
Exploiting the SoC FPGA Capabilities in the Control Architecture of a
Quadruped Robot

Chrysostomos Karakasis1, Student Member, IEEE, Konstantinos Machairas3,4, Student Member, IEEE,

Charalampos Marantos2,Student Member, IEEE, Iosif S. Paraskevas3,

Evangelos Papadopoulos3, Fellow, IEEE and Dimitrios Soudris2, Member, IEEE

Abstract— The use of FPGAs in the field of robotics has the
potential to create interesting results considering the former’s
assets and the latter’s necessities. Motion control is highly
demanding both in resources and data, while the number of
sensors employed in robotic devices can be large. On the other
hand, FPGAs have gained a renowned place in the field of
digital circuit implementation media. Simultaneously, the vast
number of peripherals they are equipped with, renders them
as ideal for the management of multiple external signals. In
this paper, a highly affordable control architecture has been
implemented for the quadruped robot Laelaps II based on
a SoC FPGA, in order to examine the use of FPGAs in
demanding robotic applications. The proposed system has real-
time characteristics and is capable of controlling more than
eight actuators at very high frequencies, outperforming most
motion control platforms existing in the market, while keeping
the total cost low. To achieve this, signals from all the robots
peripherals are handled in parallel by the FPGA at a very
high frequency, leaving the embedded ARM processor free to
allocate all its resources to motion control and user interfacing
tasks. The whole hardware/ software architecture is analyzed
and evaluated compared with state-of-the-art approaches, while
a trotting experiment with the Laelaps II motion system is
presented for validation purposes.

I. INTRODUCTION

Although quadruped robots have evolved drastically over

the years, concurrently their requirements in motion control

have become highly demanding, both in resources and data,

whilst the number of sensors employed has been consider-

ably increased. As a result, researchers seek new solutions,

which can alleviate this computational burden, while offering

programming flexibility and sufficient computing power.

1Chrysostomos Karakasis was with the School of Electrical and Com-
puter Engineering, National Technical University of Athens (NTUA), Athens
Greece. He is now with the Department of Mechanical Engineering, Uni-
versity of Delaware, Newark, DE 19716, USA chryskar@udel.edu

2Charalampos Marantos and Dimitrios Soudris are with
the School of Electrical and Computer Engineering, National
Technical University of Athens (NTUA), Iroon Polytechneiou 9,
15780 Athens, Greece hmarantos@microlab.ntua.gr,
dsoudris@microlab.ntua.gr

3Konstantinos Machairas, Iosif S. Paraskevas and Evangelos Papadopou-
los are with the School of Mechanical Engineering, National Technical Uni-
versity of Athens (NTUA), Iroon Polytechneiou 9, 15780 Athens, Greece.
kmach@central.ntua.gr, isparas@mail.ntua.gr,
egpapado@central.ntua.gr

4Konstantantinos Machairas’ research has been funded by the “IKY
Fellowships of Excellence for Postgraduate Studies in Greece - Siemens
Programme in the framework of the Hellenic Republic - Siemens Settlement
Agreement.

Considering the requirements of quadruped robots and the

solutions up until now, there is a number of challenges and

open issues in designing them. First of all, the physical

dimensions and weight of the computing platforms are

crucial. Furthermore, there is an increasing need for low

cost, easily programmable and expandable solutions. Low

power consumption of the computational system is also a

key requirement that can significantly improve the power

autonomy of the robot.

In the past decade, an ascending tendency of implementing

Field-programmable Gate Array (FPGA) devices in robotic

applications has been observed [1], as they offer parallel

processing at a low cost, reconfigurability, while they have

provision for a vast number of peripherals. Specifically, fields

of interest include: parallel processing of multiple peripherals

for multi-node control [2], acceleration of Simultaneous

Localization and Mapping (SLAM) and visual odometry

algorithms [3], [4], as well as motion control [5], [6].

Furthermore, similar approaches have been recorded on

miniature quadruped robots. Chakravarthy and Xiao [7]

developed a novel FPGA-based control system for miniature

robots, where the FPGA is responsible for the generation

of Pulse-width Modulation (PWM) output and the counting

of quadrature encoder pulses, while an on-chip processor

executes a Proportional-Integral-Derivative (PID) control on

software. As a result, this is considered as a simplistic

approach that uses only a few of the capabilities that FPGAs

can offer. Similarly, Pan et al. [8] proposed a novel technical

solution for underwater robots design, where a Xilinx Zynq-

7000 All Programmable System on a Chip (SoC) was used to

integrate motor control, sensor management, data acquisition

and other functional units or circuits into a single chip

for the whole robot, utilizing instantiations of IP cores.

This solution targets again only miniature robots, while no

detailed information about the control algorithm designed are

given. On the other hand, notable implementations in con-

ventional quadrupeds exist, which mainly were developed on

FPGA-based devices by National Instruments, programmed

in Labview. Chernyak et al. [9] describe a high mobility

biomimetic quadrupedal robot, which utilizes an onboard

SBRio FPGA for the management of all sensors (Inertial

Measurement Unit (IMU), camera, LIDAR) and the motor

positioning and velocity control. It should be mentioned

here that an external netbook computer is utilized for user

interfacing. Seok et al. [10] present a highly parallelized

2020 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM), Boston, USA
(Virtual Conference), July 6-9, 2020

978-1-7281-6793-0/20/$31.00 ©2020 IEEE 501

control system platform, based on a multicore Central Pro-

cessing Unit (CPU) and FPGA SoC device by NI, which

maximizes compatibility, scalability and performance. In

particular, the FPGA’s parallel nature is exploited in the

communication between the processor and all sensors and

actuators, while the execution of the control algorithm and

data logging are handled by the processor. While this work

seems to be the most complete and the closest to the problem

addressed herein, it has a number of limitations. First of all,

the cost of the utilized device is very high. Furthermore,

this approach implements the low-level functions (encoder

reading, velocity estimation, and PWM signal generation) via

the motor drivers. Additionally the FPGA is underutilized,

while the ARM processor is used extensively by the control.

In this paper, a centralized control scheme for quadruped

robots is introduced, using a low-cost SoC device that

comprises an ARM-Cortex A9 processor and an FPGA of

the Zynq-7000 Xilinx family, as part of the Zybo Develop-

ment Board. Specifically, a Hardware/ Software Co-design

architecture is presented, where the management of the motor

control and encoder signals will be handled on the FPGA,

while the higher level motion planning and control will be

executed on the ARM processor. The paper will evaluate

the capabilities of low-cost SoC devices in quadruped robots

control, aiming to give new perspectives in the prototyping

stage of robots, by offering powerful, configurable, easy to

use, and energy efficient solutions of low mass and small

size. The proposed scheme is experimentally validated using

the quadruped robot Laelaps II (Fig.1)

Fig. 1: The quadruped robot Laelaps II, constructed by the Legged Team
at the Control Systems Lab of NTUA.

II. HARDWARE DESCRIPTION AND CONTROL

ARCHITECTURE

A. Laelaps II

In order to examine the potential of using FPGA in robotic

systems, the Laelaps II system has been used. Laelaps II

is a quadruped robot with three-segmented legs constructed

by the Legged Team at the Control Systems Lab of the

Mechanical Engineering School of NTUA (Fig.1). Although

the hip and knee joints are driven via actuators, a spring of

high stiffness is located at each ankle joint, which practically

reduces the number of segments to two, with lengths l1 and

l2, respectively (Fig.2). Currently, the motion control scheme

is based on elliptical toe trajectories. Specific parameters of

the robot can be found in [11]. With the current architecture,

a large number of boards are needed to control the motors,

distribute signals, etc., while a large number of cabling

runs throughout the robotic system to connect all necessary

elements, thus increasing weight, power consumption and

delays during communications.

l1

l2

Fig. 2: Leg model [12].

B. Proposed Control System Architecture

The design goal is to develop a high performance and

low-cost control system for Laelaps II that is scalable and

reconfigurable. All sensors and actuators should communi-

cate with the control platform directly via circuit boards that

serve as mediators. The control platform will be equipped

with several Inputs/Outputs (I/Os), as part of the Peripheral

Module (Pmod) Interface defined by Digilent Inc. [13]. The

general proposed architecture is depicted in Fig.3.

Inputs Filtering

Position Calculation

Velocity Estimation

PWM Generator

FPGA

High-Level Controller

Low-Level Controller

User Interface

Data Logging

ARM Processor

SoC FPGA

A
X

I4
L

IT
E

A
X

I4
L

IT
E

U
A

R
T

UI Commands

Personal Computer (PC)

Quadrature

Encoders

P
M

O
D

Quadrature

Encoders

Motor

Drivers

P
M

O
D

Fig. 3: Overview of the proposed control architecture.

C. FPGA component

In order to implement the proposed architecture, the Zynq

7000 AP SoC will be used. The main distinctive trait of

Zynq is its amalgamation of traditional FPGA logic fabric,

based on Xilinx 7-series FPGA architecture, with a dual-

core ARM Cortex-A9 processor, capable of supporting op-

erating systems such as Linux and Real-Time Operating

502

Systems (RTOSs), or Stand-alone programs that run directly

on hardware (Bare Metal). It encapsulates two parts, (a)

the Processing System (PS) revolved around the processor,

and (b) the Programmable Logic (PL), which encloses the

FPGA. In addition, the communication between the two

units is achieved via the AXI4 Standard protocol, which

is widely considered as the optimal interconnection tech-

nology for FPGA designs, since it ensures low latency and

high bandwidth connections. As a result, hardware-software

cooperation is attainable, where both the FPGA logic and

processor can reach their full potential. Namely, the negative

overhead of interfacing between two physically separate

devices is avoided, while the overall cost and physical size

drop substantially.

Apart from the PS and the PL, a variety of peripherals,

an embedded memory and the previously mentioned AXI4

communication interface are featured in the Zynq archi-

tecture. Standard FPGA design approaches are: Hardware

Description Language (HDL)-based and schemetic-based,

while other appealing methods use High-Level Synthesis

(HLS) tools, such as the Vivado HLS by Xilinx and National

Instruments’ Labview environment. For computationally de-

manding and intricate algorithms the HDL-based (Very High

Speed Integrated Circuit Hardware Description Language

(VHDL) or Verilog) approach was considered to be the most

prevalent method [14].

III. IMPLEMENTATION

A. Approach

The FPGA (Hardware) layer consists of two functions.

Initially, each joint’s position is calculated via Quadrature

Encoder Interface (QEI) blocks, while for precision and

synchronization purposes, the incoming signals from the

sensors are sampled, using a fast clock, in order to determine

whether they are stable or not. Next, the filtered signals are

supplied to QEI blocks realized in VHDL, which enable the

calculation of each joint’s position in encoder counts. The

joint velocities are then estimated utilizing a custom period

count based method, as the encountered rotational velocities

are relatively low [15]. Once both position and velocity have

been computed for each joint, they are transmitted to the

ARM processor via the AXI4-Lite bus protocol. After the

execution of the overall motion controller, control torques

are generated for each leg’s motors and forwarded back to

the FPGA via the AXI4-Lite bus. Finally, appropriate PWM

signals are produced to drive the leg motors via the motor

drivers. The above procedure is completed in parallel for

all joints, by dedicating a set of filtering, QEI, velocity

estimation and PWM blocks for each of them. Moreover, the

data are not serialized when transmitted through the AXI4-

Lite Interface.

Although the ARM processor is equipped with two cores,

currently only one is used for two distinct operations.

Throughout an experiment, the CPU runs the User Interface

(UI), while an Interrupt Service Routine (ISR) is responsible

for the execution of the Active Compliance Controller (ACC)

[11]. The motion planning and control algorithm, as well as

the communication with the FPGA, are implemented in the

low-level segment, while the high-level segment takes over

the tuning of the planning and control parameters.

The user can insert commands and monitor the exper-

iment’s data from an external computer connected to the

SoC FPGA via the UI. Specifically, a wired Universal

Asynchronous Receiver-Transmitter (UART) serial commu-

nication is used with a high baud rate of 115200 bps.

Although this centralized control scheme was designed

for the Zybo Zynq-7000 All Programmable SoC Trainer

Board, it can be easily transferred unaltered to similar

devices equipped with a Zynq-7000 SoC by Xilinx, while

its principles could be applied in platforms by Altera and

National Instruments (NI) as well.

The processing flow of the proposed architecture is illus-

trated in Fig.4. Namely, a Hardware/ Software Codesign was

implemented that consists of two partitions: hardware and

software parts, which are in charge of interfacing with the

robot’s sensors and actuators, and running the motion control

algorithm respectively.

Filtering
Quadrature

Encoder

Interface

Velocity

Estimation

PWM

Generator

fqv pwm
Custom IP

Hardware Partition

High-Level

Controller

Trajectory Planning

Inverse Kinematics

User

Interface

FPGA-ARM

Mediator

Data Logging

in SD Card

PD

Control

Interrupt Handler

Main Function

Software Partition
SoC FPGA

Quadrature

Encoder

Quadrature

Encoder

Quadrature

Encoder

A B

Motor

Driver

Motor

Driver

Motor

Driver

PWM DIR

AXI4 Lite

Pmod Ports

Intermediate Circuit Boards

Pmod Ports

Intermediate Circuit Boards

Fig. 4: Operating diagram.

B. Hardware Partition

Quadrature Encoder Interface Component: In order to

track the position of each joint and thus the position of

each toe, quadrature encoders were deployed, which are com-

monly used in a wide variety of applications from robotics

to opto-mechanical mice. As in most encoders, two square

waves are generated in quadrature, A and B, which indicate

the moving direction of the respective encoder. According

to those signals, an n-bit counter is either increased or

decreased, where n is the minimum integer that satisfies

2n ≥ sr · trr, where sr is the encoder’s standard resolution

(counts per revolution) and trr is the total reduction ratio of

the gearhead used with the motor. Currently, the counter’s

resolution is equal to 18 bits, however it is configurable,

since it depends on the generic variables sr and trr. Generic

503

variables in VHDL provide static information to logic blocks

similarly to constants in software, with the exception that

their values can be defined outside their environment. For

more clarification, one could think of them as passing argu-

ments of a software function that are assigned with values

when it is called.

Velocity Estimation Component: Due to the fact that the

encountered rotational velocities are relatively low [15], a

custom period count based function was created to calculate

the velocity of both joints in each leg. Specifically, the system

keeps track of the change in encoder counts and every time

its value has changed by four counts, an event occurs and the

velocity is calculated. In case of a direction change between

those events velocity is set to zero. The approximation is

shown on Eq.1, where X is the change in counts, while

Δt is the number of clock cycles between two consecutive

events.

v(k) =
X

t(k)− t(k − 1)
=

X

Δt
=

4 counts

Δt clock cycles
(1)

Taking into consideration that counts depend on the

inverses of the total reduction ratio of the actuator and the

standard resolution of the encoder, while clock cycles are

inversely proportional to the FPGA’s operating frequency,

the velocity can be expressed in rad/s via Eq.2, where

fFPGA−Hz is the operating frequency of the FPGA in Hz.

u(k) =
2π · fFPGA−Hz

Δt · sr · trr
rad

s
(2)

Due to the fact that the VHDL code utilizes integer

division, it was opted to multiply the dividend by c2 = 104,

instead of using a complex and demanding in resources

float division, in order to maintain accuracy of four decimal

places. Afterwards, the result is divided by c2 in the ARM

Processor, before the execution of the control algorithm.

Furthermore, the velocity equation was expressed using

generic variables that allow the designer to have parametric

values during component instantiation. In conclusion, the

velocity is estimated as the 32-bit integer quotient of the

final division in Eq.2 that exploits the four generics c2, trr,

sr and fFPGA−Hz .

PWM Component: A key factor in the motion control

scheme is the creation of PWM signals of a specific fre-

quency and duty cycle. By varying the duty cycle of the

PWM signal, the torque of the motor is controlled, since

a current control architecture is implemented in Laelaps II

motor drivers. The PWM component was programmed in

VHDL and like the aforementioned components, it utilizes

generic variables for adaptability. Namely, the user can

configure the FPGA’s clock frequency (sys clk), the desired

PWM frequency (pwm freq) and the resolution of the Duty

Cycle in bits (bits res). Currently, the PWM frequency is

set to 20kHz, as specified in the employed motor drivers’

datasheet (range 10-25 kHz), while 14 bits are dedicated for

the Duty Cycle’s resolution.

Custom AXI4 IP: The pith of the Hardware/ Software

Codesign is the custom AXI4 IP that integrates the designed

hardware along with the AXI4-Lite protocol and hence

establishes the communication between the hardware and

the software. A pair of fqv and pwm blocks is dedicated for

each motor, where the fqv block conflates the filtering of the

inputs with the QEI and Velocity Estimation components.

Naturally, the IP also contains the same generic variables

as its components and in fact it is responsible for defining

their values. Once all position and velocity values have been

computed, they are promptly transferred to the processor via

the AXI4-Lite bus. Once the processor has concluded its

procedure, the computed duty cycle values, along with the

desirable Direction signals for each motor, are transferred

to the corresponding pwm blocks, again via the AXI4-Lite

bus. Among the three separate bus protocols of AXI4, the

simplified memory mapped AXI4-Lite was selected as it was

proved to be sufficient, whilst maintaining the benefit of a

small logic footprint.

C. Software Partition

This section presents the software running on the ARM

Cortex-A9 processor, responsible for the application of the

control scheme, the interfacing with the user, as well as

the retention of the necessary data for post processing.

The corresponding source code was written in C language

(Bare Metal) through the Xilinx Software Development Kit

(XSDK) design environment, based on Eclipse 4.5.0 Inte-

grated Development Environment (IDE).

Controller Implementation: The CPU is constantly oc-

cupied with the management of the UI, while the control

framework is executed at a specific frequency as part of

a timer ISR. An active compliance control framework for

dynamic trotting was utilized, which includes a low and a

high-level part [16]. The low-level segment is responsible

for driving the legs along elliptical trajectories, while the

high-level part is for the tuning of the low-level controller’s

parameters. Initially, the trajectory planning part produces

elliptical primitives in each leg’s workspace, according to

which the inverse kinematics part calculates the desired joint

angles. Consequently, the current joint angles and velocities

are accessed from the AXI4-Lite interface, where the angles

are converted to degrees and the velocities are restored

from integer to floating-point format through division by

c2 = 104. Both angle and velocity values are then forwarded

together with the desired angles to the joint-level active

compliance part, which computes the appropriate duty cycles

to drive each leg. Ultimately, the absolute values of the torque

commands and their signs are segregated and sent to the

FPGA, where corresponding PWM and Direction signals will

be created.

IV. SYSTEM EVALUATION

A. Finalized Architecture

Intermediate Circuit Boards, as illustrated in Fig.4, were

developed, aiming to fabricate a structured system without

a tangled mass of wires. The first board’s purpose is to

firmly connect the tower with the SoC FPGA’s board, whilst

regulating the input signals voltage via a logic-level shifter.

504

On the other hand, secondary boards manage all connections

between the SoC FPGA, the motor drivers and the encoders.

In total, a centralized control tower was assembled (Fig.5),

which was mounted on the torso of Laelaps II (Fig.6).

First BoardSoC FPGA

Secondary Boards

Fig. 5: Centralized Control Tower.

Control Tower

Distributed Architecture

Fig. 6: Laelaps II unified with the Centralized Control Tower compared with
the previous Distributed Architecture.

B. Hardware Resources Utilization

In this paragraph the FPGA resource utilization is an-

alyzed. The main resources that were deployed, are the

Lookup Tables (LUT) and I/Os. A small amount of the

available Flip-Flops (FF) & Digital Signal Processors (DSPs)

were also utilized. These resources can be used for new tasks,

useful for the overall functionality of Laelaps.

The resources utilization results are illustrated in Figure

7, where the hardware designs for one, two and four legs

are compared. As observed, the resources utilization is

proportional to the number of legs, proving the scalability of

the developed system; for each new leg, identical hardware

blocks are added in parallel, showing the ease-of-use of the

proposed framework. On the contrary, in CPU architectures,

like in the previous Laelaps versions, increasing the number

of legs would add more instructions and hardware interrupts

in the serial processing loop. As a result, the CPU’s perfor-

mance would be heavily degraded, considering that a CPU,

opposed to the parallel nature of the FPGA, is limited to the

number of instructions it can process at a time, depending

on the data dependencies, multithreading and pipelining.

The utilized platform is one of the cheapest SoC FPGA

devices in the market that offers rather limited resources and

it is utilized mainly for educational purposes. However, it was

LUT IO DSP FF

60
.8
5

40

10

6.
1

31
.6
5

22

5 3.
82

16
.9
6

12

2.
5

2.
68

Four Legs

Two Legs

One Leg

Fig. 7: Comparison of Resources Utilization (%).

possible to incorporate the whole control scheme without the

system being stretched (60% of LUTs and 1 of the total 2
CPUs are used) in this platform; more advanced devices are

recommended for the exploitation of the full potentials of

FPGAs in even more complex control schemes.

C. Performance Evaluation on Laelaps II

The validity of the proposed system was examined and

verified through several experiments. In fact, all eight joints

of the robot were successfully controlled and performed

a trotting pattern in sync. A supplementary video file of

one of the conducted experiments can be found in [17].

In these experiments, the processor’s running frequency was

650MHz, while the FPGA was operating at 83MHz.

Figure 8 presents the trajectory of the front left toe during

the steady state. As it can be seen, the desired trajectories are

closely followed with small errors. By increasing the control

gains, the errors get smaller (trajectory is closely tracked)

but also a less compliant behaviour is expected for the robot

[16]. Tuning the system compliance via the control gains is

critical in legged locomotion and not addressed in this work.

The presented experiment is considered successful, since the

results are identical to the outputs of the existing control

system of Laelaps, which allows for its nominal operation

as presented in [18].

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
x axis

0.53

0.535

0.54

0.545

0.55

0.555

0.56

0.565

0.57

0.575

0.58

y
ax

is

FL End Effector in Steady State

Desired Position
Actual Position

[m]

[m
]

Fig. 8: Response of the Front Left Toe.

505

Fig. 9: (a1) The FL Hip’s angle, (a2) the FL Knee’s position, (b) The FL
Leg’s rotational velocities, (c) the PWM Commands sent to the motors of
the FL Leg.

Figure 9 illustrates additional joint level experimental data

for the front left leg. Similarly to the trajectory results, the

desired values are closely tracked, while small errors exist.

Additionally, as observed during the first 5 seconds of the

experiment the ellipse semi-major and semi-minor axes are

gradually increased from 0 to the desired values and vice

versa for the last 5 seconds to achieve smooth start/stop

operation.

V. COMPARATIVE ANALYSIS

A. Comparison with Laelaps II Control Architectures

Laelaps II with Centralized Control: In the early version

of the robot, a centralized architecture was used, featuring

a high-cost, hard-to-extend, bulky control tower (PCIe/104

CMA34CRD1700HR-4096) with four control cards to han-

dle all communications [18]. Off-the-shelf architectures of

this form factor would not allow for solutions of lower cost,

size and mass, capable of handling this high number of

Laelaps peripherals (e.g. reading more than 10 encoders).

Lastly, a non-real-time Linux OS was used that caused

several synchronization issues. We note that this fact led to

the real-time Bare Metal approach followed in the proposed

SoC FPGA scheme. Experimenting with this early version,

quickly showed that such robotic systems can largely benefit

from less expensive, more expandable and easier to use

and to develop solutions. The proposed SoC FPGA system

provides solutions to all the problematic issues of this first

PCIe 104-based architecture, while reducing the cost to 2%.

Laelaps II with Decentralized Control: In contrast with the

above version, the most recent version of Laelaps’ control

system consists of one EtherCAT Master node and four

EtherCAT slave nodes (one node per leg) [12]. One dual-

core 32-bit 200 MHz microcontroller TMS320F28379D is

used at each slave node to take over the communication tasks

(EtherCAT), handle all the signals (incremental encoders,

PWMs etc.), and execute the control algorithm for each leg.

Microcontroller Units (MCUs) of this type typically support

less than three QEIs, imposing an important limitation in

an architecture of this complexity; four MCUs had to be

used to read all the encoders of the robot. Apart from

several advantages, this distributed architecture has several

disadvantages when compared to the SoC FPGA approach.

First, the deployment and maintenance of the EtherCAT

network comes with significant development time. Second,

the size of the whole system can be much larger than the

FPGA-based system. The total cost and the number of cables

can be also significantly higher. Last, to exploit the real-

time characteristics of the EtherCAT network, significant

time is required to program a Linux real-time OS as the

master computer of the robot [19]. In contrast, the Proposed

Model offers a powerful and highly affordable (20% of

the distributed’s cost) signal handling device capable of

supporting more than 8 encoders and actuators using a single

chip with an embedded ARM Cortex-A9 processor, similar

to which hardly any devices exist in the robotics market.

B. Comparison with State-of-the-Art Relevant Techniques

From the related approaches described in the Introduction

section, the most interesting is [10]. A comparison was

considered very useful in order to highlight the advantages

of the proposed design.

Table I presents some typical comparison points which are

critical for almost any robot design, having as reference the

results of [10] (“Base Design”). First of all, the proposed

design is based on a ZYBO Zynq 7000 SoC which costs
30 to 50 times less than the cRIO-9082 of the Base Design.

Furthermore, the position and velocity estimation, as well

as the PWM Signals Calculation parts, are performed by

motor drivers in the Base Design, while in the proposed

approach all these critical parts are implemented in the

FPGA, offering flexibility and the capability of adding more

motors or making changes according to the needs without

being restricted to the current infrastructure. Moreover, in the

Base Design the FPGA collects information from Drivers,

serializes and unifies them into one single array and vice

versa for the current array. The proposed framework uses the

FPGA to calculate and forward in parallel the position and

velocity signals for each motor to the ARM Processor and

vice versa for the PWM signals, reducing the communication

overhead and offering a more compact solution, thus better

exploiting the capabilities that FPGAs offer.

The next difference concerns the communication between

FPGA and CPU. In the Base Design the array with all

necessary signals is transferred to the first CPU via a Direct

Memory Access (DMA) Channel, while in the proposed

approach all signals are transferred in parallel to the ARM

Processor via the AXI4-Lite bus protocol. Due to the fact

that a relatively small amount of data is transferred at

each step, AXI4-Lite is considered preferable as it offers

faster communication. Regarding the control frequency, the

Base Design architecture achieves a sampling rate of 250μs

and hence enables a control update frequency of 4kHz.

In the Proposed Model, an indicative control frequency of

506

TABLE I: Comparison between proposed approach and Base Design [10].

Base Design [10] Proposed
Cost $6.000-11.500 $200
Position, Velocity, PWM Signals Calculation Motor Drivers FPGA
FPGA Utilization FPGA collects information from Drivers FPGA calculates position, velocity and PWM
Communication between FPGA and CPU DMA Channel AXI4-Lite bus protocol
ARM Processor Utilization Utilizes both CPUs Utilizes only one CPU
Control Loop Frequency 4kHz Supports frequencies higher than 4kHz (currently 1kHz)

1kHz was selected for the experiments, despite the fact that

frequencies higher than 4kHz can be assigned by the user.

Namely, the maximum possible frequency is limited only by

the update frequency of the sensors and actuators.
Finally, the Base Design utilizes both CPUs of the chip.

The first one serves as mediator between the FPGA, while

the second one runs the control algorithm, which implements

a PID loop and generates new torque commands for the

motors. In the proposed implementation only one CPU is

utilized, which is responsible both for the communication

with the FPGA and the implementation of a PD controller,

generating new torque commands for the motors. This ap-

proach keeps the second CPU free in order to be used for

other high level processes and operations that can be used

by the robot (e.g. camera drivers, and image processing).
Summarizing, with the proposed approach, the FPGA is

being used more substantially and is being exploited to a

larger extent, proving that its use in robotic systems can be

very beneficial and for this reason it is highly recommended

for robotics applications.

VI. CONCLUSION

In this work an optimal use of FPGAs in robotic applica-

tions was presented. The extensive capabilities of the former

seem to allow the latter of having extensive capabilities with

the minimum footprint in terms of mass, volume and cost,

increasing at the same time the communication speed. In

order to examine this, a control architecture using a SoC

FPGA has been implemented for a quadruped robot. Various

building blocks have been implemented and presented, while

the performance of the system has been tested with suc-

cessful results. Consequently, a cooperation between the two

fields seems reasonable, and hence the exploitation of FPGAs

in robotic applications is highly recommended. Future work

in order to further exploit this combination is underway.

ACKNOWLEDGMENT

The authors wish to thank Konstantinos Koutsoukis,

Athanasios Mastrogeorgiou, John Valvis and George

Bolanakis for the design and development of the quadruped

robot Laelaps. This research work was partially sup-

ported by the EU funded project H2020 SDK4ED

(http://www.sdk4ed.eu).

REFERENCES

[1] X. Shi, L. Cao, D. Wang, L. Liu, G. You, S. Liu, and C. Wang, “Hero:
Accelerating autonomous robotic tasks with fpga,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 7766–7772.

[2] M. Li, X. Duan, H. Li, T. Cui, L. Gao, Y. Zhan, and Y. Xu, “Control
and experimental validation of robot-assisted automatic measurement
system for multi-stud tensioning machine (mstm),” in 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2016, pp. 2816–2821.

[3] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Fur-
gale, and R. Siegwart, “A synchronized visual-inertial sensor system
with fpga pre-processing for accurate real-time slam,” in 2014 IEEE
international conference on robotics and automation (ICRA). IEEE,
2014, pp. 431–437.

[4] G. Lentaris, I. Stamoulias, D. Soudris, and M. Lourakis, “Hw/sw
codesign and fpga acceleration of visual odometry algorithms for rover
navigation on mars,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 26, no. 8, pp. 1563–1577, 2015.

[5] J. C. Linares, A. Barrientos, and E. M. Márquez, “Hybrid bio-inspired
architecture for walking robots through central pattern generators using
open source fpgas,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 7071–7076.

[6] A. Majeed, S. B. Ozturk, and D. K. Tureli, “An encoder fault tolerant
fpga based robot control using bluetooth of a smart phone,” in
2017 10th International Conference on Electrical and Electronics
Engineering (ELECO). IEEE, 2017, pp. 1336–1341.

[7] N. Chakravarthy and J. Xiao, “Fpga-based control system for miniature
robots,” in 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2006, pp. 3399–3404.

[8] S. Pan, S. Guo, L. Shi, Y. He, Z. Wang, and Q. Huang, “A spherical
robot based on all programmable soc and 3-d printing,” in 2014 IEEE
International Conference on Mechatronics and Automation. IEEE,
2014, pp. 150–155.

[9] V. Chernyak, T. Flynn, J. O’Rourke, J. Morgan, A. Zalutsky, S. Cher-
nova, S. S. Nestinger, and T. Padir, “The design and realization
of a high mobility biomimetic quadrupedal robot,” in Proceedings
of 2012 IEEE/ASME 8th IEEE/ASME International Conference on
Mechatronic and Embedded Systems and Applications. IEEE, 2012,
pp. 93–98.

[10] S. Seok, D. J. Hyun, S. Park, D. Otten, and S. Kim, “A highly
parallelized control system platform architecture using multicore cpu
and fpga for multi-dof robots,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2014, pp. 5414–5419.

[11] K. Machairas and E. Papadopoulos, “An analytical study on trotting
at constant velocity and height,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 3279–3284.

[12] S. Athiniotis, “Firmware design for microcontrollers on EtherCAT
network for quadruped robot motion control,” http://dx.doi.org/10.
26240/heal.ntua.15750, 2018.

[13] Digilent Inc., “ZYBOTMFPGA Board Reference Manual,” 2014, re-
vised February 27, 2017.

[14] S. M. Qasim, A. A. Telba, and A. Y. AlMazroo, “Fpga design and
implementation of matrix multiplier architectures for image and signal
processing applications,” International Journal of Computer Science
and Network Security, vol. 10, no. 2, pp. 168–176, 2010.

[15] W.-H. Zhu, “Fpga-based adaptive friction compensation for precision
control of harmonic drivers,” in 2010 IEEE International Conference
on Robotics and Automation. IEEE, 2010, pp. 4657–4662.

[16] K. Machairas and E. Papadopoulos, “An active compliance controller
for quadruped trotting,” in 2016 24th Mediterranean Conference on
Control and Automation (MED). IEEE, 2016, pp. 743–748.

[17] https://www.youtube.com/watch?v=7Io6hpUmc00.
[18] https://nereus.mech.ntua.gr/laelaps/.
[19] M. Karamousadakis, “Real-time programming of EtherCAT master

in ROS for a quadruped robot,” http://artemis.cslab.ece.ntua.gr:8080/
jspui/handle/123456789/17313, 2019.

507

