

Abstract—We describe an interactive game for children,
employing semi-autonomous color line-following mobile robots.
The design and implementation of the mobile robots is
described in detail. Although the robots have intelligence that
allows them to follow color lines, users interact with them and
provide high-level commands such as what color line to follow
after reaching a node, and the speed at which they should
move. The paper describes the architecture of the game,
focusing at the mechatronics aspects and the hardware and
software implementation design choices made. It was observed
that the game is more appropriate for children over seven
years. To the best of the authors’ knowledge, this is the first
interactive game of this kind at this scale in the world.

Index terms– Multi-color line-follower, human-robot

interaction, educational mechatronic game, mechatronic
design.

I. INTRODUCTION

 oday, there is a growing thrust towards the
familiarization of children with technology. Popular

interest in robotics has increased astonishingly recently and
robotics is seen by many as offering major new benefits in
education at all levels. Human-robot interaction is a novel
and growing field of research, which has given the
opportunity to teachers to develop new efficient and
entertaining methods of teaching [1]. In addition, the
children, by playing with robots and interacting with them,
begin to familiarize themselves early with technology, which
will be proven to them useful in the future.

A number of people build autonomous mobile robots and
participate in line-following competitions. In order to make a
line-following robot, one should combine knowledge from a
variety of areas such as: programming, digital and analog
electronics, drives and robotics. Line-followers also have
many practical applications, for example logistic operations
by fully autonomous industrial vehicles guided by paths. The
paths can be colored lines, they can be black lines on a white
surface (or vice-versa), or they can be invisible as in the case
of magnetic fields or electrical wires embedded in the floor.

Almost all line-following robotic applications use black or
white lines with a contrasting background. This is because it
is easy to program a robot to recognize two colors with very

Michail Makrodimitris and Alexandros Nikolakakis are with the
Department of Mechanical Engineering, National Technical University of
Athens, Greece (e-mail: {mmakrod, alexisnik}@mail.ntua.gr).

Evangelos Papadopoulos is with the Department of Mechanical
Engineering, National Technical University of Athens, Greece (phone: +30-
210-772-1440; fax: +30-210-772-1450; e-mail: egpapado@central.ntua.gr).

different in terms of intensities. Robots following colored
lines are rare, due to the difficulty for a robot to recognize a
number of colors in a light-changing environment.

Some of the earliest Automated Guided Vehicles (AGVs)
were line-following mobile robots. Some of the first were
the Elmer and Elsie, a pair of autonomous robots that looked
like turtles, built by W. Grey Walter in 1948. Elmer and
Elsie were equipped with a light sensor, allowing them to
move towards a light source, avoiding or moving obstacles
on their way [2]. Twenty years later, the Stanford Cart was
built. It was a line-follower mobile robot that was able to
follow a white line, using a camera to see. Also, it was radio
linked to a large mainframe that made the calculations [3].

The IEEE supports line-follower competitions and has a
special homepage devoted to them [4]. Many designs for
line-followers exist. There are line-followers which are
based on analogue electronics and others based on digital
electronics and microcontrollers [5], [6], [7], [8]. The latter
lead to “smarter” robots, which have the ability to follow
more complex rules during the game. Another criterion to
classify line-followers, is the platform on which they are
built. The most common platforms are the Lego line-
followers [9], the sumo-bots line-followers and the
handmade printed-circuit-made line-followers, which are
based on microcontrollers.

In this paper, we describe the design and implementation
of a game for kids employing line-following robots, based
on a concept proposed by Prof. Ch. Kynigos of the
Kapodistrian University of Athens. In this game, the robots
are semi-autonomous: Although the robots have intelligence
(machine low level) that allows them to follow colored lines,
users interact with them and provide high level commands
such as what color line to follow after reaching a node, and
the speed at which they should move. The paper describes
the architecture of the game, focusing at the mechatronics
aspects and the hardware and software implementation
design choices made. To the best of the authors’ knowledge,
this is the first interactive game of this kind at this scale.

II. DESCRIPTION OF THE GAME

Current technology allows the development of new and
entertaining methods of teaching. By using colorful, bright,
sound-delivering and highly mobile robots, a teacher can
easily attract the attention of children, familiarize them to
new technologies, and teach them skills such as cooperation,
patience and team spirit in a fun way. A robot-based

Semi-autonomous Color Line-Following Educational Robots:
Design and Implementation

Michail Makrodimitris, Student Member, IEEE, Alexandros Nikolakakis, and

 Evangelos Papadopoulos, Senior Member, IEEE

T

2011 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM2011)
Budapest, Hungary, July 3-7, 2011

978-1-4577-0837-4/11/$26.00 ©2011 IEEE 1052

competition can also teach children how to set goals, plan
strategies, and master decision-making under pressure. With
these in mind, we proceeded to design the following game.

The game resembles the well-known ‘pacman’ software
game. Physically, it consists of an arena, see Fig. 1, and
eight robots, see Fig. 2, controlled separately by eight touch
panels. The users are children. The goal is for each user to
command its robot so as to gain as many points as possible
within a specific time frame.

Figure 1: The game arena. Colored path lines intersect at nodes, three at a

time. The area of the arena is 25 square meters.

There are two robot modes: ‘predator mode’ and ‘prey’

mode. Each player controls one robot, which is either in
‘pray mode’ or ‘predator mode’. At the beginning of the
game, four players have robots in ‘predator mode’,
recognized by their red lights and a facial expression of
angriness, and four players have robots at the ‘pray mode’,
recognized by their green lights and a facial expression of
happiness, see Fig. 2. During the game there are always 4
‘predators’ and 4 ‘prey’ robots, which continuously
interchange modes through their collisions.

When a robot operates in ‘prey mode’, points are gained
while the robot remains ‘not-hit’ by a ‘predator mode’ robot.
Furthermore, the points are acquired at the end of a set
interval, according to the speed of the robot during this
interval. The faster the robot moves, the fewer points it
gains, as it is easier for it to evade the ‘predator mode’
robots. When the robot in ‘pray mode’ moves more slowly,
it is easier for the ‘predator mode’ robots to hit it, and
therefore more points are awarded for moving at a slower
speed. The ‘predator mode’ robots gain points only when
they hit a ‘prey mode’ robot. When such a collision occurs,
the two robots exchange roles.

Each robot must be autonomous concerning the following
requirements: (a) it must be able to follow the colored lines
and identify and at each node, to follow the commanded
color, set by the user, (b) it must change its speed according
to the user’s command and (c) it must be able to perform a
180o turn on the color line. At the game end the player who
has gathered the most points, wins.

(a) (b)

Figure 2: (a) A robot in ‘prey mode’ robot and (b) in ‘predator mode’. Preys
smile, have green eyes and side eyelashes, while predators show their teeth,

have red eyes and eyelashes on top of the eyes.

The robots in ‘predator mode’ must try to hit a ‘pray

mode’ robot so that they can gain points by ‘catching’ their
pray (100 points) and then become ‘pray mode’ robots,
which constantly gain points by not getting ‘caught’. ‘Pray
mode’ robots only need to avoid the ‘predator mode’ robots,
gaining points as time passes (every 1 s ‘prey mode’ robots
gain 1-5 points for moving with speed 5-1 respectively).
Therefore, the best strategy for the prey-robot users would
be to move as slowly as possible while trying to escape, by
selecting the best colored path to follow at each node. For
the predator-robot users, the best strategy would be to
cooperate to catch some prey-robots. When two robots of the
same role touch, nothing happens; they stand still for a few
seconds and continue after a while. The players can see their
name and score on a big LCD TV screen. Each game round
lasts for a set period of time, usually set at 15 minutes.

III. GAME ARCHITECTURE

In the game, eight robots and an equal number of touch
panels exist. With the help of the touch panels, the users
control the robot speed, the direction of motion (forward or
reverse) and the colored line that the robot will follow after
reaching a node. Each robot is controlled by a specific touch
panel only. Apart from user commands, a touch panel
constantly sends information to the robot, concerning its
current status. When a collision occurs, the robot in addition
to knowing its own mode, it should be aware of the mode of
the other robot it collided onto, so that points are allocated
correctly. In the case of multiple collisions, the system must
be aware which robot collided with which. This information
could not be sent from the touch panels to the robots because
of bandwidth constraints.

To fulfill the above specifications, it was decided to use a
centralized architecture: A central server was set up so that
the points could be calculated and awarded to all robots, by
determining which robot collides with which based on each
robot’s state. This is done using data collected from the
control touch panels, which in turn communicate with the
robots. The server connects to the touch panels with a star

1053

architecture. The touch panels inform the server regarding
the commanded robot speed, so that points are calculated
and awarded to each robot after the lapse of 1 s. When a
collision occurs, the robot sends a signal to its touch panel,
which passes it through to the server. It is then determined
which robot collided with each other by checking the
collision time from each reported collision. If the two
colliding robots are in different mode, they change mode and
the corresponding points are awarded, see Figure 3. The
server displays the total points for each robot on a large
screen.

Figure 3: Collision between two robots, one in 'pray mode' (left) and one in
'predator mode' (right). Before the collision the two robots were both in the
other mode.

IV. HARDWARE DESIGN

Due to room limitations, the arena size had to be constrained
by a 6 m x 6 m square and by the requirement that users
should be able to recognize and watch their robots from their
position easily. On the other hand, the arena should not be
very small to allow for a number of players stand around it.
Finally, a square arena with 5 m sides was constructed. The
arena contains colored path lines (red, blue and green), see
Fig. 1, that meet in groups of three at node points. The path
line width was selected to be 4 cm for visibility.

A. Mechanical Design
From a mechanical point of view, each robot consists of four
mechanical modules: (a) the chassis, (b), the motors (c) the
wheels and (d) the collision bumpers.

During the game design phase, it was decided that the
children should be able to lift the robots. Furthermore, the
robots had to be big enough to be seen easily, but at the
same time they should be small enough to be able to easily
perform maneuvers on the selected arena. We selected
plastic for our structural material of the chassis, to keep the
robot as light as possible and the cost reasonable. The use of
plastic reduces the weight of the robots to approximately 2
kg and at the same time increases their speed. The fact that
the robots aren’t heavy enables the children to easily put a
robot aside or set up the game without the fear of possible

accidents. Due to the above reasons, the robot chassis base
diameter was selected to be 15 cm.

In order to select the motors we took the following into
consideration: (a) the robots should have the ability to move
and accelerate fast, (b) the robots should have the ability to
make a 180° turn in the smallest possibly area, (c) the
motors should be reliable and not too expensive.

In order for the robot to be able to make sharp 180° turns,
the differential type of drive was selected, as robots with this
type of drive can turn on the spot. Although tracks share this
characteristic, they tend to skid and not be so controllable as
wheels. Therefore, they were rejected. In the front and back
of the robots, ball caster were placed (so that the robots will
not tip over during acceleration or deceleration phases)
while in the middle, two wheels to be driven by DC motors.

To conclude which motors were suitable for our
application we modeled the robot drive dynamics.
Neglecting Coulomb friction, the equations of motion for a
motor with the load reflected at its side are given by:

Jeffω + beffω = Τ (1)

where Τ is the motor shaft torque, ω is its angular
acceleration, ω its angular velocity,

Jeff is the effective

inertia of the robot as seen by the motor, (includes the motor
and wheel inertias, and half of the reflected mass of the
robot, which depends on the radius of the wheels and the
gearbox ratio). Similarly

beff is the effective viscous friction

of the mobile robot, which is a function of the motor
bearings viscous friction, and the wheel viscous friction. By
having a rough estimate of the effective viscous friction and
by calculating the effective inertia, we obtained the motor
angular velocity response corresponding to Eq. (1) as a
function of a number of parameters. The linear speed of the
robot v was then given by:

 v = dω / 2n (2)

where d is the wheel diameter and n the gear ratio. It was
found that if the motor torque equals 100 mNm, the wheel
diameter is 10 cm, and the weight of the robot is
approximately 2 kg, then the maximum velocity of the robot
is about 32 cm/s. Using the torque-speed requirements for
typical motor tasks, the Faulhaber surplus motors type
1524E006S123, with 15/5S141:1K832 gearheads and
HES164A encoders were found, which met our
specifications. The maximum robot velocity was constrained
further in order for the robot to follow the color lines without
overshooting at steep turns. The motor encoders produce 4
pulses per revolution but because of the gearbox, we take
564 pulses per revolution, which is more than adequate for
our application (less than 0.64o for 1 pulse). In order for the
robot to move correctly, the two wheels must share the same
rotation axis. Otherwise the robots have a difficulty in
moving along a straight line. The small chassis diameter
does not allow motors to be installed on the inner wheel side
without modification. Therefore, CNC drilling was
employed to accurately place the two motors on the chassis
using L brackets, placing the motor vertically. All the

1054

electronic parts were connected on the plastic chassis.
As mentioned earlier, the wheels had to have a diameter

around 10 cm. To this end, 3 7/8 inch Banebot wheels were
selected, as the wheel material is selectable. To avoid wheel
slipping or fainting out the colors of the arena due to friction
between the wheels and the arena’s surface, we selected a
medium hardness wheel (Medium 40 Shore).

A vital part of the implementation of the game was the
ability of the robots to ‘feel’ the collisions. We implemented
a rubber bumper around the robot, combined with four
mechanical switches (normally-closed) at its base, to detect
collision from all directions. When a robot collides onto
another, the bumper sensor moves accordingly and opens the
corresponding mechanical switch. So the robot is not only
capable to know that it collided to another robot but also the
approximate location at which the collision took place. The
collision bumper was reliable, but another implementation of
the collision subsystem is more appropriate: the usage of
accelerometers. The reason is that each of the eight robots
should be tuned with a bumper sensor of equal stiffness,
which is practically difficult. Furthermore if the collision
sensor spring is soft, it will inform wrongly that a collision
happened during accelerations of the robot and if it is stiff, it
will not inform about collisions even if they did occur.

B. Electronics Design
The robots should have the ability to communicate with the
touch panels and recognize the color currently detected by
each sensor. They should also have the ability to operate for
hours without the need for recharging and have an
appropriate appearance in order to impress children. For
these reasons each robot consists of the following different
electronic components:

(a) The communication module, (b) the navigation
module, (c) the power module and (d) the appearance
changing module. The four modules are connected to a
microcontroller, which realizes the desired robot motion.

For the communication module, we wanted to use a low
power, easily implementable protocol, which will be
supported by inexpensive chips. To this end, the Zigbee
protocol was chosen. This protocol operates in the 2.4GHz
band, is very low power-consuming, supports mesh
networking, packet retransmission and each module is
described using a unique MAC address. The price for each
transceiver is low (under $20) and there is a large support
community for it. The chip on which we based our
communications is the XBee 1 mW Wire Antenna. The
Zigbee transceivers were reliable and controlling one or two
robots was smooth. However, when we implemented the full
game with all eight robots and touch panels, interference
problems occurred, as there was a lot of concurrent packet
traffic. This problem was tackled by placing the touch panels
higher from the ground transceivers, which resulted in less
signal deflection.

To recognize the colored lines on our arena, our robots are
equipped with 3 RGB sensors, which are placed in a
triangular array underneath the robots. The number of color

sensors was the minimum required so that the robots can
follow a line and select the correct color when reaching a
node. Increasing the number of sensors would increase the
cost and make their mounting difficult, due to space
limitations. Sensor placing was done in such a way that the
central sensor is above the color line and the right and left
sensors are above the white area of the arena, just at the edge
of the color line. Choosing and finding a reliable color
sensor was very important for the design of the whole
design. In the beginning, we experimented with various
inexpensive color sensors that did not have features such as
focus etc. We tried various RGB color sensors with a wide
cost range (from $2 up to $200 each one). As we wanted to
minimize the total cost and the color sensors were an
expensive part, we tried to make our own color sensor. This
was based on a plain RGB sensor, light-emitting diodes
(LEDs) for the required luminance, all soldered on a printed
circuit board. This greatly decreased the price of each robot.
One problem we faced was that the sensors did not focus on
a specific area, and therefore detected the color of the entire
field of view. Another difficulty we faced upon was the
continuous change in light intensity of the surrounding
environment. At first we tried to overcome this problem by
software auto-tuning the sensor reading according to the
environmental light. This procedure was difficult due to the
constantly changing parameters.

As these sensors were not reliable enough, we decided to
use a commercial solution, the TAOS TCS230 modules at
$40 each. The TCS320 modules have a built-in manual
focus lens, which solved the focusing problem. They also
have two integrated LEDs, which solved the ambient light
problem, by providing a stable ambient light environment
for each sensor, (since surrounding light intensity is much
lower compared to that of the focused LEDs). Their output is
a square pulse with variable frequency according to the
detected color, which can be measured using electronics.
With the help of these color sensors, the robots were able to
successfully detect the colors underneath them.

Besides the RGB sensors and the wheels, the navigation
module consists of two other parts: The H-Bridge ICs
(SN754410), which amplify the PWM commands of the
microcontroller and the motors that are responsible for the
movement of the wheels.

Concerning the robot autonomy, we wanted the batteries
to be capable of moving the robots for 4 hours without being
recharged. Lithium-ion polymer batteries were the only
viable solution. We selected Li-Po batteries with 4000 mAh,
at 11.1 V (3 cells x 3.7 V = 11.1 V). Recharging the robots is
easy: flipping a toggle switch and connecting the batteries to
a charger through a connector in the upper part of the robot,
recharges the robot. Once this is accomplished, the toggle is
flipped back to its original position.

When children are involved, it is very important to
develop robots with an exciting appearance, which would
attract their attention. A mechanism for changing the robot
appearance was designed, see Fig. 2. The robots were

1055

equipped with two-color ultra-bright LEDs that can be seen
from a long distance, in order to allow the player to
distinguish what kind of mode the robot is in (prey or
predator), at each moment. Preys have bright green LED
eyes, while predators, bright red. A simple mechanism based
on an RC servomotor was installed, which makes the robot
smile when it is a prey and showing its teeth when it is a
predator. In addition, robot emotions are intensified by
employing controllable eyelashes, see Fig. 2.

For controlling the robots, we used an 8-bit PIC16F877A
Microchip microcontroller. All modules are connected to the
microcontroller, see Figure 4, which is fast enough to ensure
smooth robot motion as it succeeds to receive the commands
of the players, adjust the parameters of the movement of the
robots (velocity and color of the line of its robot to follow
after the next node) and process data from the RGB sensors.

Figure 4: A robot with its cosmetic shell removed.

The cost of each robot is under $130, excluding the three
RGB sensors and the batteries, while the total cost is $340.
The expensive RGB sensors could not be avoided, due to the
game requirements for abrupt curves in the arena and large
speeds for the robots. The cost could be reduced if one
would accept lower robot speeds or even if the path colors
were restricted to just two. Another path in reducing the cost
could have been selecting batteries that would require
recharging much more often.

As mentioned earlier, each robot is controlled exclusively
by a single touch panel. The touch panels consist of two
parts: a printed circuit board (PCB), which houses all the
appropriate electronics and a plastic panel. The PCB of the
touch panel consists of the PIC16F877A microcontroller and
of an XBee transceiver. The microcontroller detects the
touch of the player’s hands on capacitance buttons, and
sends the corresponding command to the robot.

The panel is made of colorful plastic underneath of which,
twelve capacitive sensors, LEDs and a liquid crystal display
(LCD) are placed. By touching the plastic above the
capacitive sensors, a player can send commands to his/ her
robot and receive feedback on the LCD in English. Apart

from communicating wirelessly with the robot, the touch
panel communicates with the server through an RS232 port.
Excluding its stand, a touch panel costs about $100.

Finally, the point awarding server, is a printed circuit
board, which consists of eight serial port through which the
eight touch panels connect, and of a PIC microcontroller that
keeps the score of points knowing the status of the robots
and which robot collided onto which. The server sends the
scores to an LCD TV screen through a VGA connector.

V. SOFTWARE DESIGN

The software implementation of the color line-following
robot game involves three different programs. (a) The
program of a robot, (b) the program of a touch panel and (c)
the program of the server. As each of the above three
modules is equipped with a PIC microcontroller, the
programming was made using C with the help of a MicroC
compiler. Programming a touch panel is easy as its only task
is sending ASCII letter commands and implementing easy
serial protocols or communicating with an LCD, which our
compiler provides us with easy library commands.

The software challenge was to write the motion algorithm,
during which three major points had to be overcome. The
first challenge was to correctly measure the output frequency
of all three RGB sensors at the same time. The program
subroutine starts with setting up the microcontroller timer.
Then it waits for the digital status of the sensor to go high
and then low and then it restarts the timer. The time of the
pulse is clocked so we can find the frequency of a color. For
example, the white color is on the range of 0-50, the red 65-
100, the green 110-250 and blue 270-400. The pseudocode
for measuring the color sensor data is the following:

Initialize timer,
Wait for pin to go high,
Wait for pin to go low,
Set timer to 0,
Wait for pin to go high again,
Wait for pin to go low,
Timer value is the pulse period
Depending on the timer value categorize the color reading (0 –
50 is white, 65 – 100 is red, 110-250 is green and 270 – 400 is
blue).

A second difficulty we faced was due to a problem that
occurs only in color line-followers. If a sensor is
overlooking a single color, then it returns the number ranges
mentioned above. However, if it is overlooking the
boundaries between two different colors, for example white
and green, then the sensor sees the “average” color, which in
this case is interpreted as red. Then the robot assumes that is
over a node and may start executing a node subroutine
(rotation on the spot). In order to deal with this problem, the
color sensor data is checked for several milliseconds before
taking any decisions. Here is the code we used (node turning
subroutine):

Check if the all sensors have different colors,

1056

If yes, then if the status is the same for a small delay,
If yes, then turn according to the selected color

The third point to overcome had to do with optimizing the
control code running on the robot PIC microcontroller. A
common practice would have been to write the code so as to
take care of all the possible situations that the three RGB
sensors could face. For example, the initial code resembled
the following pseudocode:

If the left sensor is white and the center sensor is white and the

right sensor is a color, turn right,
Else if the left sensor is white and the center sensor is red and

the right sensor is white, go straight,
Else if … etc.

That solution proved to be unsuitable as there are so many

if/ else-if cases and the program becomes too large to
handle. As a result of this, combined with the previous
problem, it was impossible to make the robot follow the line
correctly. In the black and white line-followers we do not
face this difficulty, as the color is one and so if-else if cases
are less. In order to solve this problem we did the following:
First we matched the colors to numbers (white=0, red=1,
green=2, blue=3). We then divided the program in two parts,
based on whether the central color sensor was above a
colored line or not, and by comparing numerically the right
with the left color sensor, we greatly improved the structure
of the program. The pseudocode of the robot is like this:

Interrupt routine in case a character is received:

In relation with the character received, adjust status and
appearance (predator or prey), speed, next color followed.

Interrupt routine in case a collision is sensed:
Send to touch panel its identity.
All touch panels must send collision data to a server and then
following the same route comes a character to change or not the
status.

Main program loop:
Get data from RGB sensors,
If the central color is white then:

If the left color is white and the right is something darker,
turn more to the right

If not then:
If the right color is white and the left is something darker,
turn more to the right.

If not then all colors should be white, so the robot has lost the
line. It should make a counterclockwise circle until at least one
sensor is not white.
If both sensors (left and center or right and center) give a color,
turn a little left or right respectively.
If only the left (or right) sensor gives any color (not white), turn
a little left (or right).
If the center sensor gives any color, then:

If the other two are white, go straight,
If only the right is white, turn left,
If only the left is white, turn right
If none of the above, after a delay, turn according to
selection of the player.

VI. FIELD RESULTS

By observing children playing the game, one can draw a
number of conclusions. The children are enthusiastic and
impressed by the fact that they can control mobile robots. In
no way they are afraid of the robots while there is a
noticeable familiarization even at small ages, i.e. 5-7 years
old. However, for these ages certain problems arise. First,
small children cannot follow the game rules as they are too
complex for them. Also, small children do not have a
specific goal when playing the game. In certain cases, they
are so thrilled by the robots that they forget to give new
commands using the touch panels, or they just want to touch
the robots in the arena. However, children above seven years
old aim at winning, keep the score, and make efforts in
understanding the rules and improving their gaming skills.
Therefore, a game such as this should target children older
than seven years old.

VII. CONCLUSIONS

The implementation of an innovative color line-following
game with semi-autonomous mobile robots is described. To
the authors’ knowledge, no other game with color line-
following robots at this scale exists. Implementing the game
was challenging and required special hardware and software
design. However, the game proved to be very reliable. The
robot cost was kept to a minimum, despite the use of costly
RGB sensors for providing crucial information regarding
robot location. The overall reliability can be improved using
accelerometers instead of mechanical bumper switches. It
was observed that this type of game is more suitable for
children older than seven years old.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Prof. C. Kynigos for
proposing the game and Mr. L. Bahas for assistance in
producing the robots. This work was partly supported by
Polydiadrasi SA.

REFERENCES

[1] Mirats Tur, J.M., Pfeiffer, C.F., “ Mobile robot design in education,”
IEEE Robotics & Automation Mag., v. 13, no 1, March 2006, pp. 69.

[2] http://www.ias.uwe.ac.uk/Robots/gwonline/gwonline.html
[3] http://www.stanford.edu/~learnest/cart.htm
[4] http://ieeerobotics.wikidot.com/line-following-competition
[5] Cook, D., Intermediate Robot Building, Apress, 2010
[6] Kettler, A., Szymanski, M., Liedke, J., Worn, H., “Introducing Wada-

A new robot for research, Education and Arts”, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Taipei, 18-22 Oct. 2010.

[7] Konaka, E., Suzuki, T., Okuma, S, “Line-following control of two
wheeled vehicle by a symbolic control,” Proc. of the 40th IEEE
Conference on Decision and Control, Orlando, USA, Dec. 4 - 7, 2001.

[8] Cardeira, C., Da Costa, J.S.,“ A low cost mobile robot for engineering
education,” 32nd Annual Conference of the IEEE Industrial
Electronics Society, IECON 2005, pp. 2162-2167.

[9] Papadimitriou, V. and Papadopoulos, E., "Development of an
Educational Mechatronics/ Robotics Platform Using LEGO®
Components," IEEE Robotics and Automation Magazine, Vol. 14, No.
3, September, 2007, pp. 99-110.

1057

