
 
 

  

Abstract— Free–floating space manipulator systems, have 
their thrusters turned off and exhibit nonholonomic behavior 
due to angular momentum conservation. Here, the initial 
system angular momentum is not assumed to be zero and 
therefore the manipulator end effector cannot remain in a 
position for indefinite time. The system kinematics and 
dynamics constraints are studied yielding a subset of a system’s 
reachable workspace where the end effector can remain 
indefinitely. The application of the methodology is illustrated 
using an example. To demonstrate the concept, an experimental 
space robot simulator was developed and its mechatronics 
aspects are presented briefly. 

I. INTRODUCTION 

Robotic manipulators are already playing an important role 
in planetary exploration and in tasks on orbit because of 
their ability to act in environments that are inaccessible or 
too risky for humans. On orbit robotic systems, or free–
flying space manipulator systems, include a thruster-
equipped satellite base with robotic manipulators mounted 
on it. An early example of such a system is the ETS–7 [1]. 
During manipulation or capture operations [2], it is desired 
to have the base thrusters turned off to avoid interactions 
with the target. In this case, the system operates in a free–
floating mode. In this mode, dynamic coupling exists 
between the manipulator and the base, and therefore 
manipulator motions induce disturbances to the system’s 
base. Since the thrusters are off, the spacecraft is permitted 
to translate and rotate in response to manipulator motions. 
This mode of operation is feasible only when no external 
forces and torques act on the system and when the initial 
momentum of the system is zero. However, during 
operations, small amounts of angular momentum tend to 
accumulate. In general, this momentum can be handled for a 
short period of time. If it increases above a limit, thruster jets 
must be turned on to reduce it. However, their extensive use 
limits a robotic system’s useful life span. Therefore, the 
ability to work on orbit under the presence of small amounts 
of angular momentum is important and is studied here. 

A free-floating space robot with initial angular 
momentum is an affine system with a drift term. This term is 
due to the angular momentum and complicates the path 
planning and control of such systems. To date, a limited 
number of studies have dealt with such systems. Matsuno 
and Saito have proposed an attitude point-to-point control 
law, considering a planar two–link space robot with initial 
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angular momentum, i.e. a typical example of a 3–state and 
2–input affine system with a drift term, [3]. Although the 
controller takes the system to the desired location, the 
system drifts away due to the non-zero angular momentum. 

Test facilities simulating a space-like environment have 
been developed in the USA, Europe and Japan. The MIT’s 
SPHERES project consists of three small satellites, each 
attached to a puck that hovers over a glass table using air-
bearings, and moves using thrusters [4]. Stanford 
University's Aerospace Robotics Laboratory also has built a 
planar simulator, where three active free-flying vehicles and 
one passive target vehicle hover over a granite table using 
air-bearings. The active vehicles are propelled by thrusters 
[5]. The University of Padova has developed a robot with an 
anthropomorphic manipulator that hovers over a small table 
using air-bearings, and moves using thrusters [6]. At Tokyo 
Institute of Technology, the simulator consists of a 6-DOF 
manipulator hovering over a flat floor using air-bearings [7]. 

In this paper, we study the effect of initial angular 
momentum on a free-floating space robot, see Fig. 1. We 
examine if workspace locations exist in which it is possible 
to have the system’s end-effector fixed, in the presence of 
non-zero angular momentum. This is important when the 
manipulator is engaged in a monitoring or maintenance task. 
In general, in the presence of angular momentum, the 
manipulator end effector cannot remain in a position for an 
indefinite time. The proposed method exploits the 
kinematics and dynamics constraints, which arise from the 
system’s dynamics, and allows the computation of such 
locations for a given system. The method is illustrated by an 
example. A successful deployment requires experimental 
task validation. With this aim, we present the main 
characteristics of the experimental space robot simulator 
developed at the National Technical University of Athens 
(NTUA), focusing at its mechatronics characteristics. 
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Fig. 1. A Free-floating Space Manipulator System consisting of a base and 

a manipulator. 
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II. DYNAMICS OF FREE-FLOATING SPACE MANIPULATORS 

A space manipulator system consists of a spacecraft and a 
manipulator mounted on it, see Fig. 1. When the system is 
operating in free-floating mode, the spacecraft’s attitude 
control system is turned off. In this mode, no external forces 
and torques act on the system, and hence the spacecraft 
translates and rotates in response to manipulator motions. 

This section develops briefly the equations of motion of 
a rigid free-floating system when the angular momentum is 
not zero. This can occur due to small collisions with the 
environment or due to the inaccurate on-off attitude 
controller. For simplicity, the manipulator is assumed to 
have revolute joints and an open chain kinematic 
configuration, so that, in a system with N  degree-of-
freedom (dof) manipulator, there will be N + 6  dof. 

Under the assumptions of absence of external forces, the 
system Center of Mass (CM) does not accelerate, and the 
system linear momentum, is constant. With the further 
assumption of zero initial linear momentum, the system CM 
remains fixed in inertial space, and the origin, O, can be 
chosen to be the system’s CM. For simplicity, we focus on a 
planar free-floating robotic system consisting of a two 
degree-of-freedom (dof) manipulator mounted on a 
spacecraft base, see Fig. 1. This system is also appropriate 
for the space robotics emulator described later in this paper. 
For this system, the conservation of angular momentum can 
be written as 

  D0 θ0 + D1θ1 + D2 θ2 = h0  (1) 

where θ0  is the spacecraft attitude, θ1 , θ2  are the 
manipulator absolute angles, see Fig. 1, and h0  is the initial 
angular momentum about the system CM, [8]. The 
coefficients D0 , D1  and D2  depend on system parameters, 
are functions of the manipulator joint angles 
q = q1, q2[ ]T

and are given in Appendix A. 
The end effector position is given by [8]: 

 xE =α cθ0
+β cθ1

+ γ cθ2
 (2a) 

 yE =α sθ0
+β sθ1

+γ sθ2
 (2b) 

where α,β,γ  are constant terms, functions of the system 
mass properties, see Appendix A, and cθi

= cosθi , 
sθi

= sinθi , i = 0,1,2 . The end effector linear velocity can be 
found by differentiating (2). 

The system kinetic energy is given by  

 T = 1

2
mi v i

T v i
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i=0

2

∑  (3) 

where v i  is the linear velocity of the CM of body i 
expressed in the spacecraft frame and given by, 

  v i = F1i (q)[θ0 , qT ]T , i = 0, 1, 2  (4) 

and ω i  and Ii are the angular velocity and the polar inertia 
of body i. The spacecraft angular velocity is  ω0 =θ0  and the 
angular velocities of the other bodies, expressed in the 
spacecraft frame are given by, 

  ω i = F2i (q)[θ0 , qT ]T , i =1, 2  (5) 

In Eqs. (4) – (5) F1i (q) , 2 ( )iF q  are matrices of appropriate 
dimensions. The potential energy due to gravity is zero and 

since the system is assumed to be rigid, the potential energy 
due to flexibility is also zero. Then, the system Lagrangian 
L  is equal to the kinetic energy of the system. Using Eqs. 
(3) – (5), one finally obtains to the following equation:  

  L(θ0 ,q,q)= (1 / 2)Dθ0
2 +θ0 Dq q+ (1 / 2)qT Dqq q  (6)  

where D , Dq , Dqq  are inertia-type matrices of appropriate 
dimensions which depend on configuration q  and are given 
in Appendix A. 

Note that L  is a function of the spacecraft angular 
velocity  θ0  and of q  and  q  only, since the D -terms are 
functions of the configuration q  and not of the spacecraft 
attitude θ0 . Then, the spacecraft attitude is an ignorable 
(cyclic) variable. The generalized momentum associated 
with this variable is: 

 

 
b = ∂L

∂θ0

= Dθ0 + Dq q= h0 = const  (7) 

In such case, one can construct a Routhian function 

 R q, q( )  of the system, given below [9]: 

  R(q, q)= L(θ0 ,q, q)−bθ0  (7) 

Substituting  θ0  by Eq. (1), as a function of q  and  q , the 
Routhian function takes the following form: 

 
 
R(q,q)= 1

2
qT H(q)q+ h0 D-1 Dq q− 1

2
h0

2 D-1  (9) 

where H(q)  is an 2 × 2  positive definite symmetric matrix, 
called the reduced system inertia matrix, equal to [8], 

 H(q)= Dqq −Dq
T D-1Dq  (10) 

Note that the second term of  R(q, q)  is linear in the joint 
velocities and that the third term depends only on the 
configuration q , hence, it acts like a potential. Applying 
Lagrange’s equations on  R(q,q) , the following equations of 
motion result, 

  τ = H(q)q+Ch (h0 ,q,q)q+ gh (h0 ,q)  (11) 

where τ = τ1,τ 2[ ]T
 is the manipulator torque vector, with τ i  

the torque applied to the i th  joint. The 2 × 2  matrix 

 Ch (h0 ,q,q)  is a function of the system angular momentum 
and contains the nonlinear Coriolis and centrifugal terms: 

 

 
Ch (h0 ,q,q)=C(q,q) + h0

∂
∂q

D-1 Dq
T{ }− ∂

∂q
D-1Dq{ }⎡

⎣
⎢

⎤
⎦
⎥  (12) 

where  C(q,q)  is the matrix of nonlinear Coriolis and 
centrifugal terms when the initial angular momentum is zero, 
[8]. The vector gh (h0 ,q)  is also a function of the system 
angular momentum, given by Eq. (13):  

 gh (h0 ,q)= 1

2
h0

2 ∂
∂q

D-1{ }  (13) 

The above methodology can be easily extended to a planar 
system consisting of a N dof manipulator. 

Eqs. (12) – (13) show that for planar systems, Ch  and 
gh  are independent of the spacecraft attitude and therefore 
the reduced dynamics are functions of  q ,  q  and q  only. 

III. WORKSPACE AND SPEED CONSTRAINTS 

In this section, we study the existence of points in the 
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robot’s reachable workspace where the end effector can 
remain indefinitely executing a task (e.g. satellite repair), in 
the presence of initial angular momentum. This is a quite 
demanding task, and in general it is an impossible one, when 
the angular momentum is non-zero. It is well known that in 
the absence of angular momentum, the end effector can 
remain at a point of the reachable workspace without the 
base being fixed. But the existence of angular momentum 
results to a system’s motion according to the conservation of 
the angular momentum. 

It is desired that the end effector location be fixed 
independently of the system’s configuration. Having fixed 
end effector orientation in addition to a fixed location, is 
trivial, and can be addressed by adding a massless zero-
length additional link. Therefore, we need to set,  

 (xE , yE )= const  (14) 

Starting with Eq. (2), the solution to the inverse 
kinematic problem is given by: 

 q1 = A tan2(sθ1
,cθ1

)−θ0  (15a) 

 q2 = A tan2(s2 ,c2 )  (15b) 

where, 

 c2 =
(xE −α cθ0

)2 + (yE −α sθ0
)2 −β 2 −γ 2

2β γ
 (16a)  

 s2 = ± 1− c2
2  (16b) 

 cθ1
=

(β +γ c2 )(xE −α cθ0
)+ γ s2 (yE −α sθ0

)

β 2 +γ 2 + 2β γ c2

 (17a) 
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where c2 = cosq2  and s2 = sinq2 . In Eq. (16b), the + 
corresponds to the elbow-down manipulator configuration, 
while the – corresponds to the elbow-up one. 

The inverse problem has a solution only if −1≤c2 ≤1 , or 

 (β −γ )2 ≤ r ≤ (β +γ )2  (18) 

where  

 r = xE
2 + yE

2 +α 2 −2α (xE cθ0
+ yE sθ0

)  (19) 

Note that the function xE cθ0
+ yE sθ0

 can be written as: 

 xE cθ0
+ yE sθ0

= xE yE⎡⎣ ⎤⎦
cθ0

sθ0

⎡
⎣⎢

⎤
⎦⎥
= xE

2 + yE
2 cϕ = rE cϕ  (20) 

where ϕ  is the angle between the two vectors appearing in 
Eq. (20), cϕ = cosϕ , and rE  is the distance between end 
effector and the system CM. 

The extremes of r  are: 

 rmin = rE
2 +α 2 −2α rE = (rE −α )2 ,   ϕ = 0  (21a) 

 rmax = rE
2 +α 2 + 2α rE = (rE +α )2 ,   ϕ =π  (21b) 

Inequality (18) is satisfied only when 

 rmin ≥ (β −γ )2 , rmax ≤ (β +γ )2  (22) 

Inequalities (22) yield two solutions. The first one is: 

 α + β −γ ≤ rE ≤β +γ −α  (23a) 

with α <min(β , γ ) .  
The second solution is: 

 ( , )Er min α β γ β γ α≤ − − + −  (23b) 

with β γ α β γ− < < + . Equations (23) indicate bounds for 
the end-effector location that satisfy (14) and stem from 
kinematic requirements. 

The above kinematic analysis is necessary but not 
sufficient. In addition, one must check that the dynamics 
constraint, i.e. the conservation of angular momentum is also 
satisfied. 

The angular momentum conservation must be satisfied in 
conjunction with Eq. (14).  Eq. (14) is equivalent to zero end 
effector linear velocity. The end effector linear velocity 
components can be obtained by differentiating Eqs. (2) with 
respect to time. Setting this velocity equal to zero, and 
writing it in matrix form along with Eq. (1), results in the 
following matrix equation, 

 
 
A (θ0 ,q1,q2 ) θ0 θ1 θ2

⎡
⎣

⎤
⎦

T

= h0 0 0⎡
⎣

⎤
⎦

T

 (24) 

where the zeros represent the zero linear velocity of end 
effector (i.e.  xE = 0, yE = 0 ) and 

 A(θ0 ,q1,q2 )=

D0 D1 D2

α cθ0
β cθ1

γ cθ2

α sθ0
β sθ1

γ sθ2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (25) 

Assuming that matrix A  is not singular, Eq. (24) yields, 

 

 
θ0 = β γ s2

S(q1,q2 )
h0  (26a) 

 

 
q1 =−α γ s12 +β γ s2

S(q1,q2 )
h0  (26b) 

 

 
q2 =α β s1 +α γ s12

S(q1,q2 )
h0  (26c) 

where s1 = sinq1 , s12 = sin(q1 + q2 )  and 

 S(q1,q2 )= det(A) =α β D2 s1 +β γ D0 s2 −α γ D1 s12  (27) 

Eqs. (26b)-(26c) allow one to plan joint motions so that the 
end effector remains fixed. The spacecraft angular velocity 
that will result is given by Eq. (26a). 

Note that the configuration rates in Eqs. (26) are 
proportional to the initial angular momentum and vanish 
when the momentum is zero, i.e. the system can always 
remain at fixed location without executing any motions 
when its angular momentum is zero. 

When A  is singular (i.e. S(q1,q2 )= 0 ), the 
configuration rates, given by Eqs. (26), increase to infinity 
and the end effector is displaced from its desired location. 
Equation S(q1,q2 )= 0  corresponds to a joint space surface. 
If this surface is mapped to the Cartesian space, then it 
defines circles with radii that depend on system parameters 
and define an area where the dynamics constraints are 
satisfied. Satisfaction of both the kinematics and dynamics 
constraints, yields the workspace part at which the end 
effector can remain indefinitely, despite the accumulated 
momentum. 
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IV. APPLICATION EXAMPLE 

To illustrate the methodology described above, a free-
floating space manipulator with the structure shown in Fig. 1 
is employed. The system parameters are given in Table I. 

 
TABLE I 

SYSTEM PARAMETERS 

Body li (m)  ri (m)  mi (Kg)  Ii (Kg ⋅ m2
)  

0 0.5 0.5 400 66.67 
1 1.0 1.0 40 3.33 
2 0.5 0.5 30 2.50 

 
The grey area in Fig. 2 represents the workspace area where 
kinematics and dynamics constraints are satisfied. Fig. 2 also 
shows snapshots of the motion of the free-floating space 
manipulator system for a desired end effector fixed position 
at xE = 1.5 m , yE = 1m . This point, according to Eq. (23a), 
is a feasible one and belongs to the grey area. The base 
initial orientation is θ0 (0)= 0o  and the initial angular 
momentum of the system is h0 = 0.5 Nms . The duration of 
motion is chosen to be t f = 2000 s , but could be arbitrary 
long. The system configuration is given by Eqs. (15), which 
yield [q1(0), q2 (0)]=[76o ,−125o ] . The initial configuration 
rate is given by Eqs. (26). For the above angular momentum, 
the initial angle rates are found to be  [θ0 (0), q1(0), q2 (0)]=  
[7.5,−9.1,−2.2]*10−3 rad / s . It can be seen that while the 

end effector remains at a fixed location, the base of the 
system rotates slowly and the manipulator executes an 
oscillatory motion in such a way so as to have the system’s 
angular momentum conserved. 

x (m)

y
(m

)

Initial Position

Final Position

 Desired 
Fixed Location

System CM

 

Fig. 2. Motion animation of space manipulator with h0 = 0.5Nms . 

The trajectories and the rates of the configuration 
variables are shown in Fig. 3(a), (b). It can be seen that all 
trajectories are smooth throughout the motion. The first joint 
angle increases with time, therefore a special joint design 
must be employed. The joint torques that correspond to the 
motion in Fig. 2 are computed using Eq. (11) and are 
displayed in Fig. 3(c). The required torques are small and 
smooth, guaranteeing motion feasibility. Note that the 
configuration rates are proportional to the system angular 

momentum, see Eqs. (26). Therefore, if the initial 
momentum is doubled (i.e. h0 =1Nms ), these rates will 
double, and the system will execute the same motion as 
before, but in the half time, as can be shown in Fig. 4(a), (b). 
However, the required joint torques, given by Eq.(11) will 
be larger, since the increase is not proportional to the 
increase in the angular momentum, see Fig. 4(c). This is due 
to the fact that the Ch terms are nonlinear functions of the 
joint rates. 
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Fig. 3. h0 = 0.5Nms : (a) Trajectories of spacecraft attitude and relative 

joint angles, (b) rates of spacecraft attitude and relative joint angles 

and (c) torques on manipulator forearm and upper arm.  
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Fig. 4. h0 = 1Nms : (a) Trajectories of spacecraft attitude and relative 

joint angles, (b) rates of spacecraft attitude and relative joint angles 

and (c) torques on manipulator forearm and upper arm. 

V. HARDWARE SPACE ROBOT EMULATOR 

At the NTUA, an experimental testbed was developed for 
motion studies in zero gravity. The hardware planar 
emulator consists of a granite table of negligible roughness, 
and a small robot supported by three airbearings, see Fig. 
5(a). The robot is capable of horizontal frictionless motion 
on the table, thus allowing for 2D emulation zero gravity in 
a laboratory environment. The robot is fully autonomous. Its 
propulsion autonomy is achieved by an on-board CO2 tank 
used to provide gas to the air bearings and to three couples 
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of propulsion thrusters. The robot is also equipped with a 
reaction wheel to control the robot’s angular momentum. 
The computational autonomy is achieved with a PC104 
mounted on the robot. Power autonomy is achieved with a 
set of on-board batteries. The novelty of this configuration is 
that the robot is not only of low mass and completely self-
contained but also it is composed of subsystems similar to 
those of a space system, therefore making the emulator 
significantly more realistic. The simulator provides a low-
cost, long duration, and easily reconfigurable platform that 
allows for the experimental validation of different control, 
dynamics, and planning schemes, facilitating the transition 
from analysis to application. Next, we describe the main 
characteristics of the emulator. 
 

 

(a) 

 

(b) 

 
(c) 

Fig. 5. (a) The robot floating over the granite table, (b) an image from the 

overhead camera, (c) robot and motion tracking cameras. 

A. Sensors 
Three different systems for measuring the position and 
orientation are used. Two of those will be permanently 
employed. 

(a) Camera: An overhead camera is located above the 
field of action of the robot for finding its position and 
orientation. To this end, three LEDs are mounted at the 
corners of a triangle, on top of the robot, and are tracked by 
the camera. Its images, see Fig. 5(b), are transmitted to an 
off-board computer, where a real-time image processing 
process determines robot position and orientation. This 
information is sent wirelessly via TCP/IP to the space 
robot’s processing unit.  

(b) Optical Sensors: The sensors are mounted next to the 
airbearings and employ optical flow techniques; by 

comparing successive photos of the granite surface, they 
measure the differential displacement at each sampling 
instant versus the position at the previous instant, and 
provide a local pair of displacements dx and dy. Two sensors 
with known distance among them, produce therefore four 
values per instant, and the three unknown parameters (x, y, 
and θ) can be calculated geometrically. Optical sensors have 
the advantages of having a very high sampling rate, compact 
size, excellent accuracy and low cost. Their main 
disadvantage is that the accumulation of error and sudden 
reading jumps. Therefore, this system is used in conjunction 
to the overhead camera, allowing for periodic resetting of 
the coordinates. 

(c) Motion Tracking System: The system consists of six 
high speed PhaseSpace cameras placed around the granite 
table, Fig. 5(c), one LED base station, two LED driver units 
and thirty active LED Markers mounted on the robot. Each 
LED emits in its own frequency, controlled by the base 
station and driver unit. The cameras recognize the position 
of each LED and send it to an off-board server, which 
determines the robot position and orientation in real-time 
and at a 1 mm accuracy. The system has the advantages of 
great accuracy and resolution independently of light 
conditions and sufficient capture space. Its main 
disadvantage is the high cost. It is used here to validate the 
accuracy of the previous two systems. 

(d) Other Sensors: A number of other sensors are used 
also. These include force, Hall, and voltage sensors and 
encoders. Force sensors are used to measure gripper-applied 
forces. Hall sensors on the manipulators, signal to the PC104 
the reach of the maximum joint angles. Voltage meters, and 
other proprioceptive sensors on the motherboard inform the 
user, a PIC microcontroller, and the PC104 of possible 
malfunctions, in order for emergency actions to be 
performed. Additionally, each motor is equipped with digital 
encoders that send joint angular positions to the PC104. 

 
B. Actuators 
(a) Thrusters: Propulsion is achieved by six CO2 thrusters, 
and a number of regulators that reduce the CO2 tank pressure 
to 7 bar. The electronic circuitry actuates 2-way on-off 
solenoid valves to control the thruster gas flow using Pulse 
Width Modulation (PWM), see Fig. 6(a). The use of PWM 
allows the development of thrust in a continuous range, 
using the on-off thruster technology, which is common in 
actual space applications. 

(b) Reaction Wheel: To reduce gas consumption, a 
reaction wheel providing torque around a vertical axis was 
designed and installed, see Fig. 6(b). The wheel was chosen 
due to the simple control algorithm, attitude fine-tuning 
capability, and best fit to the two-dimensional experiment. 
The wheel is actuated by a torque-controlled DC 
servomotor. 

(c) Robotic Arms: The robot has two two-dof 
manipulators, see Fig. 5(a), actuated by DC motors and 
commanded by the PC104. They have integrated gears for 
high torque output and are all installed on the main robot 
chassis. A sophisticated transmission design employing 
inextensible micro wires and pulleys enables the 
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independent motion of each link. Each manipulator is 
equipped with a DC servomotor-actuated and force sensing 
gripper for capturing of other objects. These grippers can be 
removed easily and so as to attach an alternative type of 
gripper or tool. 

  
 (a) (b) 

Fig. 6. (a) Thruster solenoid valves, (b) the reaction wheel. 

C. PC104 and RTOS 
An on-board PC104 computer, chosen for its high 
efficiency, robustness and low power requirements, is used 
for computational autonomy. The PC104 includes a CPU 
module (Intel Celeron 648MHz, 495MB RAM), two 
incremental encoder card modules, an analog output module, 
a wireless LAN module and a hard disk module. Each 
encoder card module is capable of handling up to three 
incremental 16-bit encoder inputs, has three 16-bit timers 
and 24 digital I/O lines. 

The analog output module has eight 12-bit analog output 
channels and 24 digital I/O lines. The CPU module includes 
a real time clock and all primary I/O functions (USB, 
parallel port, serial port, etc.). The PC104 is responsible for 
motor and thruster control, and reads sensors such as the 
optical sensors (via the USB port), and the overhead camera 
(via wireless Ethernet). The PC104 is running under a dual 
boot of Arch Linux 2.4.29 RTL and QNX 6.3.0; both 
operating systems have real time capabilities and the 
programming language of choice is C. 

Currently, this emulator is being used to experimentally 
verify the simulation results that were presented here. 

CONCLUSIONS 

In this paper, we studied the influence of initial angular 
momentum on the behavior of a free-floating space robot. 
We focused on the determination of locations of the robot’s 
reachable workspace where its end effector can remain 
executing a task (e.g. a satellite repair) indefinitely. The 
proposed method used the kinematics and dynamics 
constraints, which arise from system’s dynamics and allow 
the computation of such locations for various systems. The 
method was illustrated by an example. A successful 
deployment requires experimental task validation. With this 
aim, we presented the main characteristics of the hardware 
space robot simulator developed at the NTUA. The simulator 
is being used to verify experimentally the concept here. 
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APPENDIX A 

The D-terms are given below: 

 Dj = dij
i = 0

2

∑ ( j = 0,1,2)  (A1) 

 D = D0 + D1 + D2  (A2) 

 Dq = D1 + D2 D2
⎡
⎣

⎤
⎦  (A3) 

 Dqq =
d11 + 2d12 + d22 d12 + d22

d12 + d22 d22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (A4) 

 d00 = I0 + m0 (m1 + m2 )r0
2 / M  (A5) 

 d10 = m0 r0 (l1 (m1 + m2 )+ r1 m2 )c1 / M = d01  (A6) 

 d20 = m0 m2 r0 l2 c12 / M = d02  (A7) 

 d11 = I1 + (m0 m1 l1
2 + m1 m2 r1

2 + m0 m2 (l1 + r1 )2 ) / M  (A8) 

 d21 = m2 l2 (m1 r1 + m0 ( l1 + r1 )c2 ) / M = d12  (A9) 

 d22 = I2 + m2 (m0 + m1 )l2
2 / M  (A10) 

 M = m0 + m1 + m2  (A11) 

where c1 = cosq1 , c12 = cos(q1 + q2 ) . 
The α,β,γ  terms are given by: 

 α = m0 r0 / M  (A12) 

 0 1 1 0 1( ( )) /m l r m m Mβ = + +  (A13) 

 γ = r2 + (m0 + m1 )l2 / M  (A14) 
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