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ABSTRACT 

The use of Space Manipulator Systems (SMS) is 
currently an important element of space missions. In 
order for an SMS to accomplish the necessary tasks 
efficiently and accurately, advanced model-based 
control methods need to be employed. These methods 
require accurate knowledge of the system’s dynamic 
parameters, whose values are very often unknown or 
subject to change on orbit for a number of reasons, such 
as fuel consumption, deployment of payloads, docking 
to a spacecraft, or object capture. In this paper, a novel 
method for parameter identification of a free-floating 
robotic space manipulator system is proposed based on 
the conservation of the angular momentum. Moreover, 
the NTUA’s new planar space emulator is presented. 
The proposed identification method is validated by a 
numerical simulation and subsequently it is used for the 
experimental identification of NTUA’s space emulator. 
 
1. INTRODUCTION 

Successes in space exploration have emphasized 
the growing importance of On-Orbit Servicing (OOS) in 
space programs around the world. OOS includes 
missions, such as re-orbiting and de-orbiting, inspection 
and retrofitting of orbiting structures, satellite 
maintenance, satellite repair, and removal of space 
debris. A cost-effective way to accomplish these is to 
use space manipulator systems (SMS), see “Fig. 1”, 
since space conditions are too dangerous to human life, 
especially during EVAs. 
 

 
Figure 1. Space Robotic System in Free-Floating Mode. 
 

An On Orbit Servicing mission, particularly 
important for the future of operations in space, is the 
active removal of space debris. The high number of 
satellites placed on orbit over the past 50 years, has 
resulted in a great number of space debris endangering 
the success of current and future missions. Moreover, 
collisions between existing debris result in numerous 
new space debris, potentially leading to a chain that is 
estimated to render certain orbits non-operational in the 
near future.  

The first documented accidental hypervelocity 
collision between two intact artificial satellites in low 
Earth orbit took place in 2009. The collision occurred 
between the deactivated Russian military 
communication satellite Cosmos 2251 and the active 
commercial US-built satellite Iridium 33. As of August 
2009 the US Space Surveillance Network (SSN) has 
catalogued 386 pieces of debris (16 pieces of which 
have already decayed from orbit) associated with 
Iridium 33 and 927 pieces of debris (30 pieces of which 
have decayed) associated with Cosmos 2251 [1].  

The incidents described above, illustrate in the best 
way possible the urgent need for Active Debris 
Removal (ADR) missions. As part of such mission, 
numerous designs have been proposed for chaser-
spacecraft equipped with tentacles, nets, harpoon 
mechanisms and more, as well as contactless methods 
such as electrostatic and gravity tractors [2]. One of the 
most promising active debris removal methods is the 
deployment of robotic systems with one or more 
manipulators. These systems are designed to be able to 
track and make contact with a potentially uncooperative 
target-debris, which will then be removed from its orbit 
and burned through in the upper atmosphere. 

Beyond their potential service in the active debris 
removal missions, an SMS is expected to be useful in 
other aspects of OOS such as repairs and construction 
on orbit. Thus, intelligent systems are required in order 
to complete these highly complicated tasks successfully.	

The tasks being performed as part of an OOS mission 
can benefit substantially from the accurate knowledge 
of the dynamic parameters of the servicing system as 
well as those of the target, since the high precision 
required can only be achieved by the implementation of 
advanced model based control strategies. Therefore, the 



 

need for parameter identification methods arises. 
Many parameter estimation methods have been 

developed, inspired by methods for fixed-base 
manipulators, [3], [4], and based on the linearity of the 
equations of motion with respect to the dynamic 
properties of the system, [5], [6]. However, these 
methods require measurements of spacecraft angular 
acceleration and joint accelerations, which contain 
undesirable noise and torque measurements, hard to 
obtain. To address this issue, some researchers have 
proposed, in the case of a free floating SMS (FFSMS), 
the use of estimation algorithms based on the 
conservation of angular momentum, [7], [8], [9]. These 
methods, however, fail to estimate all the dynamic 
parameters of the system without the prior knowledge of 
some of them. In this paper a novel parameter method is 
implemented, which is based on the conservation of 
angular momentum and renders the system’s dynamics 
fully identified [10]. The method is used for the 
theoretical and experimental parameter identification of 
NTUA’s robotic space emulator. 
 
2. PARAMETER IDENTIFICATION METHOD 

BASED ON THE CONSERVATION OF 
ANGULAR MOMENTUM 

Advanced control strategies for FFSMS use the 
Generalized Jacobian matrix and the dynamic model of 
the system; hence they need knowledge of the system 
parameters, [11]. To this end, we present the angular 
momentum equation of an FFSMS with multiple 
manipulators and zero external forces and torques. We 
assume that the system has constant angular momentum, 
and without loss of generality, zero linear momentum, 
[12]. The FFSMS have an open chain kinematic 
configuration consist of n  manipulators. The number of 
the links of the m -th manipulator is indicated by mN . 
Under these conditions, the system Center of Mass 
(CM) remains fixed in inertial space, and hence the 
origin of an inertial frame, O, can be chosen to be the 
system CM, see “Fig. 2”. 
 
 

 
Figure 2. A spatial FFSMS and the definition of its 

parameters. 
 

The system angular momentum expressed in the 
inertial frame is given by: 

 
 

   
hCM =R0 ( 0 D 0ω 0 +

0 Dq !q )                 (1) 

 
where  

0ω 0  is the spacecraft angular velocity expressed 

in the spacecraft 0th  frame and the column-vector   !q  is: 
 

 
   
!q= [ !q(1)T " !q(m)T " !q(n)T ]T     (2) 

 
where the 1mN ×  column-vector     !q

(m)  represents the 
joint rates of the m -th manipulator. The matrix 

( ),η0R ε  is the rotation matrix between the spacecraft 

0th  frame and the inertial frame, expressed as a 
function of the Euler parameters  ε,η,  and the terms 

,0 0
qD D  are inertia-type matrices of appropriate 

dimensions, given in APPENDIX A. 
To use Eq. 1 for parameter estimation, the angular 

momentum CMh  must be expressed linearly with 
respect to the vector of the estimated parameters π . 
Thus, the angular momentum can be expressed as: 

 
    hCM =Y( !q,q, 0ω 0 ,ε,η)π                   (3) 

 
where the 3 k×  matrix Y  is the regressor matrix. 

Assuming constant angular momentum ,0CMh , and 

N  measurements of the variables    !q,q, 0ω 0  and ,ηε  

obtained at time instants 1 2, ,..., Nt t t  during an 
appropriate trajectory, results in the following system of 
equations: 
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Appropriate exciting trajectories must be followed by 

the manipulators. These exciting trajectories are 
required to result in Y  being of full rank and with a 
small condition number. A small condition number is 
needed so that the estimation is relatively insensitive to 
measurement noise.  

The number of the measurements N  should satisfy 
Eqs. 5-6 for spatial and planar free-floating space 
robots, respectively, 
 

   3N ≥ k                                 (5) 
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  N ≥ k                                   (6) 

 
The vector π  should contain the minimum set of 

estimated parameters so that the regressor Ŷ  is of full 
rank. Therefore, a case-by-case analysis is required. 
Suppose that initially the Y  and π  are: 
 

 [ ]= 1 i kY e e eL L                  (7) 

and  

 [ ]T1 i kπ π π=π L L                (8) 

 
where ie  is the thi  column of matrix Y  and iπ  is the 
thi  element of column vector π . To find the minimum 

set of parameters, one must examine if a column ie  can 
be written as a linear combination of the other columns, 
i.e., 
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where jλ  are constants. If this is the case, ie  and iπ  
are removed from Y  and π , respectively, to obtain a 
new π : 
 

 ( ) ( ) ( ) ( ) T
1 1 1 1 1 11 1 1 1i i i i k kπ λ π λ π λ π λ− − + += + + + +⎡ ⎤⎣ ⎦π L L (10) 

 
This is an iterative procedure that terminates when no 
column ie  of Y  can be written in the form of Eq. 10. 
Then, the final π  contains the minimum set of 
estimated parameters. In such a case, the inverse of 

  Ŷ
T Ŷ  exists.  
The system of equations, given by Eq. 4 is over-

determined and the least-squares solution is, 
 

   π = (ŶT Ŷ)−1 ŶT ĥCM                      (11) 
 
Once this vector is available, is enough to render 
system’s full dynamics known, as required in model-
based control. 
 
3. SPACE EMULATORS 

The complex tasks being performed in OOS missions 
demand on-earth planning and validation, leading to the 
need for laboratory emulation of the environment of 
space. The two main desired characteristics of space 
emulators are the elimination of the effect of 
gravitational forces in one or more planes and the free 
motion of the manipulator system without friction or 
other resisting forces. In order to achieve these, various  

 
solutions have been proposed including suspension 
systems, parabolic flights, neutral buoyancy underwater 
facilities and air-bearings test beds. Each solution has its 
own advantages and disadvantages [13]. As in other 
cases [14], the experimental facility designed and 
constructed at the NTUA’s Control Systems Lab (CSL) 
is a planar robotic space emulator employing air-
bearings. 

 
4. THE NTUA CSL EMULATOR 

The robotic space emulator of NTUA’s Control 
Systems Lab (see “Fig. 3”), consists of a granite table, 
two autonomous robots, one of older (“Cassiopeia”) and 
one of newer design (“Cepheus”), and an optical 
feedback system. The granite table has dimensions 2.2m 
x 1.8m x 0.3m, weighs approximately 3.5 tn and has 
very low surface roughness (smaller than 5µm) and very 
small inclination (smaller than 0.01o), thus allowing the 
simulation of frictionless microgravity conditions in two 
dimensions. 

 

 
Figure 3. NTUA’s Robotic Space Emulator “Cepheus”. 

 
The autonomous robot “Cepheus”, (see “Fig. 4”), has 

a two-degrees-of-freedom manipulator mounted on an 
aluminium base, housing the various subsystems of the 
robot. Each joint of the arm controlled by a motor 
through a system of pulleys and belts. Both of the 
motors are placed on the main body of the robot, thus 
achieving a more desirable centre of mass of the system 
and are equipped with incremental encoders. 

The suspension of the base above the granite table is 
achieved by three round air bearings, 25 mm in 
diameter, placed under the circular base and spaced at 
120 degrees apart. Pressurized CO2 is supplied through 
the porous material of the air bearings, thus creating a 
thin film of air (approximately 10 µm) between the base 
of the robot and the granite table, allowing frictionless 
planar motion. The CO2 is provided to each of the three 
air bearings via flexible hoses from a central CO2 tank 
placed near the centre of mass of the base, weighing 
1500 gr (when full) under pressure 60 bar (at 20oC). The 
same tank provides the CO2 necessary for the operation 
of the three pairs of thrusters, also placed peripherally 



 

 

 
 

Figure 4. Parts of “Cepheus”. 
 

mid-height around the base at 120 degrees from each 
other. Each pair consists of two opposed thrusters 
controlled by 6 electric valves and therefore allowing 
control over the position and the attitude of the robotic 
system.  

To achieve greater fuel (CO2) autonomy, a reaction 
wheel installed. The rotation of the reaction wheel is 
controlled by a motor with an incremental encoder, 
offering an alternative to the thrusters for the attitude 
control of the robot. Moreover, the use of the reaction 
wheel makes the robot of the emulator resemble better 
an actual space robotic system, where the propulsion 
medium is limited in contrast to the practically infinite 
amount of electric energy available through the solar 
panels of the spacecraft.  

The electrical autonomy of the robot is achieved by 2 
Lithium Polymer (LiPo) batteries, with 4 cells each. The 
supply of the electric energy is being distributed in two 
independent circuits; one high voltage circuit suppling 
the 3 motors of the robot and the electric valves and one 
low voltage circuit supplying the computational 
subsystem of the robot. The energy conversion is 
conducted by two dc-dc converters, one for the high and 
one for the low voltage subsystem. 
The computational system of the robot consists of 3 PC-
104 boards and a Wi-Fi bridge. The operational system 
Ubuntu is installed in the PC-104 along with the open 
source software ROS (Robotic Operating System), 
which facilitates the control of the robot autonomously 
or via external PCs in collaboration with Matlab 
Simulink (MathWorks Inc.), see “Fig. 5”.  
Finally, the NTUA’s planar emulator is equipped with a 
PhaseSpace system (8 cameras, LED drivers, LEDs, 
hub, server, and pre-wired calibration objects), placed 
around the granite table, for motion capturing and 
position feedback. 

 
SIMULATION RESULTS 

In this section, the proposed identification method is 
illustrated by the simulated NTUA’s planar space 
emulator, although the method can be easily applied in 
spatial multi-arm FFSMS. The kinematic and inertia 
parameters of “Cepheus”, obtained from CAD model, 
are given in “Tab. 1”. The angular momentum of the 
system is set to  0.4934Nms . 

 
Table 1. Parameters of NTUA’s “Cepheus”. 

Link i li (m) ri (m) mi (kg) Izz (kg m2) 
0 - [0.17,0.09]T 9.951 0.1214 
1 0.119 0.062 0.083 3.46e-4 

2 0.146 0.084 0.187 7.17e-4 

 
The developed exciting trajectories are based on 

truncated Fourier series. To satisfy desired initial and 
final conditions, a fifth-order polynomial is added to the 
truncated Fourier series: 
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where 1,...m n= , 1,..., mi N= , fN  is the number of the 

harmonics employed, ( )i m
la  and ( )i m

lb  are free 
coefficients and 2f ftω π=  with ft  the motion 
duration. 

The free coefficients of the Fourier series are found 
by minimizing the condition number of the regressor 
matrix. The optimization algorithm is implemented 
using the Global Search Solver provided by the Global  
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Figure 5. Robot Communication Schematic

 
Optimization Toolbox (MathWorks Inc.) taking into 

account mechanical constraints of space emulator on 
joint positions, velocities and accelerations. 

In this simulation,
  
t f =5 s  and 

  
N f =3 . The desired 

initial and final conditions correspond to zero joint 
angles, rates and accelerations. The number of 
measurements is taken equal to   N =35 . The 

coefficients i
la and i

lb  of the exciting trajectories are 
shown in “Tab. 2”. 

 
Table 2. Trajectory coefficients for minimum condition 

number 
1
1a  -0.1642 1

1b  0.0010 
1
2a  0.2786 1

2b  0.2090 
1
3a  0.3582 1

3b  -0.1000 
2
1a  0.0846 2

1b  0.3682 
2
2a  -0.1692 2

2b  0.0597 

  a3
2

 0.0498   b3
2

 -0.32835 

 

 
In the case of a planar 2-DOF manipulator system, 

the minimum set of estimated parameters is presented in 
APPENDIX B. The results of the proposed 
identification method are displayed in “Tab. 3”. As 
shown in this table, the proposed method estimates the 
required parameters practically exactly, without the use 
of acceleration or joint torques. Moreover, these 
parameters are enough to reconstruct the system’s full 
dynamics. 
 

Table 3. Simulation results from the proposed method 

π  π  
True value 

Relative 
Error (%) 

1π  0.0074 0.5162 

2π  0.0046 0.4071 

3π  0.0039 0.3191 

4π  0.0024 1.2574 

5π  0.1314 0.0432 

6π  0.0048 0.7286 

7π  0.0075 1.3010 

8π  0.0046 0.6634 



 

5. EXPERIMENT RESULTS 

To conduct the experimental identification of 
NTUA’s Space Emulator, angular momentum must be 
introduced to the system and then, appropriate exciting 
trajectories must be performed by the arm joints. During 
the arm motion, joint angles and base angular 
orientation are measured by the encoders and the 
PhaseSpace system, respectively. By differentiating 
these measurements with respect to time, joint rates and 
base angular velocity are obtained. Using N  
measurements of joint angles, joint rates and base 
angular velocity, the minimum set of parameters π is 
identified and the full dynamics of the space emulator is 
reconstructed.  

To control the reaction wheel and the arm joints, 
ROS Control is used. The ros_control packages take as 
input the joint state data from the robot’s actuator’s 
encoders and an input set point. ROS Control uses a 
generic control loop feedback mechanism, typically a 
PID controller, to control the output, typically effort 
sent to actuators. There is a list of available controller 
plugins, contained in ros_controllers and in this 
experiment effort_controllers are used.  

The experiment starts by setting the angular 
momentum of the system to a constant value using the 
reaction wheel. A PI velocity controller 
(effort_controllers/joint_velocity_controlller) for the 
reaction wheel is loaded in ROS and the desired relative 
velocity of the reaction wheel with respect to the base of 
the robot is published from Simulink at an external PC 
to the controller’s ROS topic for velocity commands. 
The angular momentum of the system when the reaction 
wheel reaches the desired relative velocity is,  

 
   hCM = Irwω rw/des                          (13) 

 
where  Irw is the reaction wheel moment of inertia about 
its symmetrical axis. Its value is known from CAD and 
equal to   Irw = 0.00197372kg ⋅m2 . In this experiment, 
the desired reaction wheel relative velocity is equal to 
ω rw/des =170 rad/s . Therefore, hcm =0.3355 Nms.  

Once “Cepheus” has constant angular momentum, the 
two joints of the arm start to perform the optimized 
exciting trajectories. A PD position controller 
(effort_controllers/joint_position_controlller) for each 
arm joint is loaded in ROS and the desired angle with 
respect to time for each joint is published from Simulink 
to the controller’s ROS topic for position commands. In 
this experiment the exciting trajectories are sinusoidal 
and their duration is 

  
t f =5 s . The number of 

measurements is taken equal to N =29 . 
The proposed method identified the vector π , i.e. the 

minimum set of estimated parameters required is 
available. 

 
The experimentally identified parameters of NTUA’s  

planar space emulator are sufficient for the complete 
dynamic reconstruction of the system. Therefore, one 
way to validate the experimental results and the success 
of the proposed identification method is to compare the 
dynamic response of the simulated system based on 
identified model of the space emulator-with the same 
angular momentum and same exciting trajectories as 
those applied to the hardware in the experiment- with 
the response of the hardware. The time histories of joint 
angles, joint rates and base angular velocity for both 
simulated system and hardware are shown in “Fig. 6”. 
As shown in this figure, the time histories of joint 
angles and joint rates of the simulated identified system 
and the hardware coincide. However, concerning the 
base angular velocity, there is a small deviation between 
the simulation and the hardware. This may be due to the 
presence of friction between the air-bearings and the 
film of air. 
 
6. CONCLUSIONS 

In this paper, a novel parameter estimation method was 
developed, based on the conservation of the angular 
momentum of Free-Floating Space Manipulator 
Systems. The parameters to be identified are 
combinations of spacecraft, manipulator and payload 
parameters, and once available, they are enough to 
reconstruct the system full dynamics as required in 
model-based control. Only measurements of joint 
angles, rates, and spacecraft attitude and angular 
velocity are needed; noisy and hard to obtain spacecraft 
and manipulator joint accelerations or joint torques, are 
not required. Moreover, it does not require prior 
knowledge of any parameter and can be applied to free-
floating systems with more than one manipulators. The 
effectiveness of the proposed method was validated by a 
numerical simulation. The main aspects NTUA’s new 
planar robotic space emulator “Cepheus” have been 
presented and the identification method has been used 
for the experimental estimation of the system’s 
dynamics. 
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APPENDIX A 

The matrices 0D , 0 qD  and 
 
0 Dqq , expressed in the 

spacecraft frame, are presented. 
First, the term 0D  is given by, 
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n

∑

+
M mk

(q)

k=1

Nq

∑

M − mk
(q)

k=1

Nq

∑
[ 0 !lj

(m) , 0 !r0
(q) ]

q=1
q≠m

n

∑
       (A3) 

 
where 
 

     

0Dij
(m)=

−M[ 0!lj
(m),0 !ri

m( )] i<j

0Ii
(m)+mi

(m)[ 0 !ei
(m),0 !ei

(m) ]+m0[
0!li

(m),0!li
(m) ]

+( mk
(q)+m1

(m)+...+mi−1
(m)

k=1

Nq

∑
q=1
q≠m

n

∑ )[ 0!li
(m),0!li

(m) ]i= j

+(mi+1
(m)+...+mNm

(m))[ 0 !ri
m( ),0 !ri

m( )]

−M[ 0 !rj
m( ),0!li

(m) ] i> j

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

   (A4) 

 
The term 0 qD  is given by, 
 

 ( ) ( ) ( )1 m n⎡ ⎤= ⎣ ⎦
0 0 0 0

q q q qD D D DL L      (A5) 

where 

 ( )( ) ( )

1

mN
mm m

j=
=∑0 0 0

q j jD D F                     (A6) 

 
and 
 

 ( ) ( )( )
3 (N j)m

m mm
× −

⎡ ⎤= ⎣ ⎦
0 0 0

j 1 jF z z 0L L    (A7) 

 
where ( )m0

jz  is the unit vector along the j -th joint’s axis 
of the m -th manipulator expressed in spacecraft frame 
and 0  is the zero matrix. 

In Eqs. A2–A4, the body-fixed barycentric vectors 
   
0 !lk

m( )

, 
   
0 !rk

m( )  and     
0 !ek

(m)  are given in [15] and 
 

 [ , ] ( )= ⋅ −a b a b 1 ab                     (A8) 
 
where 1  is the unit dyadic. 
 
APPENDIX B 

In the case of a planar 2-DOF manipulator system the 
minimum set of estimated parameters, i.e. the elements 
of the π  vector are shown below: 

 
  
π1 =

m0

m0 + m1 + m2

r0x l1 m1 + m2( ) + m2r1( )     (B1) 

 

 
  
π 2 =

l2m0m2

m0 + m1 + m2

r0x                  (B2) 

 

 
  
π 3 =

m0

m0 + m1 + m2

r0 y l1 m1 + m2( ) + m2r1( )   (B3) 

 

 
  
π 4 =

l2m0m2

m0 + m1 + m2

r0 y                  (B4) 

 

 
  
π 5 = I0 +

m0 m1 + m2( )
m0 + m1 + m2

r0x
2 + r0 y

2( )         (B5) 

 

 
  
π 6 =

l2m2

m0 + m1 + m2

l1m0 + m0 + m1( )r1( )     (B6) 

 

 
  
π7 = I1+

l1
2m0 m1+m2( )+2l1m0m2r1+ m0+m1( )m2r1

2

m0+m1+m2

  (B7) 

 

 
  
π 8 = I2 +

l2
2 m0 + m1( )m2

m0 + m1 + m2

                (B8) 


