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In recent years, a number of deep reinforcement learning (DRL) algorithms have emerged that promise to 
automate the development of locomotion controllers and map sensory observations to low-level actions. 
However, legged locomotion still is a challenging task for DRL algorithms, especially when slope handling 
is required. As a result, a framework using commonly used tools (ROS, Gazebo, etc.) and specific slope 
handling scenarios would enable the evaluation of recent DRL algorithms in order to choose the appropriate 
algorithm for a given task. In this work, an evaluation framework is proposed that combines DRL with 
trajectory planning at toe level aiming at reducing training time and facilitate decision-making in slope-
handling cases. The proposed evaluation scheme is extensively tested in a Gazebo environment and valuable 
results are produced using three state-of-the-art DRL algorithms. 

1. Introduction 

Recently, there has been an increased interest in legged robots. Legged systems interact with 
their surroundings through multiple contact points changing continuously. Such systems can 
traverse various terrain types, or handle terrain discontinuities employing accurate foot 
placement, making them more versatile than wheeled robots. Yet, quadrupeds have complex 
dynamics and many degrees of freedom that must be well orchestrated for achieving a robust 
and stable locomotion pattern. Controlling such high-dimensional, non-linear, and 
underactuated systems is a long-standing research challenge.  

1.1. DRL in Quadrupeds, from Simulation to Reality 

Model-based control approaches require an accurate dynamics model of the robot and include 
state estimation to achieve contact scheduling, trajectory optimization, and foot placement 
planning [1, 2, 3, 4]. In contrast, data-driven methods, such as model-free DRL, already have 
produced promising results showing that they can overcome several challenges and limitations 
of model-based approaches by training effective controllers directly from experience. Very 
recent promising research results in legged robotics demonstrated that learned locomotion 
policies can be transferred from simulation to reality by using high-fidelity simulations [5, 6, 
7]. Specifically, this was achieved by learning parts of the simulated model from real data [5], 
or by model parameter estimation [6]. Model-free methods have been applied to bipeds like 
Cassie from Agility Robotics [8], without resorting on model-based simplifications commonly 
used to realize control policies. All approaches usually consist of a simulation environment and 
a DRL algorithm that performs part of the footstep planning and control. 

1.2. Benchmarking DRL Algorithms 

The massive emergence of DRL algorithms makes it difficult to evaluate the progress in this 
domain of quadrupedal control due to the lack of a commonly adopted framework. The focus 
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of this work is to conclude which DRL algorithm should be chosen for slope handling – a 
common problem that quadrupeds need to tackle – by utilizing development tools commonly 
used worldwide by researchers in legged robotics and DRL. Similar attempts in the area of 
continuous control have been presented in [10] and [11]; however, these try to be broad by 
focusing on algorithm benchmarking and not on algorithm application on legged robotics. As a 
result, they either use simple robots [11] or simplified 2D models [12]. 

In this paper, benchmarking results for state-of-the-art DRL algorithms are presented, 
employing a realistic 3D model of the Laelaps II quadruped (Figure 1), and a trotting controller 
as in [17]. The benchmarking scheme mainly consists of two parts: the applied DRL algorithm 
part, and the toe level trajectory planning part. The controller performance is tested extensively 
using an accurate model in Gazebo, simulating the full dynamics of the robot.  

 
Figure 1. The quadruped robot Laelaps II, built by the Legged Robotics Team at the Control Systems Lab of NTUA, 

on the Lab’s treadmill. 

This paper consists of four sections. Section 2 presents an overview of the simulation 
environment, the detailed Laelaps II 3D model in Gazebo and the trajectory planning part. 
Section 3 presents the benchmarking architecture and the chosen DRL algorithms. In Section 4, 
experimental results are presented and discussed aiming to reach useful conclusions. 

2. Simulation Environment 

For the simulations, tools such as the Gazebo† simulator, and the Robot Operating System 
(ROS‡) were employed. In this framework, different robot models described in Simulation 
Description Format (SDF) can be loaded and with the appropriate adjustments, trained using 
state-of-the-art DRL algorithms. In this work, three algorithms are applied to the Laelaps II 
model in Gazebo. 

2.1. Laelaps II Quadruped 

Laelaps II is a quadruped robot built by the Legged Robotics Team at the Control Systems Lab 
of NTUA. The robot parameters are presented in [17]. The actuation system of each leg 
comprises a RE50 Maxon motor for the hip and an EC45 Maxon motor for the knee. Both are 
equipped with gearboxes and belt-pulley transmissions. Since the knee motor is body-mounted, 
a parallel mechanism is used to drive the distal leg segment (tibia). The maximum 
torque/angular rate capabilities of the Laelaps II leg are 50 Nm/75 rpm for the hip, and 50 Nm/55 
rpm for the knee; exceeding these limits will cause damage to the gearboxes, thus the gearboxes 
are responsible for the torque/angular rate limitations. 

2.2. Laelaps II Model in Gazebo 

For the needs of this work, a simulation environment was set up in Gazebo using parameters for 
the quadruped presented in [17]. This environment consists of the Laelaps robot on level terrain 
and ramps of various inclinations, see Figure 2a. For the ground contacts, the coefficient of 
restitution used by the Open Dynamics Engines was utilized. Concerning the robot model, the 
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original CAD files of the robot’s legs and body were used and added in the xacro§ robot model. 
The mass properties (mass, inertia matrix, CoM, etc.) for each leg part (see Figure 2b) were 
obtained from Solidworks CAD files. The tendon-like part of the leg was modeled as a prismatic 
joint with a spring constant equal to the that of the springs used in the Laelaps II robot legs, i.e.: 
26480 N/m. The maximum torque and angular rate constraints were respected. The evaluation 
framework can be found at CSL’s bitbucket repository**.  

 
 
 
 
 
 
 
 

 
(a) 

 
(b) 

 
(c) 

Figure 2. (a) Laelaps II in Gazebo, (b) Detailed model of the Laelaps II leg in Gazebo, (c) The toes follow semi-elliptical 
trajectories. DRL selects the trajectory center for each leg and the planner produces the entire trajectories. 

2.3. Trajectory Planning 

A smooth yet simple trajectory planning algorithm is used in this work. The main goal of the 
scheme is to make the robot move forward at a straight line and constant velocity to perform a 
smooth car-like motion. To this end, points are generated along a semi-elliptical primitive in the 
workspace of each leg toe to be used as reference for the leg motion controller, see Figure 2c. 

A main input to the algorithm is the current simulation time tsim. Depending on tsim, the 
algorithm determines the phase in which the leg should be at each moment (stance or swing). 
To achieve this, the modulo of tsim with the trajectory period Ttraj = Tstance + Tswing is calculated 
first, where Tstance and Tswing are the durations of the stance and the swing phase respectively. 
Then, the result is compared with Tswing to determine the current leg phase. To also add a tunable 
phase shift in the motion of each leg, a term  is added to tsim, where 

 see Figure 3b. In this way, the time input for the planner of each leg becomes 
tleg = tsim + Δtleg. That said, a stance trajectory is performed if  or a 
swing trajectory is performed if . 

Stance phase. The stance phase trajectory is mainly responsible for the desired robot 
motion; to propel the robot forward at a desired constant velocity v and a constant height h, the 
toes must follow a trajectory parallel to the ground at the desired velocity but in the opposite 
direction, i.e. backwards. The planning algorithm outputs the coordinates of the toe xtoe,leg, ytoe,leg 
w.r.t. a coordinate system OH fixed at each hip and parallel to the body; these are given by, 

  (1) 

where xc,leg, yc,leg, are the ellipse center coordinates w.r.t. OH, and αleg is the ellipse horizontal 
semi-axis, see Figure 2c. The absolute value of yc,leg corresponds to the height of the robot CoM. 

Swing phase. The swing phase trajectory is also important to provide adequate ground 
clearance while a toe is repositioned from the end point of the previous stance phase to the start 
point of the next one. The general form of an elliptical trajectory is used as described by,  
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  (2) 

where bleg is the vertical ellipse semi-axis corresponding to the maximum ground clearance. In 
contrast with [18], θtraj does not vary linearly with time, but is given by, 

  (3) 

By using (3), the derivative of ytoe,leg as given by (2), varies smoothly from zero, at the beginning 
of the swing phase, to zero, at the end of the swing phase. This enhances the smoothness of the 
overall motion since the toes contact the ground with zero vertical velocity. 

   
 (a) (b) 

Figure 3. (a) Evolution framework architecture, (b) Detailed model of the Laelaps II leg in Gazebo. 

3. Proposed Evaluation Framework 

The DRL algorithm performs foot placement planning by choosing the trajectory centers for 
each toe, see Figure 3a. This is passed to the trajectory planner that produces a sequence of toe 
positions along a semi-elliptical trajectory for every leg. Using the toe position as input and the 
inverse kinematics of the Laelaps leg as presented in [17], the hip and knee angles θ1, θ2 (Figure 
2c) are calculated. In turn, these are sent to a PID controller to produce the motor torques to be 
applied on the simulated model. The evaluation framework was based on Gym [9]. 

3.1. RL Task 

The RL problem is formulated as a Markov Decision Process (MDP) that is described for each 
time step  with a tuple ( ), where  is the current robot state,  is the action applied, 

 is the transition probability function from the current state  to the next state ,  is a 
reward value obtained due to the transition, and  is a discount factor for the long term 
reward. The robot starts by exploring a stochastic environment to find an optimal behavior and 
increase cumulative reward values over subsequent timestamps  throughout the robot 
trajectory [18], where  is a reward function under action .This function is defined so as to 
promote robot forward motion and punish divergence from its goal (e.g.: climb up a ramp) 

  (4) 

where  and  are the weights for the forward and drifting terms respectively, with  
and with the drift weight set to , to penalize more drifting motions. More,  and the 
cordinates of the Laelaps CoM along the  and  axis. 

The control algorithm receives from Gazebo proprioceptive sensory information , 
regarding the Laelaps II body, i.e. roll/pitch/yaw angles and angular rates, building a compact 
observation space. The outputs are adjustments in the toe trajectories in the form of a vector of 
actions , where  and In the implemented 
algorithm, the toe trajectories are chosen individually for every leg as the robot climbs up/down 
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the ramp. In this way, the algorithm adjusts the CoM height accordingly for slope climbing, 
stabilizes the robot by bounding the roll and pitch angle of the body, and keeps the robot moving 
straight by bounding the yaw angle of the body.  
This section gives an insight of the different categories of DRL algorithms. A focus is given to 
model-free algorithms as usually they are easier to train without the need to build descriptive 
models of complex environments. Model-free algorithms are classified in three main families, 
i.e. in policy-based for policy estimation, value-based for approximating value functions, or 
combined methods [16]. We will focus on the combined methods which provide the strengths 
of the other two methods and are popular in addressing continuous control tasks [16, 15]. These 
methods are based on the Actor-Critic neural network architecture. The actor network uses the 
policy μ to predict actions, while the critic network approximates the quality of the action 
applied given the current state [13]. The learning mechanism strategy follows an on-policy or 
off-policy manner. In turn, the policy can be trained using a stochastic or deterministic actor. In 
this work, we have chosen to evaluate algorithms able to handle continuous control problems 
and summarize the previously mentioned categories. Specifically, the selected algorithms are: 
Deep Deterministic Policy Gradient [14] (off-policy, deterministic), Proximal Policy 
Optimization [19] (on-policy, stochastic) and Soft Actor-Critic [18] (off-policy stochastic). 

3.2. Deep Deterministic Policy Gradient (DDPG) Algorithm 

DDPG is an algorithm with a deterministic actor network with a policy to predict a single action 
value. The actor learns to maximize the critic estimated action-value function Q(s,a) by 
following a policy gradient with N batch size as the objective J [19] 

  (5) 

DDPG is trained using a reply buffer of fixed size saved experiences. The Ornstein-Uhlenbeck 
process as in [19] was used as the exploration strategy and it was implemented by adding noise 
to the actor output actions with temporally correlated values. For enhancing training stability, 
at the end of every training step the target network weights are updated by a soft update strategy 
that copies a small ratio of the learned updates in the main network [19]. 

3.3. Soft Actor-Critic (SAC) Algorithm 

SAC is an algorithm with a stochastic actor network with policy πθ(αt | st) combined with a critic 
network for the approximation of the state value function V(s), and a soft Q-function network 
[18]. The algorithm uses a modified objective function J:  

  (6) 

where Η is the entropy term and a is a weight parameter. This modification provides advantages 
for enforcing the exploration strategy, the robustness, and the stability in training [18]. Like 
DDPG, SAC is trained using a replay buffer of previously sampled data. In SAC, the target 
network trick is used for the critic network to stabilize training with soft update of target weights.  

3.4. Proximal Policy Optimization (PPO) Algorithm 

PPO uses a stochastic actor network for the policy prediction and a critic network for the value 
function V(s) approximation. To update the policy network, data is sampled using the current 
policy for a set of environment interactions. In turn, training is performed for several epochs on 
mini batches of the sampled data. The training sampled data is discarded after the policy update. 
PPO uses a clipped objective function  
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where the objective limits the ratio rt(θ) between the old policy πθ(old) and the new policy πθ with 
a parameter ε. At is the advantage function [19]. Hence, the clipped objective function aims to 
reduce large updates avoiding the performance collapse by stepping away from the old policy.  

4. Results 

4.1. Experiment 

This work highlights the impact of different categories of state of the art DRL algorithms in the 
training of a detailed 3D Laelaps II model in the task of trotting up a slope of +10° utilizing the 
trajectory planner described in Section 2.3. The evaluated algorithms are compared with respect 
to the sample efficiency, stability, reproducibility, and generalization. More, they are tested after 
training in a different environment of a varying inclination ramp. 

4.2. Tuning the hyperparameters of the RL algorithms 

Concerning the implementation of the algorithms starting from DDPG, two hidden layers where 
chosen for the actor neural network (NN) and two hidden layers for the critic NN with learning 
rates of 10-4 and 10-3 respectively. Each NN consists of 500 neurons in the first layer and 400 
neurons in the second. The batch size is 128 and the replay buffer size is 10K. Concerning SAC, 
the same hyperparameters as those in DDPG were applied plus the entropy parameter of α-1 = 
150. For the SAC soft Q-function network, the learning rate value is 10-3 and two hidden layers 
were used with 500 & 400 neurons. Concerning PPO, a fixed trajectory size of 256 environment 
steps was used. For the policy update, mini batches of size 64 were sampled from the trajectory, 
on which training of 30 epochs is performed. For actor and critic NNs, two hidden layers with 
64 neurons each and learning rates of 10-3 were used. All algorithms were implemented using 
the PTAN package and are based on the baseline implementation of [15] and Openai Spinup††.  

4.3. Discussion 

Hyperparameter tuning can have a dramatic influence on the performance of the algorithm. 
However, each algorithm is affected differently by varying hyperparameter values. Indicative 
results are: SAC is mainly sensitive to the entropy parameter α (see Figure 4a), the DNN 
optimizers have an impact on the performance of the algorithms. A comparative study of 
ADAM‡‡, SGD§§, and AdaBound*** algorithms influence on DDPG is shown in Figure 4b. 
Adam optimizer helps DDPG to quickly converge to the maximum possible reward and stay at 
this value, AdaBound is a bit slower and SGD is third. 

(a) (b) 
Figure 4. (a) Effect of entropy parameter in SAC, (b) Optimizer effect on DDPG. 

 
†† https://spinningup.openai.com/ 
‡‡ Adaptive Moment Estimation. 
§§ Stochastic gradient descent. 
*** Adaptive Gradient Methods with Dynamic Bound of Learning Rate: https://github.com/Luolc/AdaBound 
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DRL algorithms suffer from high variance in performance, and poor generalization [16, 
20]. The performance of the algorithms is examined by running the same experiment several 
times with different random seeds as recommended in [20], with a validation scheme every 500 
steps. The mean reward and 95% confidence bound over three runs are reported to have a sanity 
comparison between the algorithm’s performance and their reproducibility capabilities. All 
algorithms were trained 3 times for 20K steps except from PPO which needed to train for 5K 
more steps to stabilize the mean reward (see Figure 5a after the blue vertical line). Figure 5a 
presents the training performance of DDPG, PPO, and SAC for all runs. SAC shows stability, 
speed and sample efficiency in training compared to PPO and DDPG. Using SAC, the robot 
learned to reach the top of the ramp after 8K steps, achieving reward ~3. In contrast, on-policy 
algorithms like PPO, suffer from sample efficiency and need more interaction with the 
environment in order to reach better results (25K steps). In addition, PPO has linear 
improvement in performance reaching DDPG after 19K steps. Last, notice that DDPG suffers 
the most from reproducibility (see shadowed part for every line in Figure 5a) while PPO doesn’t 
and the 3 runs performance coincide at the beginning of every training. 

Generalization of the trained policies are tested in trotting upward a varying inclination 
ramp (from 10° to 8°, ending with a 15° inclination, Figure 5c). Figure 5b presents the CoM 
position of the quadruped during this task. Laelaps II is an appropriate testbed to evaluate the 
algorithms in this scenario, since it cannot perform hip abduction which would help to stabilize 
the robot in cases of increasing body roll/yaw angles.  

 
(a) (b) 

(c) 
Figure 5. (a) Reproducibility for all algorithms over 3 runs, the shaded area is the 95% confidence bound, (b) 

Generalization scenario: Laelaps is trotting upwards a varying inclination ramp. SAC only succeeded to reach the top 
in this scenario, (c) The ramp of figure 5b as shown in Gazebo. 

Last, Figure 6a presents that the body roll/yaw angles remain bounded when the quadruped is 
trotting upwards a ramp twice the length of the one used in training, while Figure 6b shows the 
applied saturation torque limit of 50Nm. 

(a) (b) 
Figure 6 . (a) Bounded yaw and roll body angles for the test scenario of trotting upwards a ramp of +10°, (b) Right 

hint (RH) knee and hip torques for the same scenario. 



4.4. Conclusion 

This work employed DDPG, SAC, and PPO in a comparative study covering a wide area of 
DRL algorithms. A trajectory planning algorithm was used enabling the robot to move forward 
at a constant velocity performing a smooth car-like motion. Utilizing ROS and Gazebo, training 
and evaluation scenarios could be easily loaded. As a result, training speed, robustness to 
parameter/environment changes could be tested easily. The chosen training tasks were oriented 
towards evaluating DRL algorithms for quadrupedal slope handling. It was found that the SAC 
algorithm was less sensitive to parameter tuning than PPO and DDPG, and it succeeded in 
training and generalization. However, a lot of test runs were needed to tune the entropy 
parameter. 
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