
  

 

Abstract— In a number of on-orbit applications, such as de-
orbiting, continuous contact between a servicing robot (chaser) 
and a serviced satellite (target) is needed. The task includes 
chaser free-space motion and subsequent contact interaction 
with a floating target. To achieve this, usually grasping of the 
satellite is proposed. However, most of the existing satellites on 
orbit have no dedicated grapple fixtures. In this paper, the prob-
lem of continuous contact between two bodies lacking a rigid 
grasp and fixed bases is studied. It is shown that continuous 
contact can be achieved by setting an appropriate chaser veloci-
ty at the moment of contact, accompanied by an impedance con-
troller. The same controller is applied in both phases without 
switching, avoiding loss of contact and instabilities, due to una-
voidable transition delays and unknown properties. A method-
ology is developed for selecting the same controller parameters 
and a suitable trajectory during both phases. The method is 
valid for spatial systems and illustrated by a planar example. 

 

I. INTRODUCTION 
The interaction of a robotic manipulator with its environ-
ment is important in many applications. To obtain a desired 
response and limit contact oscillations, interactions require 
an appropriate control method. In space, contact interactions 
are important in tasks such as satellite de-orbiting during 
which the manipulator of a servicer satellite (chaser) comes 
into contact with a satellite (target), aiming at target reentry 
or de-orbiting [1], see Fig. 1. 

 
Fig. 1. A satellite (target) deorbiting by a robotic chaser. 

These tasks require continuous contact between the chaser 
and the target; else the target may drift from its desired trajec-
tory. Impedance controllers are natural candidates for such 
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interactions. To regulate the relationship between end-
effector velocity and force during a dynamic interaction of a 
single manipulator, Hogan proposed impedance control [2]. 
Subsequently, many researchers have dealt with impedance 
control applied to a number of tasks. Many researchers have 
extended the approach of impedance control to robotic space 
manipulator systems on-orbit. Yoshida et al. have proposed 
the concept of impedance matching and studied whether the 
contact with the target is maintained or lost and the target 
pushed away [3]. The virtual mass concept for using imped-
ance control on orbit has been proposed, aiming to represent 
the influence of the end-effector impedance on the target mo-
tion [4]. To manipulate an object by multi-arm robotic sys-
tems on orbit, the Multiple Impedance Control (MIC) has 
been developed [5], which exploits the Object Impedance 
Control (OIC) [6]. 

Many research works study the capture of free-floating 
satellites by grasping them from a grapple fixture. Abiko et 
al. studied an impedance controller for a free-floating space 
robot during grasping of a tumbling target with model uncer-
tainty [7]. A method for validation of the robotic subsystem 
during chaser rendezvous and grasping manoeuvre has been 
developed using microgravity simulators [8]. Lampariello et 
al. have presented a novel method for grasping a partially 
cooperative tumbling satellite with a free-floating robot. An 
extended Kalman filter was  implemented for providing ro-
bustness and a velocity estimate of the tumbling satellite as a 
feed-forward for control, throughout the grasping task [9]. To 
minimize interaction forces between a robot manipulator and 
a satellite while maintaining contact, Sharma et al. proposed 
an approach based on direct force control in the presence of a 
rigid grasp [10]. However, the proposed design requires con-
troller switching between the free-space and the contact 
phase. The online path planning and compliance control of 
space robot for capturing a rotating object is studied in [11]. 
An impedance control scheme has been proposed in [12] and 
more recently in [13], so that the servicer robot and the target 
satellite have the same velocity after the contact. However, in 
both works, only the contact phase is studied, and the pro-
posed controllers are designed considering a non-oscillating 
response during the impact. 

In this paper, the problem of maintaining continuous con-
tact without a grasp between a chaser and its target is studied. 
The task is divided in the free-space and the contact phases. It 
is shown, that continuous contact between two moving bod-
ies is achieved by the selection of an appropriate chaser ve-
locity at the moment of contact, accompanied by an imped-
ance controller. A methodology is developed for selecting 
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controller parameters and a trajectory for a desired response 
during both phases. The application of the method is valid for 
spatial systems and is illustrated by a planar example. 

II. SYSTEM DYNAMICS  
A space manipulator system (chaser) on-orbit consists of a 
manipulator mounted on a spacecraft equipped with actua-
tors such as thrusters and reaction wheels. According to the 
current practice in space, the chaser’s manipulator has revo-
lute joints and an open chain kinematic configuration, so 
that, in a system with an N  degree-of-freedom (DoF) ma-
nipulator, there will be +6N  DoF in total.  

During the contact phase, external forces extF  and mo-
ments extn  act on both the chaser’s end-effector and the free-
floating object (target). In this case, the equations of motion 
of the target are given by 
 tmext tF = r  (1) 
and 

 ( )= × ×ext t t t t tn I Iω +ω ω  (2) 
where tm  and tI  is the target mass and moment of inertia 
matrix, respectively. Furthermore, tω  and tr  is the target 
angular velocity and the position vector of its center of mass 
(CoM) with respect to the inertial frame, respectively. 

The equation of motion of the chaser robot is given by 
 ( , ) ( , , , )+ = −0 0 0 act extH q z c q q Q Q

δ δ δ  (3) 
where c  is the vector of the nonlinear Coriolis and centrifu-
gal terms and 
 

0

TT T T=  C 0z r qδ  (4) 

where 
0Cr  is the position vector of the chaser’s spacecraft 

CoM with respect to the inertial frame, 0δ  the column vec-
tor of a set of Euler angles describing the spacecraft attitude 
and q  the column vector of the manipulator joint angles. 

The (6 ) (6 )N N+ × +  matrix ( , )0H q δ  is given by 
 ( , ) ( ) ( ) ( )T=0 0 0H q E H q E  δ δ δ  (5) 
where ( )H q  is the system inertia matrix and 

 ( ) ( )
× × ×

× × ×

× × ×

 
 =
  

3 3 3 3 3 N

0 3 3 0 3 3 3 N

N 3 N 3 N N

I 0 0
E 0 E 0

0 0 I
 δ δ  (6) 

where ×k kI  is the k k×  unity matrix, ×m n0  is the m n×  zero 
matrix and ( )0E δ  is a 3 3×  matrix which relates the space-
craft angular velocity 0ω  to the Euler rates 0

δ . 
The generalized forces actQ  and extQ  which correspond to 

the actuator forces/torques sF / sn  applied to the spacecraft 
CoM and the torques τ  applied to the joints and the external 
forces/torques extF / extn  applied on the end-effector, respec-
tively, arise from the principle of virtual work as follows 

 0

0
ˆ ˆ

T T T T TW
δ δ

δ δ
δθδθΕ

   = − +           
E C

ext ext s s

r r
q F n F n

ak
τ  (7) 

where Er  is the position of the end-effector with respect to 
the inertial frame, the angles 0θ  and θΕ  represent the space-
craft and end-effector orientation, respectively, and â , k̂  
are the unit vectors in the direction of the spacecraft and 
end-effector angular velocity, respectively. 

The corresponding virtual displacements are 

 0

0

) , )ˆˆ

δ δ
δδ

δ δ
δθ δθδ δΕ
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s 0 v 0

r r
rr

J J
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where vJ  and sJ  are appropriate Jacobian matrices. 
The combination of (7)-(8) yields 

 0ˆ( )TW
δ

δ δθ
δ

 
 −
 
 

0C

act ext

r
Q Q a

q
=  (9) 

where  

 T T = =  
ext

ext v v ext
ext

FQ J Jn F  (10) 

and 

 TT T T T×   + =        
s6 1

act s q s s
s

F0Q J J F nn= τ
τ

 (11) 

where qJ  appropriate matrix. 

III. DE-ORBITING IMPEDANCE CONTROL 
This work aims at de-orbiting a satellite by contact despite 
the lack of a rigid grasp. It is assumed that the target satellite 
is partially cooperative and hence that its attitude is con-
trolled. During a de-orbiting task, the chaser approaches the 
target satellite, which is floating freely in space, and after the 
contact, directs it for re-entry. Given that both the chaser and 
the target lack fixed bases, this task is very challenging. An 
important question that arises is whether a control strategy 
exists that will ensure that the two bodies will remain in con-
tact throughout the task; if the contact is lost, the target will 
move in an uncontrolled way, and de-orbiting may fail. 
Moreover, in impacts where a high stiffness is involved, the 
target satellite might bounce away before the chaser control-
ler has time to react, due to intrinsic time delays. To avoid 
hard impacts and increase contact duration of the impact, a 
passive compliant element of known structural properties is 
introduced at the chaser’s end-effector, [12]. Hence, the con-
tact phenomenon can be described by the wrist parameters 
since the wrist’s compliance is usually chosen so that the 
wrist is the most compliant element in a system. 

The concept is illustrated in Fig. 2. First, the chaser’s end-
effector is driven from its initial position to the target, Fig. 
2(a). The contact between the two bodies is modeled by a 
generalized spring of stiffness eK . The direction of the force 
is chosen such that it minimizes attitude disturbances. Fig. 
2(b) shows the beginning of the contact when the interaction 
force extF  is still zero. In Fig. 2(c), contact has been achieved 
and the developed extF  causes target motion. Our interest 
here is to develop an appropriate control algorithm, select its 
parameters, and study the initial conditions needed to keep 
the two bodies in contact throughout the process. 

The developed controller is derived considering that an 
equivalent force/torque actF  acts on the end-effector which 
has the same effect as that due to the forces/torques sF / sn  
applied on the spacecraft by thrusters and momentum devic-
es, and the torques τ  applied by manipulator joint motors,  
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Fig. 2. (a) The chaser free motion, (b) the beginning of the contact and (c) 

the contact phase. 

 TT T=  act act actF nF   (12) 
In this case, the principle of virtual work yields: 

 ( ) ˆ
T T T TW

δ
δ

δθΕ

 = −         
E

act act ext ext

r
F n F n

k
  (13) 

Using (8), one can write (13) in the form of (9), where 
extQ  is given by (10) and actQ  is 

 T T = =  
act

act v v act
act

FQ J Jn F   (14) 

Therefore, (3) can be written as 
 ( , ) ( , ) ( )T+ = −0 v act extH q z c z z J δ F F   (15) 
Assuming the inertia matrix ( , )0H q δ  is non-singular, (15) 

can be written as 
 ( )1( , ) ( ) ( , )T−= − −0 v act extz H q J c z z δ F F   (16) 
The end-effector’s velocity is given by  

 
0 

   = = =    
  

c
E
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E

r
r

x J J z
q







 





δ
δ

  (17) 

where Eδ  is a set of Euler angles describing the end-
effector’s orientation and rJ  is a Jacobian matrix. 

Differentiating (17), yields the end-effector acceleration as 
 = +r rx J z J z     (18) 
Considering that the acceleration z  is given by (16), the 

end-effector acceleration can be written as 
 1( ) −= − − +act ext r rx W J H c J z F F   (19) 

where the 6 6×  matrix W  is given by 
 1 T−= r vW J H J   (20) 
It is desired to govern the translational and attitude dynam-

ics of the closed-loop system according to the impedance law 
 + + =− +d d d ext desM e B e K e F F   (21) 

where desF  is a desired force introduced to obtain non-zero 
steady state forces during the contact, dM , dB  and dK  are 
impedance gain matrices, and e  is the chaser’s end-effector 
position/orientation error, defined as 

 = − de x x  (22) 
where dx  is the desired end-effector’s trajectory. 

Therefore, the chaser end-effector acceleration is given by 
 1 ( )−= − + − − +d ext des d d dx M B e K e x F F   (23) 

Assuming W  is non-singular, the combination of (19) and 
(23) results in the following control law 

 
1 1 1 1

6 6
1 1 1

( ) ( )
( )

− − − −
×

− − −

= − + −
+ − − +

act d ext r r

d des d d d

I W M W J H c J z
W M B e K e W x





 

F F
F

 (24) 

where all the feedback variables can be measured by appro-
priate sensors. 

Using (11) and (14), the actuator inputs are computed by 

 1 T−
 
  =
  

s

s q v

F
n J J
τ

actF  (25) 

Next, a systematic methodology of defining the impedance 
parameters dM , dB , dK  and desF  is developed so that the 
chaser will track the desired trajectory in the free-space phase 
and will not lose the contact with the target in the contact 
phase avoiding controller switching between the two phases. 

IV. CONTROLLER PARAMETER SELECTION  
The developed impedance control law, given by (24) is ap-
plied in both free-space and contact phases, and the neces-
sary conditions are developed so that the same controller 
parameters are employed in both phases. In the following 
analysis, the variables with the subscripts ‘‘f and c’’ corre-
spond to free-space phase and contact phase, respectively. 

A. Free-Space Phase  
In the free-space phase, see Fig. 2(a), no external force acts 
on the chaser ( =0extF ); the chaser’s end-effector moves 
towards the target, following a desired trajectory ( )td,fx . For 
this phase, the desired impedance law is 

 + + =d f d f d fM e B e K e 0   (26) 
where 

 = −f d,fe x x  (27) 
Each component (translational or rotational) , ( )d fx t  of the 

desired trajectory ( )td,fx  during free-space phase is given by 
 , ( ) ( )( )d f ch,in ch,c ch,inx t x s t x x= + −  (28) 

where ch,inx  is the initial trajectory component state of the 
chaser’s end-effector in free-space phase, ch,cx  is the corre-
sponding chaser’s end-effector trajectory component at the 
moment of contact, and ( )s t  is a cubic or higher-order poly-
nomial called the arc length parameterization of the path. 

The chaser’s end-effector position/orientation error transi-
ent response in the free-space phase is defined by the selec-
tion of the damping coefficient fζ  and the natural frequency 

,n fω  characterizing a desired second order response. There-
fore, the diagonal elements dm , and db  of the diagonal ma-
trices dM  and dB  are defined by the desired fζ  and ,n fω  as 

 2
,/d d n fm k ω=  (29) 

 ,2d f n f db mζ ω=  (30) 
where the diagonal element dk  of the diagonal matrix dK  
can take an arbitrary and finite positive value.  
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B. Contact Phase  
During the contact phase, the chaser’s end-effector and the 
target move together, maintaining their contact, while an 
external force/torque extF  is developed. 

During the contact, it is desired that the error response is 
governed by the following impedance behavior 

 + + =− +d c d c d c ext desM e B e K e  F F  (31) 
where ce  is the position error during the contact phase 

 =c d,ce x-x  (32) 
where d,cx is the desired trajectory during the contact. 

A vector n  normal to the impact surface is defined. The 
desired impedance, given by (31), can be written in frame 
{n} whose origin coincides with the origin of the inertial 
frame and its attitude coincides with the end-effector’s atti-
tude, given by the rotation matrix nR , whose x-axis coin-
cides with n , see Fig. 2 (b). It is known that, 

 * * *, ,n n n= = =c n c ext n ext des n dese R e R RF F F F  (33) 
where ( )n ⋅  denotes the vector ( )⋅  expressed in frame {n} 
and * diag( , )=n n nR R R . 

Therefore, the impedance behavior in this frame is  
 n n n n n+ + =− +d c d c d c ext desM e B e K e  

  F F  (34) 
where  

 * * * * * *, ,T T T= = =d n d n d n d n d n d nM R M R B R B R K R K R    (35) 
If the gain matrices dM , dB  and dK  are chosen as diago-

nal matrices with equal diagonal elements, then it can be 
shown that: 

 , ,= = =d d d d d dM M B B K K    (36) 
Therefore, (34) can be written as: 
 n n n n n+ + =− +d c d c d c ext desM e B e K e  F F  (37) 

where the external force caused by the contact is modeled by 
a generalized spring and in frame {n} is given by: 

 n n n=ext e cK eF  (38) 
Assuming point contact, only forces are developed be-

tween the end-effector and the target. If friction is negligible, 
then only normal to the surface forces are developed. Then, 
the 6 6×  stiffness matrix n

eK  expressed in frame {n} is 
 diag( ,0,0,0,0,0)n

ek=eK  (39) 
where ek  is the spring’s stiffness along the contact direction. 

Moreover, the desired force in frame {n} can be chosen as 
 [ 0 0 0 0 0 ]n T

desF=desF  (40) 
where desF  is the desired force along the contact direction n. 

Since the direction of the force actF  is chosen such that it 
minimizes attitude disturbances and the target is cooperative, 
target attitude dynamics can be neglected. Therefore, the de-
sired error response is derived from the projection of the 
translational part of (37) (i.e. its 3 first components) on the 
vector (1,0,0)T=n , after the substitution of (38)-(40) in (37), 
and considering the diagonal form of the gain matrices:  

 ( )d c ,n d c ,n d e c ,n desm e b e k k e F+ + + =   (41) 
The position error c ,ne  along the contact direction is  
 0( ) ( ) ( )c ,n ch te t x t x t l= − +  (42) 

where chx , tx  are the chaser’s end-effector position and the 
target’s position, respectively, along the direction of the im-
pact, and 0l  is the undeformed spring’s length, see Fig. 2(b). 

Therefore, the desired trajectory during the contact phase, 
along the direction of the vector n , is 

 0( ) ( )d,c tx t x t l= −  (43) 
Since it is desired to avoid controller switching but instead 

have the same controller, given by (24), during both phases, 
the error dynamics in both phases are described by the same 
impedance law, given by (21). This is feasible by setting the 
same controller matrix gains dM , dB  and dK  in both phas-
es, and by an appropriate selection of (i) the desired trajectory 

dx  and (ii) the desired force desF . 
To avoid controller switching, the desired trajectory dx  in 

(22) is defined as 

 1

1 2

1
( ) ( ) ( )

1
a

t t t
a a

−
= +

+ +
ext ext

d d,f d,c
ext ext

x x x
F F

F F
  (44) 

where the parameters 1a  and 2a  are chosen enough large 
and enough small, respectively, so that ,( ) ( )t t=d d fx x  in free-
space, i.e. when 0=extF , and ( ) ( )t t=d d,cx x  during the 
contact phase, i.e. when 0≠extF . 

Note that the desired trajectory ( )tdx  in the contact phase, 
depends on the target position, see (43). Since the application 
of the developed controller, (24), requires the knowledge of 
the acceleration dx , the corresponding target’s acceleration 
must be available. This can be measured either with respect 
to the chaser, knowing the chaser’s motion, or using the in-
teraction force and an estimate of the target’s mass tm  [14]. 

The desired force desF  must be zero in the free-space 
phase for zero tracking error, while during the contact phase 
it must be non-zero, to ensure the contact and according to 
(21), a non-zero steady state error. Therefore, to avoid de-
sired force switching, desF  is defined as 

 d
des

F
F

a
=

+
ext

ext

F
F

  (45) 

where dF  is a non-zero parameter setting the desired contact 
force, and a  is an arbitrary parameter of small value. During 
the free-space phase, the contact force extF  is zero, and 
therefore desF  is also zero. However, during the contact and 
for small a , desF  is about equal to the set value dF . 

The error dynamics of the closed-loop system, along the 
direction of the contact, is given by (41). For positive param-
eters dm , db  and dk , the system dynamics is stable and the 
position error at steady state is: 

 ,
d

ss c
d e

F
e

k k
=

+
  (46) 

To obtain a second order error response, described by cζ  
and ,n cω  at the contact phase, the controller gains dm , db  
must be selected as 

 2
,

d e
d

n c

k k
m

ω
+

=   (47) 

and 
 ,2d c n c db mζ ω=   (48) 
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Since the same controller parameters are required in both 
phases, comparison of (29) with (47) and of (30) with (48), 
yields respectively 

 d
c f

d e

k
k k

ζ ζ=
+

 (49) 

and 

 , ,
d e

n c n f
d

k k
k

ω ω
+

=  (50) 

According to (49)-(50), the response in the contact phase, 
described by cζ  and ,n cω , depends on the response in the 
free-space, given by fζ , and ,n fω . Defining a desired posi-
tion error transient response in the free-space phase (i.e. de-
fining fζ  and ,n fω ) and selecting any positive, finite value 
of dk , the controller gains dm  and db  are computed using 
(29) and (30), respectively. Choosing an overdamped re-
sponse (i.e. 1cζ > ) during the contact phase, a continuous 
impact can be achieved, [12]–[13]. However, since c fζ ζ< , 
see (49), this choice will result in an overdamped response in 
the free-space, which is undesirable, as the response will be 
slow and inefficient [15]. Therefore, a critically damped or 
underdamped response in the free-space is usually chosen 
which according to (49) will result in an underdamped re-
sponse (i.e. 0 1cζ< < ) in the contact phase. Next, the response 
during the contact phase is studied. 

V. CONTACT RESPONSE 
In the previous section, we introduced the impedance control 
law and defined the resulting error dynamics of the closed – 
loop system in both the free-space and the contact phases. It 
was shown that the choice of a critically damped or under-
damped desired response in the free-space results in under-
damped response during the contact phase. In this section, 
we study this underdamped response and define the suffi-
cient conditions so that the chaser will not lose contact with 
the target. 

During contact, the end-effector deforms the target with an 
oscillating response, which assuming maintenance of contact, 
finally reaches a steady state target deformation. In Fig. 3, a 
typical underdamped response of the end-effector’s position 
error is presented along with some interesting characteristics. 

 
Fig. 3. The underdamped error response of the chaser during the contact. 

The position error response of an underdamped system, 
0 1cζ< < , with a non-zero initial relative velocity of the chas-
er end-effector, is obtained as the solution of (41) in the form 

 , 2
,( ) sin( 1 )c n c td

c ,n c n c c c
e d

F
e t A e t

k k
ζ ω ω ζ ψ−= + − +

+
 (51) 

where the parameters ,,c n cζ ω  are given by (49)-(50), cψ  is 
the oscillation phase and the amplitude cA  is given by 

 
2 2 2 2

, ,
2 2

(0) 2 (0)
( ) (1 )

d n c d d n c c d
c

e d c

m v F m v F
A

k k
ω ω ζ

ζ
− +

=
+ −

 (52) 

where (0)v is the initial value of the chaser’s end-effector 
relative velocity ( )v t  at the contact phase defined as 

 ( ) ( ) ( )ch tv t x t x t= −   (53) 
To avoid any contact loss with the target, the error u,ce  

which corresponds to the maximum undershoot, see Fig. 3, 
must be positive, i.e. 

 ,( ) 0u,c c ,n u ce e t= >   (54) 
where ,u ct  is the time where the maximum undershoot ap-
pears, see Fig. 3. 

As shown in Fig. 3, the maximum undershoot of the error 
response can be positive if the amplitude of the response is 
not large. Therefore, we find the conditions for which the 
amplitude cA  is minimum, and examine if the undershoot of 
the response given by (51) is then positive. Using (52), it can 
be shown that the amplitude cA  is minimum when the chas-
er’s initial relative impact velocity (0)v  takes the value 

 
,

d c
d

d n c

F
v

m
ζ
ω

=  (55) 

The minimum value of the amplitude cA  is then obtained 
by substituting the relative velocity dv  in (52) to yield 

 d
c,min

d e

F
A

k k
=

+
  (56) 

Then, the undershoot of the error response is 

 , , 2
, ,(1 sin( 1 ))

2
c n c u ctd

u,c n c c u c
d e

F
e e t

k k
ζ ω πω ζ−= + − −

+
 (57) 

Since the right-hand side of (57) is always positive, one 
concludes that (54) is satisfied. The above analysis shows 
that continuous contact of the chaser with the target can be 
guaranteed if the initial velocity of the chaser at the contact 
phase is given by (55). This velocity is the terminal chaser’s 
velocity in the free-space phase, and can be achieved by 
proper design of the desired trajectory, given by (28). To this 
end, the coefficients of the polynomial ( )s t  in (28) are se-
lected so that the chaser will arrive at the target at the mo-
ment of the contact with relative velocity dv  given by (55). 

Example: To illustrate the developed method, a planar 
chaser with a 3 dof manipulator is employed. The system 
parameters are shown in Table I. The target, of mass 

100tm Kg=  and moment of inertia 250tI Kg m= , is initially 
at rest at ( ) (2.5 2.5)t,in t,inx y m=  with orientation 0o

tθ = . The 
chaser’s end-effector is driven to the target from an initial 
position ,( ) (0.1 0.1)ch in ch,inx y m=  with orientation , 60o

ch inθ =  
to the target’s position with final orientation , 0o

ch finθ = in time 
100t s= . The initial position of the base CoM and the base’s 

orientation are ( ) ( 2.0 0.05)b bx y m= −  and 0o
bθ = , respec-

tively. The contact between the chaser and the target is mod-
eled by a spring of natural length 0 0.1l m=  and stiffness 
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* 10 /ek kN m= . The control law (24) is applied on the chaser 
both during the free-space and the contact phases. 

Table I. Parameters of the planar chaser. 
Body li (m) ri (m) mi (Kg) Ii(Kg m2) 

0 - 1.0 400 200 
1 1.0 1.0 50 16.67 
2 1.0 1.0 50 16.67 
3 0.5 0.5 50 4.17 

The impedance parameters dk  and the desired force dF  
define the steady state position error in the contact phase, 
according to (46). These are selected as 
 100 / , 0.1d dk N m F N= =  (58) 
to achieve a steady state position error about 510 m− . 

The 3 3× diagonal matrices dM , dB  and dK  used in the 
control law (24) are: 
 ( ) , ( ) , ( )d d ddiag m diag b diag k= = =d d dM B K  (59) 

The impedance parameters dm , db  are found considering a 
desired position error response in the free-space phase. This 
response is defined by setting the damping coefficient 1fζ =  
and the natural frequency , 0.6 /n f rad sω =  during the free-
space phase. Using (47) and (48), these are computed as 
 277.8 , 333.3 /d dm kg b Ns m= =  (60) 

The required chaser’s initial velocity in the contact phase 
which guarantees continuous contact with the target, (55), is 
 65.9 10 /dv m s−= ⋅  (61) 

The position error response along the contact direction, the 
chaser and target velocities in this direction during the con-
tact, and the corresponding external force are shown in Fig. 
4(a). As can be seen, the chaser does not lose contact with the 
target since the error shown in Fig. 4(a) is always positive. 
The required joint torques as well as the forces/moments ap-
plied on the chaser’s base by thrusters and reaction wheels, 
computed using (25) and displayed in Fig. 4(b) and Fig. 4(c), 
respectively, are small and smooth, guaranteeing the feasibil-
ity of the required task. 

 

Fig. 4. (a) The position error response along the contact direction, the 
chaser and target velocities along this direction during contact and 
the corresponding external force, (b) the applied joint torques and 
(c) the applied force/ moment on the chaser base during contact. 

VI. CONCLUSIONS 
In this paper, the problem of obtaining continuous contact 
between a chaser and its target was studied. The task was 

divided into the free-space and the contact phase. It was 
shown that continuous contact between the two moving sys-
tems is achieved by the selection of an appropriate chaser 
velocity at the moment of contact, accompanied by an im-
pedance controller, with its parameters selected such that the 
same controller can be used throughout both phases. A 
methodology was developed for selecting the same control-
ler gains for both phases and for designing an accompanying 
desired trajectory. The method was developed for spatial 
systems and was illustrated by a planar example. 
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