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ABSTRACT
Dynamic Singularitiesre shown for free-floating space manipulator systetmsre
the spacecraft moves iresponse tamanipulator motionsvithout compensation
from its attitude control system. At a dynamic singularity the manipulator is unable
to moveits end-effector in sommertial direction;thusdynamic singularities must
be considered in the design, planning, and control of free-floating space manipulator
systems. The existence and location of dynamic singularities cannot be predicted
solely fromthe manipulator kinematistructure because they dunctions of the
dynamic properties of the system, unlike the singulariies fixed-base
manipulators. Also analyzed are the implications of dynamic singularities to the

nature of the system’s workspace.

l. INTRODUCTION

Robotic manipulators will play important roles in future space missions. The consettofspace
manipulators poses planning and control problems not foutetrestrial fixed-base manipulators
due to the dynamic coupling between space manipulators and their spacecraft. A nhumber of control
techniquesfor such systemdhave been proposed; these schemean be classified in three
categories. In the first category, spacequafition andattitude are controlled by reaction jets to
compensatéor any manipulator dynamidorces exerted on the spacecraft. tms cae, control
laws for earth-bound manipulatosan be used, but thdility of such systemsnay be limited
because manipulator motions can both saturate the regattgystem and consumelatively large
amounts of attitude contrdliel, limiting the useful life of thesystem [1]. Inthe second category,
the spacecraft attitude is controlled, although not its translationsibg reaction wheels or attitude
control jets [2,4]. The control of these systems is somewhat coonglicated than that of tHest
category although a techniquealled the VirtualManipulator (VM) can beused to simplify the
problem[4-7]. The thirdproposedcategoryassumes &ee-floating system in order tconserve

fuel or electrical power [4,6-11]Such a systemermits the spacecraft toovefreely in response



to manipulator motions. Since the spacecraft’s attitude control system dageeradeduring this
mode of space manipulatioiis mode becomes feasibidnen no externdiorces and torques act
on the system, and when its total momentum is negliglhleractice, momentum dumpaneuvers
would be employed to remove any momentum that may accuniiigte Pastwork on the control
of free-floating systems generally has proposed particular algoritmiee-floatingsystems and
attempted to show their validity on a case by dras [8-11]. However,algorithmswhich do not
take into full account theystem kinematics or dynamibaveoccasional problems [10,11]. This
paper shows that these problems may be attributdghtomic singularitiesvhich arenot found in
earth bound manipulators. These dynamic singularities must be considered in thepesigm,
and control of these systems because of their important effette @erformance of free-floating
space manipulators.

The existence of dynamic singularities is shown first by writing the kinematics and conservation
equations in a compact, explicit form through the use of barycenters [12,13]. Then it istisfiown
the end-effector inertial lineand angularelocities can bexpressed solely as a function of the
velocities of the manipulatocontrolled joint anglesand that they donot depend upon the
uncontrolled linear and angulaelocity of thespacecraft. Next a Jacobiamatrix, J*, is derived
which relates theend-effector’slinear and angulavelocity in inertial space to the joint angular
velocities. Therank of this Jacobiamatrix is demonstrably deficient given points in the
manipulator’s joint space which results in the manipulator being unabheweits end-effector in
some direction innertial space. These singular points cannot be determined solely from the
kinematic structure of theystem and instead depempon a system’s massard inertiashence
they are called dynamic singularities. Dynamic singularitiepatie dependenbecause generally
they are not fixed in a manipulatoiitsertial workspace.This is becausthe end-effector location
in inertial space depends upon History of the spacecraft attitude which is determined by the path
taken by the end-effectorFinally, some regions irthe inertial workspacexist, called thePath
Independent Workspace (PIWj)here dynamic singularities will not exist for any path takéhin

this region, asopposed tother parts othe workspace, called tHeath DependentWorkspace



(PDW), where the occurrence of dynansmgularities dependsipon the path taken by the

manipulator’s end-effector.

Il. JACOBIAN CONSTRUCTION FOR FREE-FLOATING MANIPULATORS
End-effector position and orientation can be obtained dirémtla manipulator on a fixed-base or
on a controlled vehicle as a function ofsgstem’s indepeatent coordinates, namely of the
manipulator joint angles and base position attitude. However, end-effector position and
orientation cannot be obtained directly in free-floating space manipugiems because
spacecraft position arattitude arecoordinatesvhich depend uporthe history of a manipulator’s
motion. Still, provided that theystem isnitially at rest andthat no externalorces or torques act
on it, a Jacobiad” can be written for the system and provide a linear relatiomstipeen theon-

trolled manipulator’s joint angular ratgsand the end-effector linear and angular ineviégobcities,

I & 0 such that:
. T
rew:] =J ¢ @)

Dynamic singularities arise wheh becomes deficient. This Jacobian plays a similar role to
Jacobians used bynany fixed-base manipulator control algorithmaich are functions of
manipulator kinematics only. For example, Umetani andYoshida proposed aresolved rate
controller based od, called a Generalized Jacobian [9]. However, the constructidn dépends
on a system’s dynamics.

Here, the kinematiand dynamic relationships are formulated the free-floating manipulator
systemdepicted inFigure 1 and used to find an expression Jorbased onthe use of the
barycenters [12,13]. This approach Isawilarities to the VM method since iooth cases the
kinematicequations arevritten with respect to thesystem’s CM. The advantage of the method
presented in this paper tisat it yields a set of body-fixedectors, called barycentric, which are
sufficient to describe botthe kinematics and the dynamics of free-floatsygstems. Each

barycentricvector isfixed on one of theN+1 bodies ofthe system, movingvith it, and has a



constant lengthvhich can be computednce. Thesd@wo properties simplify thekinematic and
dynamic modeling of free-floatingystems. Boththe Jacobian and theertia matrix of a free-
floating system can be expressed compactly and explicitly in terms of the barycentric vectors, [15].
The body 0 in Figure 1 represerttse spacecraft and thmdies k (k=1,...,N) represetite N
manipulator links. Manipulatojoint angles andrelocities arerepresented by the {4 column
vectorsq andq . The spacecraft can translate and rotateegponse tananipulator motions.
Finally, the manipulator isassumed tohave revolutejoints and an open-chairkinematic
configuration so that aystemwith an N Degree-of-FreedontDOF) manipulatorwill have 6+N

DOF.

To deriveJ’, we must writer gandw c as functions othe links and spacecraitertial angular
velocitiesw; (i=0,...,N) and ultimately of the joint ratgs. From Figure 1, itan beseenthat the

vector from the inertially fixed origin O to k body’s center of m&l), R ,, is given by:
Rk = Lcm+ﬂk k:O1"'1N (2)

wherer .. andp , are defined irFigure 1. The end-poinposition \ector, I, can be derived

C
fromR  as:
T Lem*tBNnT N (3)
Thep | vectors are defined uniquely by the free-floataygtem configuratiomnd,thus, they

can beexpressed as sums the weightedpody-fixedvectors| ;, andr ; (i=0,...,N), defined in

Figure 1. Indeed, from Figure 1 we have the following N equations in N+1 unknowns:
Pk-Pr1= "1y k=1,..N (4)
Since thep | vectors are defined with respect to the systit holds that:

N
> MP =0 ()
k=0

where m) is the mass of body k. Equations (4) andad) be solved fop_, as a function ofr_

andl_,, yielding:



k N
Pr=2 Wl b - 3 (g -1i) () k=0,...N 6)

i=1 i=k+1

wherey; represents the mass distribution defined by:
0 i=0

[

(7)

1
o

(0 I
<[E]
I

1 = N+1

M is the total system mas$£quation(6) can be simplifiecusingthe notion of a barycenteBC)

[12,13]. The barycenter location for tﬂ?ab'ody with respect it€M is defined by thdody fixed

vector ¢ ; shown in Figure 2 and given by:
Ci= Lim+r; (T4 1=0,...N (8)
The barycenter of théhibody can be founedquivalently byadding a poinmassequal to My,
to joint i, and a poinmassequal toM(1-y,,,) to jointi+1, forming anaugmented body12,13].

The barycenter is then the centemudiss ofthe augmentetody as shown in Figure 2. Figure 2

also shows a set bbdy-fixedvectors which are defined by:

Li =-C; (9a)
r=r-cy (9b)
1i=1,-c, (9c)

Using Equations (9), Equation (8) can be rewritten as:

Mp ID + M@, r; + mc; = 0(10)

It can be shown then that Equation (6) can be written in a compact and general form as:



Mz

P, =S v, k=0,...N (11)

0

where the barycentric vectovs, are given by the following selection law, [15]:

O i<k
v, = Lc] i=k[] (12)
Ui ek

Equation (11) reveals an interesting characteristic of space manipulators, namelypbattithre of
the center of mass of link k in inertial space depends on the positdinlioks, including theones
afterlink k as well as on thposition ofthebase. This is to be contrastedh the case of earth-
bound manipulatore/here theposition of a link depends otie positions ofthe previouslinks

only.

Since eaclv ;, is defined by vectors fixed in body i which rotates with angular velaxifyand

because we assume that the manipulator has no prismatic joints, the time deriv@atjyésaimply

given by:
N
P =D @WixVy k=0,..,N (13)
Differentiating Equations (3) and combining the results with Equation (13) yiedd®llowing
expression for the end-effector inertial velogity:

N
fe=1r "'Zw'xliN“LwarN (14)

For this system the linear momentum vector with respect to the @rigin

N .
R = |vchm = Z mkEk (15)
k=0



In the absence of external forces, and assuming zero @fifiakelocity, p is zero. Therr

is zero andr__ is constant. We can assuthat r__ is zero withoutloss ofgenerality, which is

cm

equivalent to choosing the inertial origid, to be at th&€M. Consequently:
N 1
Zw XV Nt @ Xy ) WV gy (16)
i=0

WhereliN' is equal tov_;, for all i,k except fonLNN', for which it is given bENNl:lNN +1 \
The end-effector inertial angulgelocity required to findJ", see Equatiorfl), is the inertial
velocity of the last body in the chain given by:
We =Wy (17)
The inertial angulavelocity w j of the fh body can be written as function of therelative

angular velocity of body i with respect to body i-1 (the joint velocity of joint i), cgliéd, as:

i
W)= Wot ) W j=1..N (18)

Equations (16), (17) and (18glate theend-effector linear and angulaelocities in inertial

coordinatest_ ¢ and @ . to the controlledrelative angularvelocitiesgi'i1 and to the spacecraft

inertial angularvelocity, w . Althoughw , is uncontrolled, it can béound as a function of the

controlled joint rates bysingthe principle of the angular momentum conservation. Sjstem

angular momentum vector with respect to the inertial origin is given by:

N
h =rwp + Z {Lyw+mp,=p,} (19)
k=0
wherel , is the inertia dyadic of body With respect to its center ofiass. Since we assumed an
initial zero linear momentum vectgr, the first term in the right side of Equati(it®) isidentically

equal to zero and the angular momentum with respedtitoequal to the angular momentuvith



respect to the syste@M, h .. UsingEquations (11) and (13fquation(19) can be written as,

[15]:
N
_cm Z Z Z gljk (20)
j=0 i=0 k=0
where:
Qljk = |j Jk + rrk{(_lk —Jk) 1 -leV } i,j, k: 0,...,N

(21)

The dyadicD jj are functions of the distribution of inertia throuthie system andhre formed

from the barycentric vectoss ;. The terms,;, §; are Kronecker deltas.

It can be shown that the angular momentum given by Equation (20) can be written as [15]:

N N
=2 2 bjrw, (22)

j=0i=0
withgij derived from Equation (21) with the help of Equation (10) and given by:

PM{(G -1 i<j

D, = EI_. zmk{( ket Vi) Lo Vi Vi i:j|;| (23)

—-M{m}-l_?u-ﬁ; 1} > =

wherel is the unit dyadic [15]. In the absence of external torquesytem angulamomentum

is constant. We further assume ttating free-floatingoperation, thesystemmomentum is zero.
If momentum accumulates, tigstemmay be able to continue operatifay a limited period of
time, [15]. In practice, thepacecraft’sattitude controkystemwould be turned on and perform a
momentum dump maneuver in order to eliminate @rgumulated momentufi5]. Equation(22)
cannot be further integrated (with the exception of N=1) and must be carried along. Edqdé)ions

(17), (18) and (22)re sufficient to describe the motion of the end-effectanéntial space as a



function of a free-floating systemjsint angularvelocities, one inwhich theposition andattitude
of the spacecraft is not controlled.

The above vector fanulation is independent of specific frames of referenééowever, to
construct the system Jacobidn Equations (16), (17)18) and (22) must be expressedhiatrix
form. For this purpose we assuraé manipulator jointsrevolute; a reference frameith axes
parallel to eactbody’s principal axes isttached to each center mfss.The body inertia matrix
expressed in this frame is diagonal. Bold lower case symbols repcesgnt vectors,bold upper
case matrices. Riglsuperscripts must baterpreted aswith respecto,” left as“expressed in

frame.” A missing left superscript implies a column vector expressed in the inertial frame.

The column vector‘ivik expressed in frame i are transformed in the inertial frame as follows:

Ty = To i (24a)

<
x~
I

oT. v, (24b)

=<
=
1

whereT;, is a transformation matrix that is given by:

T.(&n .. q) = Toe M°T, (@ 9) (25a)

T, (g, Q) = °Ay(ay)-. A () (25h)

Note thaf"lAi(qi) transforms a column vector expressed in frame i to a coluntor wedrame i-1

and is a function of theelativejoint angle of thewo frames, g The inertia matriceB;; can be
expressed in the spacecraft frame according to the following equation:

0Dij =To' D To ij=1,..,N (26)
The 33 transformation matriX , can be computed using the Euler parametarsi n [16]

Tyen) = (F-e'e)1+2ee’ +2 e (27)

e(a 0) = asin(©/2) (28a)



n(a 6) = cosP/2) (28b)

wherea is the unit vector of the instant axis about which the spacecratft is rtdatadangle6, the

T superscriptlenotes transposition, and theuperscript denotes a skew-symmetniatrix that is

formed from are according to:

1° ¢80
=1 0 €[] (29)
Dey e, OD

1is the 33 identity matrix.

The scalar form of Equation (19) can now be written as:

]
0 _ Or iy, ¢
W = W) + W, —‘*’o+ToZ T, 'u;q, (303)

i=1

Wy + TR q ji=1,...N (30b)

whereiui is the unit column vector in frame i parallel to the revolute axis through joint‘?F]aimIa

3xN matrix given by:
o = [°T,"u, T, %0, 0T lu, 0] j=1,..N (31)
where0 is a ¥*(N-j) zero element matrix, and:
q = [ql,qz,...,q,...,q\l]T (32)

Using Equations (25) through (32), Equations (16), (17) and (22) yield:

To{ %93, %@y +%3,q } (33a)

Ne

Wz = To{ %wy+ 93,6 } (33b)

= %D %y, + °D, ¢ (33c)



N N
%3y, = 2 T, Vin T 03, = 2 [°T; Vi T °F, 03,, = °Fy (34a)
i=0 i=1
0 AN 0 AT 0 S o 0
D=y %D (=0....N) D=} %, D= Y D%, (34b)
i=0 i=0 =1

The termODij (1,j=0,...,N) representiertia matrices, derivedccording to Equation (23); these are

expressed in the spacecraft frame. Equations (33a) and (34} tied fact that the motion of the
end-effector is the vector sum of two partialocities. The first iglue to the motion of thmints,
the second to the resulting motion of the spacecraft caused by dynamic coupling. HgGajion
expresseshe conservation of angular momentur‘h]11 Is a skew-symmetric X8 matrix whose
elementscorrespond tathe vectorfrom the systemCM to the end-effectorexpressed in the
spacecraft frame(.’J12 is a ¥N matrix whose N columns are the componentseators starting at
the manipulator joints and ending at the end-effector. Aloitig 0322' they correspond to the
Jacobian of the end-effect¥iirtual Manipulator,with the firstlink fixed. (This isequivalent to a
fixed attitude spacecraftfDis the 3 inertia matrix of thavhole system expressed the space-

craft frame at thsystemCM , while 0Dq iIs a &N matrix andcorresponds tdhe inertia of the
system’s moving parts. All the matrices in Equati(8¥a-b) depend othe system configuration

g, only.
Equation (33c)can beused to elimiate the spacecra#ingularvelocity Ocoo from Equations
(33a-b), and hence to derive the free-floating system Jacdbidefined in Equation (1) as:

0 0n-10 0
diadT,,To) O
U

0 (35a)

J (&na) 0n-10 0
-°D Dq+ Joo 0

diag(T,, T,) %37 () (35b)



0 0nh-10 0
-9, %D %D + 93,5

\ 12
%3%(q) = 0 0 (35¢)

0n-10 0
0D 10 +93,,1]
BothJ" and®" are &N matrices. Notehat if N is equal to six, thed™ is squareand, if not

singular, can be inverted. Note also td'ralg(To,To) is always non-singular, becaugg is always

non-singular. If N is lesthan six, it isnot possible to follow angiven end-effector trajectory
while, if N is greater than six, the manipulator is redundant and a generaireese technique can

be used. We will assume in the rest of the paper that N is equal to six (no redundancy) unless it is

otherwise noted. W’ is going to be used for planning, must be updated dse systemmoves.

The neweand n are computed according to Equation (36) given below, see [16]:

e = 1/2[e+nl] ‘w, (36a)

= -1/2¢€" %, (36b)

: -
|

IIl. DYNAMIC SINGULARITIES
Now we have shown a systematic and efficigay of constructing the Jacobiah that relates the
motion of the end-effector as a function of tmanipulator's controlled rateg in spite of the
uncontrolled motions of thepacecraftand revealed the &mbian’s explicit structure. Wewill
addressthe importantquestion ofwhen theJacobian becomes singular. This is important for
control and physical reasons, since neaflyplanning algorithms asvell as allresolved rate or
acceleration control algorithms need to inertgiven by Equation (35). Also the systdacobian,
for a manipulator position, must bmvertible or of full rank in orderphysically to movehe
manipulator end-effector in all directions at that point in space.

Singularities occufor fixed-base non-redundant manipulatatsen end-effectorelocity due
to the motion of one joint is parallel to tkelocity due to the motion ofome other joint. Asuch
points, at least one degree of freedom is lost and the rank of the manipulator Jhecebaduced,

accordingly becoming singular. Singular poifas fixed-base manipulatorsccur at workspace



boundaries or when there is alignment of joint axes. Given the kinematic structumawipalator,
we canfind all its singular configurations by solvinipe equation dei (q)]=0. The literature
usually describes singular points in terms of fixed-base manipulator workspace positions instead of
singular configurations or of singularities time joint space because at asiggular set ofjoint
anglesq,, therecorresponds a singulaoint in thesix DOF workspace. The obvious benefit is
that the manipulator path planner or controller cardésigned tcavoid these workspace points.
Singularities of fixed-base manipulators &ieemati¢ because it is sufficient to analyze the
kinematic structur@f the manipulator in order to identify them.

The singularities off” for a free-floating space systeare obtained by examining Equation

(35). First, it can beseenthat the term:liadTO,TO) is alwayssquare andnvertible. Thus, any

singular points of" are due to singular points & () which can be found from the condition:
detJ"(q)] = 0 (37)

Equation(37) proves thaall singularities ardunctions ofthe manipulatoconfigurationwith
respect to itsspacecraft, namely to the joianglesq, not to the spacecraft attitude. These
singularities correspond to singular points in the manipulgtrisspace

However, singular points in joint space cannot be mapped into unique pdinésviorkspace.
To show this, note first that due to Equations (3), (11), (24) and (25), the pogiteord orientation

T of themanipulator's end-effector is a function of bdtte joint anglesy and the spacecraft

attitudeg,n:

N
re= Pytry= Toen Y °Ti (A 4) 'viy (38a)
i=0

Te@n, g, q) = T n)°Ty Gy G) (38b)

If we are given thdocation and orientation of the end-effector, Equati(®8) cannot be
inverted to yield the manipulator’s angles, even when N=6, unlike in fixed-based manipulators. The

reason for this is that the spacecstfitude isnot a function of the joint angles; it is a function of



the path of the manipulator in inertial or joint space, [8,11,T5lis path dependence is due to the
non-integrability of the angular momentum of the systengiaan by Equation (33c), see also
[11,15]. A result of this property is that if the end-effectiurns to itgnitial inertial location and
orientation after having followed a closed path in inertial spacespeecraft’orientation and the
manipulator’s configuration will be different than tim#ial ones,[6,11]. Hence, eaclpoint in the
manipulator workspace can be reacheith infinite system configurationg) and spacecraft
attitudes ¢n). Therefore, an end-effector location in the workspace casirfggilar or not
depending on whether the manipulator reaches this location in a singular configyrafidnus the
free-floating manipulator singularities in the workspace areqegitbndent

In addition,®J"(q) in Equation (35c) depends on bdite kinematicand mass properties ex-

pressed by the submatricds, and®J,,, and on the inertia distribution dfie manipulator and the

spacecraftsee Equations (23) and (34). Aeted earlierall ODiJ- matrices ardunctions of the

system configuration and, hence, this distribution is configuration dependent. As aargssin-
gular configurations cannot be predicted by examiningitmiematicstructure of the manipulator
alone. Since the singularities af depend on thesystem’sdynamic parametersts mass and
inertia properties, we call thedynamic singularities

The dynamic singularities of a free-floating manipulator space manipslgtemcan be ex-

plained physically by noting that the end-effector velodit)é, [wE]T, given byEquation (33), is the

vectorial sum of a part that depends on the motion of the joints, expresgeaiy to a parnvhich

corresponds to the reaction of the spacecraft, expressed by the dependent angulaqwoelo“ﬂitg

magnitude of this second part dependgharelative magnitude of the manipulator and spacecraft

inertias as expressed by the matrl?jét':1 and°D, respectively, see Equation (33cJhe larger®D

is, the smaller the effect of the dynamic coupling between the manipulator and its spacedkaft
in the case ofixed-based systemd, becomes singularhen the end-effectarelocity [f e (;.)E]T

due to the motion gfust one jointangle, is parallel to thend-effectorvelocity due to some other
joint angle. However, due to the couplingoetween the manipulataand its spacecraft, the

configuration atwhich this happens is different frotte onethat would be predictetfom the



kinematic structure of the system alone.atlition, singular configurations depend tre relative
size of the inertias of theystem. Ifthe mass andnertia of the vehicle becomesery large,
approximating a fixed-base manipulator, then all the dynamic terms in Eq(&&ipvanish and)”
reduces to the fixed-base manipulator Jacobadmle the dynamic singularities reduce to the
ordinary kinematic singularities.

The conclusion of this analysis is that if the spacecraft of a space manipulator system is not ac-
tively controlled but is free-floating, then dynamic singularities can oc@lr.resolved rate or
resolved acceleration control schemes will fail because at these points, Equation (35) has no inverse.
Control schemes that compute the desired joirues by using a transposed Jacobwdinfail to
keep the desired end-effectmlocity because dynamic singularities represent an inhetgrsical
limitation. The manipulator will move with a velocity that is the projection of the degledity on

the allowed direction: the result may be large end-effector errors.

IV. A PLANAR EXAMPLE
Considerthe simple planar free-floating space manipulagstem shown in Figure 3. The

system parameters are given in Table I. As shown in the Appendix, the system Jacobian is:

gcos@) -sin®)d

Jea =0 03" (q) (39a)
sin®) cos@)Ul

1 [] -(Bs;+ys1,)Dg Bs;D5-ys (Dot D) ]
@) =5 U L] (39b)
EIO‘(Dl+[)2)"’([301"'\/(:12)Do '(O‘+Bcl)D2+V012(Do+D1)D
whereb, g, and g, are defined irFigure 3, $ = sin(q), ¢, = cos(g+q,) etc. The inertia scalar
sums D, 3, D; andD,, are defined in the Appendix, see Equation (A13),caﬁd’rg =0.426 mf3
=1, =0.894 m, ang=%c, + r, = 0.968 m. Since each P(i=0,1,2) and D aréunctions ofq,

the Jacobian elements are more complichtadtions ofthe q than their fixed-base counterparts.

This Jacobian should be compared to the fixed-base manipulator Jatelbigh is given by:



D-(|1+I’1)Sl-(| 2+r2)312

J() =

-(try)s;, 0
2 '2 12D

O [l
O +rpe +(trp)c,  (Ih+rp)c,, 0

The same structure betwe&nor °J°(q) andJ(q) can be seen.

Table I. The system parameters.

Body ) M | MED |1 (kgD
0 5 5 40 6.667
1 5 5 4 0.333
2 5 5 3 0.250

(40)

In order to invertl” given by Equation (38), thex2 matrix,%J"(q), must benverted. First its

determinant becomes zero when:
aBD(dy,a,)sin(ay)+BYDy(dy,ay)sin(y)-ayD 4 (d,,d,)sin(g,+0,) = 0 (41)

The values of gand g which satisfy Equation(41) and result in dynamically singular

configurations can be plotted in joint spaceshswn in Figure 4. This Figure also shothat
conventional kinematic singularities like =k, q,=km, k=0,£1,... still satisfy Equation(41).
However, infinitely more dynamically singular configurations exist which cannot be prefimted

the kinematic structure of the manipulator.

Figure 3 showsthe manipulator in thesingular configuration at 1Gf-65°, q2:-11.41°:

spacecraft attitude 8t40". This figure also shows thenly availabledirectionfor the end-effector

motion. The inertial motion of the end-effectortliis configuratiorwill be the shown, no matter
how the joint actuators are driven. Tiest a control algorithroan do is to follow theavailable
direction. All algorithms thause a Jacobiaimverse,such asthe resolved rate or resolved accel-
eration control algorithms, fail auch a point. Onesthat use apseudoinverse Jacobian or a
Jacobian transposeill likely follow the available directionbut may result in large urseverable

errors.



To demonstrate this problem, the manipulator end-point is commanded to reach the workspace
point (1.5,1.5) starting frorthe initial location of (2,0Wwith initial attitude 8equal to 2i using a
simple Transposed Jacobian Contralgorithm, augmented by welocity feedback term for
increased stability margind7]. This control algorithmassumeghat the end-effectomertial
position andvelocity, x andx , can be calculated oneasured directly. Assumingandx are

measured, the control law is:

T= I { K, (XgesX) -KgX } (42)

wherex ¢ is the inertialdesired point location. The matricﬁ% andK, are diagonal.Note that

this algorithm specifies the desired end-effector location; the path of the end-effector to this desired
location is not specified indvance. If theontrol gains are large enough, then the motion of the
end-point will be a straight line. The torque veatsr non-zero untithe .. - X) andx are zero
or until the vector in the brackets in Equation (42) is in the null spaté.of

Figure 5 shows the motion of the end-effector fromitiiteal location atpoint A (2,0), towards
the final location at point D (1.5,1.5). The control gain matric:esK:?,reE diag(5,5) anK, =
diag(15,15). Initially the end-effector path irstially almost astraight line. However,once the
manipulator assumes a dynamically singular configuration at pointFgyure 5,the end-effector
cannotmovetowards its desired position; rathemibvesalong theavailabledirection converging
finally to point C, for whichX,..- X) is in the null space of 7. Any further motion beyond C is
impossible. Figure 6 shows the time history of the spacecraft attitude and manipulator joint angles.
The system reaches dynamically singular configuration in about €econds andhereafter
oscillates about singular configurations until it finally converges to point C. Note thgaian
algorithm using a Jacobian inverse would fail at a location like point B.

Finally, it is interesting to note that when bothand |, approach infinity,J” approache$, the
Jacobian derived for the same manipulator on a fixed-base, withguthange in matrix size. To
show this notehat if the spacecraft imassive,3 - 1,+r;, y-1,+r,, approaching the manipulator

link lengths, M -1, m/M -0, m/M -0, Dy/D-1, D,;/D-0 and B/D-0. T, becomes a



constant transformation frotte manipulatobase frame tdhe inertial frame,usually theunit

matrix.

V. SPACE MANIPULATOR WORKSPACES

Space manipulators have more complex workspace characteristics than fixed-base manipulators, as
shown by usinghe concept of the Virtua¥lanipulator. Vafa describes @&onstrainedworkspace,

one where all points can be reached if the attitude of the spacecraft is corfitdlledt its position

[5]. This workspace is a sphere with its center at the systekt’s However, itcan beshownthat

if the attitude isnot controlled, asfor a free-floating system, thepoints in this spacean still

always be reached by a suitable path selection [15]. For this reason we prefer to call this workspace
thereachableworkspace. What follows below shows that the nature of this workspaslatex to

a system’s dynamic singularities.

We haveproven already that aystem’sdynamic singularities are a unique function of the
configuration and that their occurrence at a particular inertial workspace location is path dependent.
Here we are interested in finding regions in the reachable workspabém dynamic singularities
will never occur.

Recall that dynamically singular configurations caridaend fromEquation(37). Its solution

represents damily of hypersurfacest,i (i=1,2,...) in the manipulatojoint space These
hypersurfacesare collections ofpoints g that result in dynamically singular configurations.

Further notethat thetransformation matrix' , does nothange the length of eector; hence, the

distance R of the end-effector location from the systdarcan be written using Equation (38) as a

function of the system’s configuratignonly:

N
R=R@ =3 Ty @ @) vin |l (43)

i=0
The symbollHldenotes a vector’s length. Equation (43) also defines a spherical sheltial

spacewith its center at th&€M andwith a radius R. Hence, easingular configuratiorg, is

mapped according to Equati¢h3) to aspherical shell in inertiadpace. By the santeken, each



hypersurfac€) ; is mapped according to Equation (43) teoume contained within the spherical

shells with radii:

Rmini = mMin R@) (i=1,2,...) (44a)
0 s
Ryaxi = Max R(@) (=1,2,...) (44b)

—Xsi

All workspace points that belong in thislume can beingular if theyare reached in singular
configurationsg.. As shown edier, this may happen or not depending on the path taken by the
manipulator's end-effector. there is more than one singular hypersurfaces, then dhenamore
suchvolumes containingointsthat can lead tgingular configurations. We cathe union of all
these volumes Rath Dependent Workspace (PDW)he Path Dependent Workspace contains all
reachable workspace locations that may be reachsigualar configurations, dependingon the
path taken by the end-effector. It followsat locations in thé®DW can be reached witbome
paths but not with others; this justifies their name. In ordeedaohpoints belonging tahe PDW,
carefully selected paths must be employed.

Subtracting th&DW from the reachable workspace results inRhth IndependentVorkspace
(PIW). Due to itsconstruction, this workspace region contatigeachablevorkspace locations
thatwill neverlead to dynamicallgingular configurations. It followthat all points inthe Path
Independent Workspaaan be reached by amath, assming that this path lies entirely in the
PIW. It can be shown that tiR#W is a subset of thieee workspaceefined byVafa[15,5]. PIW
or PDW spacesnay reduce to zero depending on the casecle&r goalfor the designer is to
reduce théDWand increase thelW.

The construction of theIW andPDW workspaces is demonstrated using the sy#tastrated
in Figure 3. The distance R of the end-effecfoom the systemCM given by Equation(43) is

written as:

R=R@) = \/ a®+ B2 +y* + 2aBcos(q) + 2aycos(g+dy) + 2Bycos(q) (45)



For this example, there are two hypersurfa@gsvhich arelines in the joint spacgsee Figure

4), and are found according to Equation (41). Each of these lines corresponds to pamaddfyg

which are substituted in Equation (45). Then, the conditions in Equations (44a-b) result in two Path

Dependent Workspaces, constrained by (R R, ) and (R, » Ryax 2 respectively:

Rmin.1 = 0.352 m =o+B-y (46a)
Rmax 1= 0.554 m (46b)
Rmin2 = 1.436 m (47a)
Rmax,2 = 2.288 m =0+B+y (47b)

The PIW is thenfound by subtractinghe two PDW regions defined ave from the reachable
workspace, se€igure 7. Ingeneral, thePIW is smaller than the free workspace defined in
Reference [5]. When the end-effector pa#is points belonging tine PDW, such agpath AB in
Figure 7,the manipulator may assume a dynamicsihgular configuration because points in the
PDWTregion can be dynamically singular, depending on the path. On thehatitkpathstotally
within thePIW region, such as path DE, can never lead to dynamically singular configurations.
To carry further theexample of the previous paragraph, note that in d¢kample, the
commanded path was precisely path AB, shown in Figure 7. Since this path belond3hi\fhe
singularity occurred and point B, the final destination, could not be reachedhieomitial point A.
However,the inability to reach point Bom point Awith a straightline pathdoes notmean that
point B is not reachable from point A. To show this, consider the path ACB, as shown in Figure 7.
The end-effector is commandedrtmve topoint C (1,0). It reaches this pomith the following
configuration8=39.6, q,=-134.2, q,=134.4. Next, theend-effector is commanded to follow the
square path around pointf@ approximately @imes, clockwise. Thseide of this square is .4m.
After this motion endsthe configuration of thesystem changes t6=73.63, q1:-160.95°,

q2:117.3£i. The end-effector is next commanded to move to point B in a straight line and finally, it



arrives at point B, without any difficulty and witv21.29, g,=7.57, q,=41.90. It must be noted

thatthis result is not saitive at all to thenumber of rotations around C or to the location of C
itself, as far as this is in tHdW so as to avoid dynamic singularities. The efficient construction of

paths to reach points in tRDW:is still an open area of research.

VI. REDUCING THE EFFECT OF DYNAMIC SINGULARITIES
Maximizing thePIW clearly reduces thempact of dynamicgingularities on aystem’seffective-
ness. Thigan be achieved by recalling tlthtnamic singularities occur because the spacecratt is
free to rotate as a result of manipulator motions, see Equation (33). If the spaticiddtis kept
constantgy, is zero, and the only singular poirstiee due to th&inematic singularities; theIW is
maximum[15]. However,this method requirethe active control of the spacecraft attitugehich
can increase system complexity and cost and reduce the system’s useful life.

The PIW canalso bemaximizedusing manipulator redundancy. the manipulator is at a
singular configuration, the redundant degrees of freedom may be used to achieve the necessary end-

effector velocity. This is an area which requires additional research.

If the spacecraft is made to be massive compared to the manipiyated,D, become large.
For example, it can beeen from Equatiod1) that if |, approachesnfinity, the only singular

configurations are thkinematicones ( ¢ = +0’, +180). This meanghat if the inertia of the

spacecratft isnfinite, then no dynamic singularities occur and B&V is equal to the maximum
workspace. Although it is desirable in most casewdke the spacecraft as light as possibtea
number of reasons, such @sinchweight, asystem’sdesigner hashe freedom to increase the
system’sinertia keepingts mass constant. Such a desigould result in an increase in the
system’sPIW.

Finally, for the case where the manipulator acts iplane, it can beshown that if the

manipulator is mounted at ttepacecraft'scenter of mass, th@IW is equal to the reachable

workspace and theDWis eliminated [14,15]. For thexamplediscussed irBectionlV, if Org or

a are zero, the only singular configuration that exists is, aggal to kt (k=0,£1,...), see Equation



(41). This is &inematicsingularity and corresponds tiee reachable workspat®undaries. If
Org ora approach zero, thethe twocircles that define th€IW, shown in Figure 7, approach the
reachable workspace boundaries, see Equafi)shence the dynamic singularities becoless
important. In some cases ritay be posble to use combinations dhe various techniques
discussed. Foexample, asystemmay bedesigned tdiave alarge moment of inertia about one

axis while the manipulator arm is mounted near the spac€dvaft the other two dimensions.

V. CONCLUSIONS

A general formulation describing the motion of a space maniputggiem is presented. The
system Jacobian is derived for a free-floating systdmre spacecrafiosition andattitude are not
controlled. This Jacobianan besingular in configurationghat are distinctfrom the usual
kinematically singular configurations: a free-floating manipulator system exhibits singularities due
to the dynamic couplingetween linkmotions and the spacecraft. These singularitiescated
dynamic singularitieand can be a serious problem &lrplanning and control algorithrikat do

not assume active control of spacecraft attitude. Consequently, their eftesttbe considered in

the design of such systems.

Additionally, a workspace point may Isengular or not depending dhe end-effector path
used toreach this point. Thus a manipulator'seachable workspace @vided in tworegions. In
the first, called &ath Independent Workspace, no dynamic singulagaesoccur; in the second,
called a Path Dependent Workspace, dynamic singularities may occur depending on tileepath
by the end-effector in thieertial space. Some notior@se presentethat may help in maximizing

the Path Independent Workspace.
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APPENDIX A

The planar two link system shown in Figure 3 assutme$wo coordinates of the end-effector,

x and y, are controlled by the/o manipulator joint angles,;ndq, End-effector orientation is

not controlled for this two DOF system (N=2), hence Equation (1) for this system is simply:

. . d T x
X =reg=g Xyl =3 q (A1)
with:
x=rg=[xy]" (A2)
q=1[q,ql" (A3)

while J° given by Equation (35), becomes:

J(0,0) =To(6) 3" (@) =T,[-%3;,°D™ D +°,] (Ad)

wheref denotes the spacecraft attitude, as shown in Figurerdthisexample, théransformation

matrix from the spacecraft frame to the inertial frafipgjs given by:

[€0sP) -Sin(B)E

T,(6) = Rot@®) :E

_ O (A5)
[skin(®) cos@)U

Only the planarsub-part of the transformation matrices igsed for simplicity. The

transformation matrices ; are found according to Equation (25):

oT, = Rot(q)

T, = Rot(q,) Rot(c) (A6)

The following demonstrates the construction of slggteminertia matrix. The matrices in

Equation (A4) are assembled bsst expressingall v, in Equation(12) in the frame of the'l

body, according to Equatiorfg)-(9). Forthe sake of simplicity we assumkat allr;, andl; are



parallel to the x axis of th&frame. Hence, only the x-component of the barycentric vei(sA;Qr'Es

non-zero and given by:

o _ L

o = ™ foMo
0, 1

Co = - M fo(mgtm,)

or* 1

lo = - WM fo(mgtmy) - g

1% 1

=™ {rl(mo+ml)+llm0}
10 _ 1

¢; = w(mgrimy)

1pr _ L

L =-™ {Il(m1+m2)+r1m2}
2 * 1

r, = W h(mgtmy) +1,
2 1

C, = W l(mgtmy)

1
o _ L
l = - LMy (A7)

where the total mass of the system, M, is given by:

M= mg+m +m, (A8)

For the planar case, the inertia matrﬁ%corresponding to Equation (3) reduce to the scalars
%, and are given by:
mg(my+m,)

04 _ oV 172
doo = lo*+ M "o

Mol
%0 = M {ll(ml+m2) + r1m2} cos(q) =%y,



o, _ MMy 0
dyo = "M folocos(q+a,) = "dy,

| m0m1|2 mm, momzI 5
R vl Pt vl s v (PR 69

%

m;m, MMy,
Odzl = { M Mt ™™ I2(I1+r1)} cos(g) =0d12

m2(m0+m1)
%,, = 1, + M 1,7 (A9)

Both 'ui (i=1,2) vectors in Equation (17) are equal to [0 0 e F, matrices reduce to:

Ok, = [1 0]
Ok, = [1 1] (A10)
For simplicity, set:
o = B=1r] y=2%c, +1, (A11)

Then the matrices in Equation (34) are given by:

O -Bs,- O O0-Bs,-ys -Ys,, O
. l31V512D . _Dﬁlylz V12DO Y
Jip1 =0 [ Ji2=0 0 J22= P (A12)
Oa+Bc,+yc,, [ UBcy+yc,,  yc,, U
2
D, =D;=) % (=0,1,2), °D =D=D,+D,+D, °D, = [D,+D, D, (A13)

i=0
where § = sin(q), ¢;, = cos(q+d,) etc. Finally, thesystem Jacobiad” is assembled from

Equations (A4) and (A7)-(A13) and given as Equation (38).
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Figure 3 A planar free-floating manipulator system shown in a dynamically singular configuration.
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