the i+1 sub-path is the equal to the final 

value of v  at the i
th

 part of the path, i.e., 
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But, 
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Therefore, the additional boundary condition is 

 
  
g (w

o
) = g

d
= v

f _ i
 (32) 

and hence, the order of the g function is increased to four: 

 
  
g(w) = b

4
w4

+ b
3
w3

+ b
2
w2

+ b
1
w1

+ b
0
w  

VI. SIMULATION RESULTS 

The implementation of the extended method is simulated 

here. The robot commanded to move from its initial position 

(x,y, ) = (0,0,0) to a final position (90,10, 3 /2 ). Employing 

the original method, the robot travels the path shown in 

Figure 8 and reaches its destination. Although this path may 

have a shape that is undesirable, there is no way to change it. 

To modify the path’s shape, two intermediate points (x,y) = 

(35,20) and (70,30) are inserted and applying the extended 

method presented above, the path shown in Figure 9 is 

obtained. This is smoother and very different from the one in 

Fig. 8. Therefore, the extended method offers better control 

over the shape of the mobile robot trajectory. 
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Figure 8. Robot’s path without intermediate points. 

Figs. 10 and 11 show the time evolution of the robot 

orientation with the original and extended methods. It can be 

seen that the disadvantage of the original method is that the 

function f and consequently the robot orientation  are 

defined exclusively by the initial and final orientation of the 

robot regardless of the velocity of the robot or even of the 

obstacles in the surrounding space. This problem is 

alleviated by the proposed extended method. 
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Figure 9. Robot’s path with two intermediate points. 

 

The proposed method can also be used to improve the 

obstacle avoidance capabilities of the original method. To 

this end, the procedure proposed in [9] can be followed but 

appended with some intermediate points that will prevent the 

generated paths from having undesired shapes. 
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Figure 10. Robot orientation history. Without intermediate points, the 

robot orientation is a monotonous function. 
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Figure 11. Robot orientation history with intermediate points. 

 

Another point that must be noted is that not all of the 

boundary equations (25) have to be used in every path. For 

example, if we are not interested in the angular velocity and 

acceleration of the robot at an intermediate point, the two 

last equations of (25) do not need to be used. 

In conclusion, the proposed extension makes the method 

more flexible, allowing the definition of intermediate points 

from which the robot must pass, and yielding smoother and 

shorter trajectories. 

VII. CONCLUSIONS 

In this paper, techniques for differential drive robots were 

developed. First, the localization accuracy of such robots 

employing odometry was considered. To address the 

localization problem, an odometry calibration method was 

used. The odometry errors were integrated along the entire 

path and new improved odometry parameters were 

calculated. An end-point method, with different initial and 

final points was used while no sensors beyond encoders 

were used. An important advantage of the proposed method 

is that it can fit any odometry model. The influence of the 

caster to odometry errors was also studied, and it was found 

that in general, the omniwheel yields improved accuracy. 

As far as the path planning problem is concerned, we 

extended the method proposed in [9] so that it can accept 

intermediate points without bringing the robot to a stop at 

these. The result was a path shape that is more controllable 

and avoids long robot excursions. 
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