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Abstract
In this work we develop a novel method, or mechanism, of energy transfer in a quadruped running robot.
The robot possesses only one actuator per leg, for lower weight and greater power autonomy. The developed
mechanism ensures correct dispersion of energy to the actuated and the unactuated degrees of freedom of
the robot for stable running. In the mechanism design, we address the added problem of running on inclined
ground. In conjunction with a pitch control method, the energy transfer mechanism forms a complete control
algorithm. Due to the novel dynamics-based design of the mechanism, it allows the arbitrary setting of the
motion forward speed and apex height. Further, it may be applied for different robot physical parameters
and ground inclines, without extensive controller tuning. This has not been previously possible using only
one actuator per leg. Simulations of a detailed three-dimensional model of the robot demonstrate the mech-
anism on two different robots. The simulations take into account many real-world characteristics, including
realistic leg models, energy loss due to feet collisions, foot–ground friction and energy losses in the joints.
Results demonstrate that inclines of up to 20◦ are properly negotiated.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2010
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1. Introduction

Biomimetic robots have drawn intense research interest over recent years. A key
field of interest is that of quadruped biomimetic legged locomotion. It is well known
that animals posses a large number of muscles with which to actuate their limbs
and generate stable locomotion. In robotics, on the other hand, the potential for
using a large number of actuators is always restricted by considerations of power
autonomy and robot weight. Therefore, one of the challenges in legged robots is
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how to produce stable, controllable gaits using as few actuators as possible. The
quadruped robot designs to date use varying numbers of actuators per leg, from
three per leg for the Tekken and BigDog robots, to just one actuator per leg in
the case of the Scout II robot [1–3]. The control approaches used for quadruped
robots are also varied, and include PD-type control, adaptive and also fuzzy control
methods [4–6].

Although using one actuator per robot leg results in a more complex control
problem, due to fewer controllable inputs, it also implies that a robot of lower
cost, less weight and simpler mechanical design can be achieved. To date, although
quadruped robots with just one actuator per leg have run successfully, the associ-
ated control algorithms have not been derived from the robot dynamics, and have
required trial-and-error estimation of key control parameters. A direct result of this
is that the controller requires specific tuning for every different speed of forward
motion, as well as for any change in the robot’s physical parameters or the ground
parameters. Therefore, there is a need for a method of control that is derived from
the dynamics of the robot. Such a dynamics-based approach could be applied to ro-
bots with varied physical parameters, for various ground inclines, and would allow
the arbitrary setting of the forward speed and hopping height of the motion, without
retuning of the control parameters. This has not yet been possible with previous
control approaches using a single actuator per leg.

In this paper we focus on such a dynamics-based approach through the devel-
opment of an energy transfer mechanism (ETM) that ensures the proper regulation
of energy transfer between the unactuated and actuated degrees of freedom for a
quadruped robot with one actuator per leg, shown in Fig. 1a. The ETM is based
only on robot dynamics, and requires the feedback of only limb lengths and angles.
Further, as more legged systems rely on electric motors for actuation, the ETM
is designed to incorporate the effect of motor rotor inertia on the dynamics. Due
to the speed reductions used with electric motors this effect is significant and is
generally not studied in the control of legged systems. In conjunction with a pitch
control algorithm, the ETM can be used to achieve stable running gaits with arbi-
trary desired forward speeds and apex heights, on level or inclined ground. A case

(a) (b)

Figure 1. (a) Quadruped robot, with four springy legs and one actuator per leg, located at the hip.
(b) Two-dimensional robot model, on an incline.
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study, showing that the required torque of steady-state running becomes almost zero
on a suitable downhill slope, demonstrates that the ETM utilizes the robot internal
dynamics well, since it displays an almost passive gait that is characteristic of semi-
passive walkers. The paper begins with a presentation of the robot dynamics, which
is followed by the development of the ETM. Results are shown that demonstrate
the validity of the ETM on inclined ground, a case study of semipassive motion
is presented, and the ability to regulate the robot forward speed and attained apex
height to desired values is demonstrated.

2. Robot Model and Dynamics

Consider the quadruped robot depicted in Fig. 1a. The robot has four legs, each of
which has a rotary hip joint that is actuated and a prismatic joint that is unactuated,
but has a passive spring. As the mechanism of energy transfer involves the vertical
and forward modes of motion, we use a two-dimensional (2-D) model of the robot
to perform our analysis (Fig. 1b).

The 2-D model captures the relevant dynamic characteristics of the robot in the
plane of its forward motion. The model is shown in Fig. 1b on a slope of known
incline α, which may be either positive (uphill) or negative (downhill). The body
has mass mb and inertia I with respect to the body center of mass; also see Table 1
for parameters used. Each leg is actuated by a torque at the hip. The body forms an
angle θ with respect to the incline.

We focus on the pronking gait as it is symmetric in the third dimension and can
be well represented in two dimensions. In the ideal pronking gait the back legs
of the robot are in phase, as are the front legs, and the back and front pairs move
parallel to one another. The ideal pronking gait has only two discrete phases — the
flight phase when the robot is in the air and the stance phase when all the legs are
on the ground. In practice, there are usually short phases where only some legs are
on the ground.

Table 1.
Variables and indices used in the work

Symbol Definition Symbol Definition

mb robot body mass x horizontal position of body CoM
k leg spring stiffness y vertical position of body CoM
I inertia of robot body θ pitch angle of body
L leg rest length li leg length of leg i

d half the hip spacing γi leg angle from vertical, of leg i

b leg viscous friction coefficient td (as index) value at leg touchdown
im inertia of motor rotor ẋdes desired forward speed
Tst Duration of the stance phase hdes desired apex height during flight
τ constant torque applied during stance γsum sum of leg angles
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The dynamics for the robot model of Fig. 1b are found using a Lagrangian ap-
proach, using the robot body center of mass (CoM) Cartesian coordinates x, y and
pitch, θ , as generalized variables. The Cartesian coordinates are taken with refer-
ence to the sloped ground. For this reason, in the remainder of the paper we refer to
the vertical direction as meaning the direction perpendicular to the sloped ground
and the forward direction as the direction parallel to the sloped ground. We write
the dynamics for the case where both robot legs are on the ground, as this is the
only stance phase in the ideal pronking gait. We do not write the dynamics for the
flight phase, as in flight the model is simply a freely falling three-link mechanism,
for which the angular momentum is conserved.

The full dynamics for the stance phase are given in the Appendix, taking into
account that the effect of the leg inertial properties is negligible during the stance
phase, compared to the body inertia effect. As can be seen in the Appendix, the
inclusion of the motor rotor inertia im introduces extra terms in the mass matrix. By
making small angle trigonometric assumptions for the leg angles and body pitch
angle, and because the ratio of the magnified rotor inertia imn2 over the body mass
mb is small, the mass matrix assumes a diagonal form. Additionally, the rotor inertia
introduces several terms on the right hand side of the dynamics, which are neglected
as they are small compared to the much stronger spring force terms, viscous friction
terms and actuator terms. Therefore, the dynamics in the Appendix become:(

mb + imn2
(

1

l2
b

+ 1

l2
f

))
ẍ + k(L − lb) sinγb

+ k(L − lf) sinγf − bl̇b sinγb − bl̇f sinγf

= −mgx − τb cosγb

lb
− τf cosγf

lf
(1)

mbÿ − k(L − lb) cosγb − k(L − lf) cosγf + bl̇b cosγb + bl̇f cosγf

= −mgy − τb sinγb

lb
− τf sinγf

lf
(2)

(I + imn2)θ̈ + dk(L − lb) cos(γb − θ) − dk(L − lf) cos(γf − θ)

− dbl̇b cos(γb − θ) + dbl̇f cos(γf − θ)

= (dτb sin(γb − θ) − lb)

lb
− (dτf sin(γf − θ) − lf)

lf
, (3)

where n is the speed reduction of each motor, gx and gy are the components of
the gravity vector g, parallel and perpendicular to the sloped ground of angle α

(Fig. 1b). The incline α changes the effective gravity to gy in (2) and also introduces
gx in (1), which causes a constant disturbance to the forward dynamics. The incline
angle α is positive for uphill ground. The components gx and gy are given by:

gx = g sinα, gy = g cosα. (4)
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The three equations (1)–(3) each represent the dynamics of a particular mode of the
robot motion. Equation (1) refers to the robot forward motion mode, while (2) and
(3) represent the vertical and pitching motion modes, respectively.

3. ETM

3.1. Problem Statement and Approach

Using only one actuator per leg at each hip allows a simple robot design, but it
also introduces the problem of how energy can be transferred from the actuated hip
degree degree of freedom to the unactuated prismatic leg degree of freedom that
contains the passive spring. In Ref. [8], the problem has been engaged for the case of
a one-leg hopping robot. This transfer of energy is necessary to sustain the vertical
oscillation of the body CoM during a running gait, since energy is lost in running
due to collisions and friction. This necessity is also apparent from the dynamics in
(1)–(3), where it can be seen that there are strong torque inputs available only in the
forward and pitching dynamics, as shown in (1) and (3), respectively. The vertical
dynamics in (2), on the other hand, show the torque actuator input to be multiplied
by the sine of each leg angle (Fig. 1b). Since the legs generally perform small
motions around the zero angle, this means that the actuator input to the vertical
dynamics will be weak and will often vanish. For this reason, the torque inputs
cannot be used to implement the transfer of energy to the vertical dynamics and a
different method must be used. In particular, since we are examining the general
case where the robot is on a slope, we must also consider the effect of the gravity
potential field that adds or removes system energy according to the incline.

To be able to analytically derive the ETM from the robot dynamics, we use some
hypotheses, which we clearly lay out below.

H1 The contribution of the dissipation forces in stance phase forward dynamics,
see (1), is negligible.

H2 To predict the change in forward speed during a stance phase, the behavior of
the springy legs in stance is approximated by the simple mass–spring model.
The mass is equal to the robot mass and the spring constant is equal to the sum
of the robots leg spring constants:

mb l̈b = 2k(L − lb) − mbgy. (5)

H3 In the stance dynamics, the leg lengths lb and lf are considered equal to the leg
rest length L, for terms that involve the input torques τb and τf.

H4 In the pronk the back and front legs are almost parallel, so the difference in
angles is small.

H5 For reasonable speeds, the leg angles and body pitch angle are small enough
for trigonometric small angle simplifications.
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For the derivation of the ETM, we study each robot motion mode separately, i.e.,
vertical, forward and pitching modes. First, we identify the control inputs to the
system. These are the leg touchdown angles, γb,td and γf,td, and also the actuator
torque applied at the back and front hips, τb and τf, respectively. In practice, the
two leg touchdown angles are not directly controlled in the physical robot, but rather
they provide the desired touchdown angles of the individual legs, which are servoed
during flight. We determine beforehand that the torque applied by the back and front
hip actuators will be constant during stance and equal at the back and front legs:

τb = τf = τ = const. (in stance). (6)

Therefore, the actuator torques in stance provide only the single input τ . As a result,
the three control inputs to the robot are the leg touchdown angle inputs, γb,td and
γf,td, and the constant torque, τ , applied in stance. Also, for a gait of speed ẋ, the
leg angle evolution through stance is as predicted by Raibert [9]:

γi = γi,td − ẋ

L
t, (7)

where i = b, f, γi,td is the leg touchdown angle and time t starts at leg touchdown.

3.2. Derivation of ETM

First, it should be stated that the ETM involves two of the robot motion modes, i.e.,
forward and vertical modes, but not the pitching mode and subsequently the pitch-
ing motion is not studied here. The pitching mode motion, in gaits like pronking
and trotting, is desired to be very limited and does not participate in the mechanism
of energy transfer between actuated and unactuated degrees of freedom. However,
pitching must be controlled for the gait to be stable and to this end we refer to our
previous work [10]. In Ref. [10], we use the difference of the leg touchdown angles,
γdif,td, to control the robot pitching motion, and although in Ref. [10] the inertia of
the motor rotors is not considered and the study is for level ground, it is possible to
apply a similar approach for the control of the pitching motion, and this is what we
use in the testing of Section 4.

To bring the dynamics into a form suitable for the derivation of the ETM mech-
anism, we start from the dynamics laid out in (1)–(3). We write the leg lengths as
functions of y, θ , γb and γf (Fig. 1b), and we make use of H1, H3, H4, H5 and (7).
Finally, we also take into account that the torque applied during the stance phase is
equal at the back and front legs and constant, according to (6). After some algebraic
manipulation and making use of simple trigonometric properties, this results in the
dynamics of (1)–(3) taking on the form:

(
mb + 2imn2

L2

)
ẍ + 2kγb(L − lb) = −2

τ

L
− mbgx (8)

mbÿ + 2bẏ + 2ky = −mbgy + 2kL cos

(
γsum,td

2
− ẋt

L

)
cos

(
γdif,td

2

)
(9)
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(I + 2imn2)θ̈ + 2d2bθ̇ + 2d2kθ

= −2τ + 2kL sin

(
γsum,td

2
− ẋt

L

)
sin

(
γdif,td

2

)
, (10)

where γsum,td is the sum of the leg touchdown angles and γdif,td is the difference
of the leg touchdown angles. Also, for more compact mathematics, we define the
quantities mbx , mbθ as:

mbx = mb + 2imn2

L2
, mbθ = I + 2imn2. (11)

Observing the simpler form of the dynamics in (8)–(10), it is interesting to re-
cap on the energy transfer problem. As mentioned above, the actuator input to the
dynamics is strong in the forward and pitching motions, and absent in the vertical
motion mode. On the other hand, the vertical dynamics includes strong viscous fric-
tion terms, which will erode the robot oscillation. Therefore, the ETM is needed to
pump energy into the vertical dynamics, whilst also ensuring that the robot achieves
a desired forward speed and a desired apex height during flight.

According to H4, the effect of γdif,td, on the vertical dynamics in (9) will be very
limited, due to the cosine. As a result, focusing only on the forward and vertical
dynamics, we have:

mbxẍ + 2kγb(L − lb) = −2
τ

L
− mgx (12)

mbÿ + 2bẏ + 2ky = −mbgy + 2kL cos

(
γsum,td

2
− ẋt

L

)
. (13)

Energy can easily be added to the forward dynamics by using the actuator torque.
An important difference between this model and others, such as Raibert’s earlier
approach, is that the robot carries only one actuator per leg and therefore the ver-
tical mode of motion is completely unactuated. The challenge is to transfer energy
provided by the hip actuator torque to the vertical mode described by (13). To do
this, we first look at the vertical mode of motion and then we turn to the forward
mode.

To ensure that the energy associated with the vertical motion of the robot is
correct, it is necessary to determine a criterion according to which the energy will be
considered sufficient. We use the apex height that the robot reaches during the flight
phase to determine whether sufficient energy is present in the vertical dynamics. To
do this we consider a desired apex height, hdes, that is built into the ETM and can be
set by the robot user. Note that the apex height is not explicitly needed as feedback.

We can see that the vertical dynamics in (13) is represented by a driven oscillator.
The driving term does not contain the actuator torque τ , but rather the sum of the leg
touchdown angles γsum,td. Therefore, we use γsum,td as a control input to the vertical
dynamics. With some extensive algebra, it is possible, given the state of the robot
at a touchdown event, to solve the dynamics in (13) and compute the required sum
of the leg touchdown angles, such that the vertical velocity of the robot body at
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liftoff has a desired value ẏlo. Being able to determine the vertical velocity at liftoff
is equivalent to being able to determine the apex height the robot will reach during
flight, as in flight the robot CoM executes a ballistic motion. After some algebra,
the sum of the leg touchdown angles may be computed as a function of the robot
state at the previous liftoff and this provides the first ETM equation:

γsum,td = f (ẋdes, hdes, robot parameters, state of the robot at liftoff). (14)

The state of the robot at liftoff is computed by using feedback from leg lengths and
angles, and their corresponding velocities, as well as the pitch and pitch velocity.
Of these, the leg lengths and angles are straightforward to measure, while a high-
bandwidth method for measuring pitch is presented in Ref. [11].

Equation (14) uses the sum of the leg touchdown angles to regulate the energy
inserted into the vertical dynamics. If more energy is required in the vertical degree
of freedom, then γsum,td will be increased. Essentially this forces a more aggressive
angle of attack for the leg upon touchdown, which causes greater compression of
the spring due to the forward motion of the robot. Therefore, energy is taken from
the forward motion, stored in the spring and then released upon liftoff, where it
translates into the attained apex height.

Since the ETM makes use of the robot’s forward energy to pump energy into
the vertical degree of freedom, it is now necessary to regulate the energy associ-
ated with the forward motion of the robot. Otherwise the robot would progressively
accelerate or decelerate in an uncontrolled fashion, resulting in failure of the gait.
Equation (12) shows that the forward dynamics involve the constant torque applied
during stance, τ . We use this torque input to bring the forward speed of the robot at
touchdown to the desired forward velocity, by the liftoff event. To do this, we first
express the forward velocity of the robot at liftoff as a function of the touchdown
forward velocity. This can be accomplished by using H4, according to which the
sum of the touchdown angles γsum,td in the pronking gait is equal to twice one of
γb,td, γf,td. Also, utilizing (7), and integrating (12) once, the forward speed ẋi+1
after stance can be computed, given the speed before stance, ẋi , as a function of the
control inputs γsum,td, τ :

ẋi+1 = −k

∫ Tst

0

1

mbx

(
γsum,td − 2

ẋdest

L

)
(L − lb)dt − 2

mbxL
τTst + ẋi . (15)

As can be seen, the forward speed of the robot at liftoff can be controlled by select-
ing the constant torque τ applied during the stance phase. From (15), using H2 and
having computed γsum,td from (14), we can find the second equation of the ETM
that provides the torque τ to be applied during stance:

τ = f (ẋdes, hdes, γsum,td, robot parameters, state of robot at liftoff). (16)

Overall, the ETM provides the inputs γsum,td and τ , from (14) and (16), while the
pitching control from Ref. [10] provides the input γdif,td. As a result, we know both
individual leg touchdown angles, γb,td and γf,td, and the constant torque, τ , that
must be applied by the hip actuators during stance.
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4. Results

In this section we evaluate the performance of the ETM for pronking on sloped
ground of various inclines. As explained in the previous section, the ETM is used
in conjunction with the pitch control method from Ref. [10]. In this way the ro-
bot can be controlled to a desired forward speed with a desired apex height. To
begin each motion the robot always starts from an initial height with zero forward
speed. The exact height the robot starts from is not critical and as can be seen from
the simulation results the robot can overcome considerable deviations of the initial
conditions from the desired steady state gait.

For the purpose of testing the ETM in realistic conditions, the ETM is applied to
a full robot model, which is much more complex than the model of Section 2 and
includes many real-world characteristics. It is clear that the model simulated takes
into account many factors that are not included in the model used for the design
of the ETM. A typical example is the fact that the simulated model uses discrete
masses for all main parts of the robot, whereas the model used for the ETM design
has only the body mass. Essentially, applying the ETM to the simulated model also
tests its performance in the case of modeling error and parametric uncertainty, as
would be the case when applying the control to a real robot. The full model includes
a detailed leg model, with each leg being comprised of three discrete parts, that
all have realistic mass. Also, a Coulomb friction model is included that simulates
slipping of the robot foot on the ground, if slipping conditions are met. The impacts
of the feet are modeled as plastic collisions. The actuators are considered to be
electric DC motors, coupled with planetary gearheads, and a proper motor model
is included based on the specific motor torque-speed characteristic and maximum
allowable currents, taking data from Ref. [12]. A similar type of approach has been
shown to successfully predict the behavior of the Scout II robot [13]. We make use
of two variations of the full robot model with different values for key parameters,
i.e. robots A and B (Table 2).

The DC motors used are from Maxon motors — motor RE30 for robot A and the
stronger motor RE35 for the heavier robot B. In the results, note that negative ac-
tuator torques represent torques that accelerate the robot forwards, when in stance.
Simulations are performed using the ADAMS software.

4.1. Evaluation of ETM on Sloped Ground

The ETM is first applied to robot A (Table 2), for pronking up a 10◦ hill. The
response is shown in Fig. 2.

In Fig. 2a, the forward speed of the robot is shown to follow the desired speed
trajectory very well. It is important to note that the target value for the forward speed
is the forward speed during the flight phase of the robot. During the stance phases
there is a natural deceleration due to the leg spring compression. Therefore, the
robot forward speed should coincide with the desired speed trajectory only during
each flight phase, i.e. at the largest forward velocity value during each cycle of
motion. This is indeed seen to be the case in Fig. 2a. In Fig. 2b, the apex height



972 N. Cherouvim, E. Papadopoulos / Advanced Robotics 24 (2010) 963–978

Table 2.
Parameters of the two robots used for testing

Parameter Units Robot A Robot B

Robot body mass, mb kg 8 12
Leg mass, for each leg kg 0.4 0.4
Leg spring stiffness, k N/m 3500 5000
Leg rest length, L m 0.3 0.3
Hip spacing, 2d m 0.5 0.4
Leg viscous friction coefficient, b Ns/m 2.5 5.0
Inertia of DC motor rotor, im g cm2 33.3 72.0
Torque constant of DC motor Nm/A 0.0292 0.0525
Gear reduction, n — 51 51
Coulomb static friction coefficient — 2.0 2.0
Coulomb kinetic friction coefficient — 0.8 0.8

(a) (b)

(c) (d)

Figure 2. Robot A running on a 10◦ uphill incline: (a) robot forward speed and desired speed trajec-
tory, (b) body height attained at each apex and desired value (continuous line), (c) torque applied at
the back left motor, and (d) pitching of the robot body.

attained by the robot is shown. The small deviation from the desired value is due to
the additional complexity of the simulated model compared to the model used for
the ETM design. The torque applied by the back left motor during stance is shown
in Fig. 2c, and it can be seen that the values are within reasonable limits. Finally,
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Figure 3. Robot A running on an uphill slope of 5◦ in ADAMS simulation software. The trajectory of
the body CoM is shown.

(a) (b)

Figure 4. Robot A on −10◦ incline: (a) forward speed and desired speed trajectory (continuous line),
and (b) body height at the apex of each flight phase and the desired height trajectory (continuous line).

the pitch angle of the robot body is shown in Fig. 2d, which is controlled to small
values. Additionally, in Fig. 3, the simulation in ADAMS in shown for robot A
running up a 5◦ hill.

A downhill case is also presented using robot A, for a slope of −10◦. The re-
sponse is shown in Fig. 4, although the pitch and torque graphs are omitted for
space economy. As in the uphill case, the forward speed trajectory is followed well
(Fig. 4a). In Fig. 4b, the apex height of the robot is shown to follow a desired tra-
jectory.

Finally, the second robot, robot B is made to run up a 5◦ hill and the response
is shown in Fig. 5. In this case also, both the forward speed and the apex height
attained during flight are successfully made to follow desired trajectories (Fig. 5a
and 5b). As mentionded above in the first example, the forward speed of the robot
being mainly below the desired trajectory is expected and not a control performance
error. The key parameters of robots A and B are very different, and yet the ETM is
directly applied to both and performs equally well.

4.2. Effect of Slopes on ETM Inputs

The ETM is completely implemented using the inputs of the sum of the leg touch-
down angles, γsum,td, and the constant torque applied during stance, τ . It is inter-
esting to study how different inclines affect the ETM inputs and how this imposes
limits on the motion of a given robot. First, we examine the behavior of the con-
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(a) (b)

Figure 5. Robot B running up a 5◦ hill: (a) robot forward speed and desired speed trajectory, and
(b) body height attained at each apex and desired trajectory.

(a) (b) (c)

Figure 6. (a) Magnitude of torque applied during the stance phase, for robot A, for various ground
inclines α. The data is shown using circles. The arrow shows the required torque with the minimum
magnitude for an incline of −6◦. (b) Torque applied during stance on a slope of −6◦. (c) Sum of the
leg angles at touchdown for various inclines α. The data is shown using circles. The dashed lines show
limits of 40◦.

stant torque τ for different slope inclines. We consider robot A (Table 2). We run
the robot with a constant desired forward speed equal to 0.55 m/s, and a constant
apex height of 0.32 m. The robot is always left to run for 25 cycles, so that it may
enter the steady state. In Fig. 6a, the magnitude of the actuator torque applied dur-
ing stance is shown, where some distribution of the stance torque is apparent over a
range of torque values, for each specific incline angle α. This distribution represents
the robot’s transient response before it reaches steady state. The concentrated values
of torque represent the steady-state torques applied during stance. Figure 6a shows
the torque magnitude, where the torques will be braking for the extreme downhill
inclines and propulsive for the steep uphill slopes. It is evident from Fig. 6a that
running downhill can be equally demanding in torque as uphill running. Given the
maximum actuator torque, it is possible to find the steepest slopes, for both uphill
and downhill, that the robot could negotiate.
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In Fig. 6a there exists a torque minimum at about 6◦ of downhill slope and it
is interesting that this minimum is close to the zero value. This means that in this
case the control consumes much less energy during stance, during the steady-state
motion. During flight, of course, regular PD control torques position the legs to
their touchdown angles. The fact, however, that the minimum torque point is close
to zero is an indication that the ETM utilizes the passive dynamics of the robot
well. Essentially, the ETM transfers the energy gained from the robot mass moving
through the gravitational potential to the dissipative elements of the system, which
are the prismatic joints with viscous leg friction and the collisions of the feet with
the ground. This has been observed extensively in passive or semipassive systems,
such as passive walkers that may walk down a slope with no actuation at all or a one-
legged model that hops with very small effort [14–16]. To date, we are not aware of
a previous method for achieving a semipassive run on a quadruped robot, especially
with as many sources of losses and using only one actuator per leg. This result is
verified by running the particular robot on a downhill slope of 6◦ and observing the
actuator torque that is shown in Fig. 6b.

Now, we examine how the second control input, the sum of the touchdown angles
γsum,td, varies with the ground incline. For the same setup as used for Fig. 6a, the
control input γsum,td is plotted versus the incline in Fig. 6c. The required sum of
the touchdown angles increases as the angle of the ground increases. This result
imposes a limit on the steepest slope that the robot can negotiate both in the uphill
and the downhill case, due to the possibility of slipping. Larger leg touchdown
angles, either positive or negative, are more prone to lead to slipping of the feet.
Although the condition for slipping is a function of the applied torque and the leg
angles, it is often more practical to simply limit the robot leg touchdown angles. If
such a limit for γsum,td was found to be 40◦ off vertical, then according to Fig. 6c
the robot could run on inclines between −25 and +10◦.

5. Conclusions

An ETM was presented that is capable of regulating the energy through the ro-
bot degrees of freedom, such that both the forward speed and the apex height of a
quadruped robot pronking on sloped ground can be controlled, using only one ac-
tuator per robot leg. It was seen that slopes of up to 20◦ could be negotiated, both
uphill and downhill. The mechanism was demonstrated to perform well in detailed
simulations that included many real-world characteristics, such as leg mass, foot
slipping, DC motor models, etc. The problem of pronking on inclined ground was
also studied parametrically. From the parametric study of how the incline influenced
the required control inputs, the ETM was shown to be making good use of the robot
passive dynamics. Finally, the study also uncovered limiting factors, with regard to
the applied torque and the leg touchdown angles, that should be considered when
running on inclined terrain.
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Appendix

The dynamics of the planar model shown in Fig. 1b, including the effect of the rotor
inertia of the motors and for the stance phase when both the robot legs are on the
ground, have the form:

M[ ẍ ÿ θ̈ ]T = f, (A.1)

where the mass matrix M is a 3 × 3 symmetric matrix, with elements:

m11 = mb + imn2
(

cos2 γb

l2
b

+ cos2 γf

l2
f

)

m12 = imn2
(

cosγb sinγb

l2
b

+ cosγf sinγf

l2
f

)

m13 = imn2
(

cosγb(lb − d sin(γb − θ))

l2
b

+ cosγf(lf − d sin(γf − θ))

l2
f

)

m22 = mb + imn2
(

sin2 γb

l2
b

+ sin2 γf

l2
f

)

m23 = imn2
(

sinγb(lb − d sin(γb − θ))

l2
b

+ sinγf(lf − d sin(γf − θ))

l2
f

)

m33 = I + imn2
(

(lb − d sin(γb − θ))2

l2
b

+ (lf − d sin(γf − θ))2

l2
f

)

and

m21 = m12, m31 = m13, m32 = m23.

The right-hand side of the dynamics is f = [f1 f2 f3]T, where:

f1 = −k(L − lb) sinγb − k(L − lf) sinγf + bl̇b sinγb

+ bl̇f sinγf − mgx − τb cosγb

lb
− τf cosγf

lf

+ imn2 cosγb(d cos(γb − θ)θ̇2 + 2l̇bγ̇b)

l2
b

+ imn2 cosγf(2l̇fγ̇f − d cos(γf − θ)θ̇2)

l2
f

f2 = k(L − lb) cosγb + k(L − lf) cosγf − bl̇b cosγb

− bl̇f cosγf − mgy − τb sinγb

lb
− τf sinγf

lf

+ imn2 sinγb(d cos(γb − θ)θ̇2 + 2l̇bγ̇b)

l2
b
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+ imn2 sinγf(2l̇fγ̇f − d cos(γf − θ)θ̇2)

l2
f

f3 = −dk(L − lb) cos(γb − θ) + dk(L − lf) cos(γf − θ)

+ dbl̇b cos(γb − θ) − dbl̇f cos(γf − θ)

+ (dτb sin(γb − θ) − lb)

lb

+ imn2(lb − d sin(γb − θ))(d cos(γb − θ)θ̇2 + 2l̇bγ̇b)

l2
b

− (dτf sin(γf − θ) − lf)

lf

− imn2(lf + d sin(γf − θ))(d cos(γf − θ)θ̇2 − 2l̇fγ̇f)

l2
f

.
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