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The Kinematics, Dynamics, and Control of Free-
Flying and Free-Floating Space Robotic Systems

Steven Dubowsky and Evangelos Papadopoulos

Abstract—The dynamics of space robetic systems can be quite
complex and hence their control can be difficult. In this paper
some important dynamics and control problems, unique to space
robotic systems are discussed. Particular attention is paid to free-
flying and free-floating space robots that might be used for such
tasks as space station repair and construction. Recent advances
made by the research community in solving these problems
are briefly reviewed. Three examples of promising methods for
planning and controlling the motion of space robotic systems are
presented. It is suggested that a thorough understanding of the
fundamental dynamics of these systems, will result in effective
solutions to their control problems.

I. INTRODUCTION

UTONOMOUS robotic and telerobotic systems have

been suggested for a number of important missions in
space. Free-flying robotic and telerobotic systems have been
considered for retrieving, repairing and servicing satellites in
earth orbit, see Fig. 1(a). Highly dexterous robots carried by
large articulated manipulator systems and transporter vehicles
have been proposed to construct future space stations, see
Fig. 1(b). Other systems have been considered for automating
some of the routine functions of space station based scientific
experiments. Roving robotics have also been considered for
exploring the planets.

To date such technically ambitious systems have yet to
be realized, in part, because new technology is needed to
achieve the robotic system capabilities required for these
missions. Some critical technical problems must be solved
in a number of areas, including in dynamics and control.
Many of these dynamics and control problems are not unique
to space robotics. A number of the dynamics and control
problems faced by the designers of space robotic systems are
unique to this area, because of the distinctive and complex
dynamics found in many potentially important space robotic
applications. This paper focuses on these problems. The paper
considers some representative types of space robotic and
telerobotic systems, identifying some of their unique planning
and control problems, with a particular focus on the very
challenging problems posed by free-flying and free-floating
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space robots. It also briefly reviews certain accomplishments
that have been made by the research community in the solution
of some of these problems. Results from three example studies
of planning and control problems unique to space robotics
are presented. These examples illustrate the challenges of
controlling space robots. They also suggest that the solutions to
the problems of planning and control of space robotic systems
lie in understanding the fundamental dynamic behavior of
these systems.

II. FUTURE SPACE ROBOTIC SYSTEMS AND THEIR CONTROL

A number of studies have proposed free-flying manipulator
systems such as shown in Figure 1(a) for space missions
[11, [4], [5], [7], [13], [40]. In a free-flying space manipu-
lator system, and during the activity of its manipulator, the
position and attitude of the system’s spacecraft is controlled
actively by reaction jets (thrusters). Such a system is clearly
highly redundant giving it versatility, and a nearly unlimited
workspace. However free-flying space systems present some
unique control challenges. For example, the motions of the
manipulator can disturb its spacecraft’s position and attitude.
These disturbances could result in the consumption of ex-
cessive amounts of reaction jet attitude control fuel. Attitude
control fuel is a nonrenewable and expensive resource in space.
Its excessive use could greatly limit a free-flying system’s
useful “on-orbit” life. Such problems represent challenging
planning and control situations that must be addressed. As
discussed below, while some important progress has been
made, substantial work remains.

A free-floating space robotic system is one in which the
spacecraft’s position and attitude are not actively controlled
during manipulator activity to conserve attitude control fuel.
In which case the spacecraft will move freely in response
to the dynamical disturbances caused by the manipulator’s
motions. Control algorithms for free-floating systems have
been proposed to accommodate the uncontrolled spacecraft.
Problems not found in terrestrial systems have surfaced. For
example, these systems have been shown to exhibit previously
unknown dynamic singularities, which can seriously degrade
a free-floating system’s performance [35], [36]. Even the
kinematics of free-floating systems become quite complex.
For example, as discussed below, defining the workspace of a
free-floating system is not a simple matter.

The control of space robotic systems is made difficult by a
number of factors. For example, the need for space systems to
be light weight means that space robots will be flexible and
have relatively small actuators. Hence, their control systems
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must handle the difficult problems of accommodating and
compensating for low frequency resonances and nonlinear
actuator saturation. Also, planetary exploration systems will
be faced with the problems of controlling a system with long
time-delays, while operating with a mobile compliant base
in a highly unstructured environment with relatively limited
sensing information for control.

Clearly, the dynamics and control of future robotic sys-
tems present difficult challenges to the research community.
The following section briefly reviews some of the recent
progress made in solving these problems. Then certain exam-
ples of what we believe are potentially effective approaches
for planning and controlling the activities of space robotic are
presented.

III. CURRENT STATE OF THE ART—A BRIEF
REVIEW OF THE LITERATURE

The difficulty of recreating space conditions on earth and
the need for accurate simulation and prediction of the behavior
of such systems makes the dynamic modeling of space robots
important. As discussed later in the paper in some detail, a
good understanding of a space robot’s dynamics is essential
in designing a system with a good basic dynamic behavior,
and in designing and implementing its control and planning
algorithms. The dynamics of multibody systems have been
studied by researchers in both the robotics and aerospace
communities. Robotics research has been mainly interested
in fixed-based manipulator dynamics, with primary focus
on Newton-Euler and Lagrangian formulations, and recently
on Kane’s method [29], [17], [24]. These methods can be
extended to include the effects of a moving base [46].

The main approaches in the aerospace literature that can
be applied to the dynamic modeling of space robotic systems
are reviewed in [21], [23], [27]. Newton-Euler approaches
to multibody dynamics were pioneered by Hooker and Mar-
gulies, and by Roberson and Wittenburg [18], [41]. General
characteristics of these methods are the use of a tree topology
to describe open chains of multibody systems, the choice of
the system Center of Mass (CM) to represent the translational
DOF, and the introduction of the so-called barycenters and
augmented bodies that simplify the systematic occurrence
of certain weighted linear combinations. In the direct-path
method employed by Ho, Frisch, and Hooker, a body of the
system is chosen to be the home body and a point on it to
represent the translational DOF of the system [16], [14], [19].
The equations that result are coupled but simpler to interpret.
The Virtual Manipulator (VM) technique, proposed by Vafa,
can be used to simplify the dynamics of space robotic systems
[48]-[52]. The VM decouples the system CM translational
DOF, and hence, it simplifies the equations of motion. The
VM is discussed in some detail in Section IV of this paper.

Motion control implies that the manipulator moves its end-
effector to specified locations in the inertial or spacecraft
frames, without significant force interactions between its end-
effector and its environment. A payload may be considered
as part of its last link. A number of control techniques for
space manipulators have been proposed, some of which are

Fig. 1. Two proposed space robotic systems. (a) The Japanese Free-Flying
ETS VII [56]. (b) The Canadian Special Purpose Dexterous Manipulator
(SPDM) on the space station remote manipulator system (SSRMS).

presented in [58]. These schemes can be classified in four
categories. In the first category, the spacecraft position and
attitude are fixed by compensating for any dynamic forces
exerted on the spacecraft by its manipulator. In such case,
control techniques for terrestrial manipulators can be used. For
example, Dubowsky er al. proposed a time optimal trajectory
planning technique that avoids the saturation of a spacecraft’s
thrusters [11]. However, the consumption of relatively large
amounts of attitude control fuel, can limit a system’s useful
life. Based on a study of the dynamic characteristics of
such systems, Dubowsky and Torres employed heuristic path
planning methods, that can reduce the use of control fuel, and
therefore extend a system’s life [8], [9], {45]. This approach,
called the Enhanced Disturbance Map (EDM), is discussed in
further detail in Section V of this paper.

In the second category, a spacecraft’s attitude is controlled,
while its translation is not. Longman et al. proposed a con-
trol scheme that estimates the required moments to keep a
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spacecraft’s orientation fixed, and uses reaction wheels to
provide these moments to the spacecraft [28]. Walker and
Wee designed an adaptive controller to achieve globally stable
end-effector trajectory tracking [53]. In general, manipulator
control of controlled-attitude space systems is somewhat more
involved than that where both position and attitude are con-
trolled. The VM technique can be used in path planning and
workspace analysis of such systems [48]-[52].

In the third category, consisting of free-floating systems, the
spacecraft is permitted to translate and rotate freely in response
to manipulator motions. Reaction jet fuel is conserved, and
sudden motions of the manipulator end-effector due to reaction
jet firing are avoided. Clearly, this approach can only be used
in the absence of external forces and torques. Momentum
dump maneuvers need be employed to remove any accumu-
lated momentum [36], [37]. The analysis of these systems,
also can be simplified using the VM approach [48]-[52].
Alexander and Cannon proposed a control scheme based on
the resolved acceleration algorithm, and used it to control
successfully an experimental two-DOF planar free-floating
system [2]. Their controller relied on end-point position feed-
back provided by a video camera mounted on the spacecraft.
Umetani and Yoshida derived a Generalized Jacobian for a
free-floating system and proposed a control algorithm based
on the resolved rate algorithm [47]. Their experimental two-
DOF planar system used end-point measurements provided by
an inertially fixed video camera. Masutani ef al. proposed a
transposed Jacobian controller using a Jacobian derived for a
fixed-based system [30]. This controller included end-point
feedback and was capable of driving the end-effector to a
desired location, provided that the spacecraft mass and inertia
are large; otherwise, stability problems were encountered.
Similar simplifying attempts are reported in [26], [32]. Pa-
padopoulos and Dubowsky showed the existence of Dynamic
Singularities (DS), whose location in the joint space depends
on a system’s mass properties. The location of the DS in the
Cartesian space is path dependent [35], [37]. The fundamental
dynamic nature of free-floating space robots was analyzed by
Papadopoulos and Dubowsky who showed that nearly any
control algorithm derived for terrestrial robotic systems, also
can be employed in controlling free-floating systems, provided
that the correct dynamic models are used and that dynamic
singularities are avoided [36]. Path Independent Workspaces
(PIW) were defined in which no such singularities occur [35],
[37]. A brief review of this study is presented in Section VI
in this paper.

In the fourth category, consisting of free-flying systems,
the spacecraft’s thrusters are used to reach some desired
location and orientation in space, hence realizing a practically
unlimited workspace. To reduce use of reaction fuel, Spofford
and Akin proposed a free-flying system switching between
free-flying and free-floating control modes [43]. During the
free-flying mode, the system is controlled in a coordinated
way as a redundant manipulator. Papadopoulos and Dubowsky
designed a Coordinated Control algorithm that maintains a
large workspace and allows the specification of a desired
trajectory for both the end-effector and the spacecraft [33].
This algorithm fails gracefully in the case of conflicting

trajectories. Coordinated control is briefly presented in Section
VI of this paper.

The nonintegrability of the angular momentum in free-
floating systems complicates their planning, but also offers
the opportunity of achieving additional tasks. For example,
Vafa proposed a self-correcting planning technique that allows
the control of a spacecraft’s orientation using a manipulator’s
joint motions [50], [52]. Nakamura and Mukherjee discussed
the nonholonomic characteristics of free-floating space manip-
ulators, and employed Lyapunov functions for path generation
aiming at controlling both the manipulator configuration and
the spacecraft orientation [31]. Yoshida er al. proposed that
one of the manipulators of a free-flying system should move
to compensate for the attitude disturbances created by the
other [60]. To extend the useful workspace of a free-floating
system, Papadopoulos proposed a planning algorithm that
avoids dynamic singularities, and permits the manipulator’s
end-effector to move from any reachable workspace location
to any other [38], [39]. However, the construction of paths
that are optimal with respect to the execution time remains an
open area of research.

Reliability in space robots is important. Clearly, increased
reliability can be achieved by redundancy and proper design,
see for example [57]. However, in some cases the dynamic
characteristics of a system can be used to control a failed
system. For example, Papadopoulos and Dubowsky proposed
a Failure Recovery controller that, under certain conditions,
allows the control of a manipulator failed joint using dynamic
coupling between the failed and some operating joint [34].
Aiming to the design of more economical manipulator systems,
Arai and Tachi reported a method of controlling a system with
fewer actuators than joints, by using joint brake action [3]. The
exploitation of the dynamical characteristics of a space system
aiming at improving its control represents a promising area of
future research.

Significant efforts have been placed in designing and build-
ing test beds that can be used in evaluating and verifying
system designs and control techniques for space robots. One
fundamental problem is the creation of weightless conditions
in a laboratory environment. Simple experimental setups em-
ploy planar space robots floating on air bearings [2], [30], [47].
In spatial test beds, the effect of gravity is either eliminated in
neutral buoyancy tanks, or estimated and subtracted in some
way [15], [22], [42], [44], [54]. The forces required to cancel
gravity are provided by suspension cables, other manipulators,
servo drives, or by Stewart platforms [12], [15], [22], [42],
[44], [56]. For example, the vehicle emulator system at MIT
consists of a six-DOF Stewart mechanism that emulates the
spacecraft (base) of a space robot, see Fig. 2. The gravitational
forces and moments transmitted by the manipulator to its base
are estimated as a function of its configuration and subtracted
from the total transmitted forces and moments, allowing the
base (emulated spacecraft) to move under the action of the
dynamic forces only [10], [12], [54].

Several conclusions can be made from the above review
of the literature. First, there is a relatively large amount
of research being done in this field. The above discussion
has been largely restricted to the dynamics and control of
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Fig. 2. The VES II Space Emulation System at MIT.
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Fig.3. A serial space robotic manipulator system and its Virtual Manipulator.

rigid systems, in near earth orbit, performing relatively simple
motion tasks. Even so, the review could only touch on a few
of the studies that have been reported in the literature. Second,
the problems being treated are quite difficult. From a dynamics
and controls point of view, robots in space offer some very
challenging problems due to their unique dynamics. Problems
that are far from being solved. Finally, the control studies that
seem to have the largest degree of success are based on a solid
understanding of the dynamic characteristics of these systems.
In the following sections, a few of these studies are briefly
reviewed.

IV. THE VIRTUAL MANIPULATOR MODEL—WITH
AN APPLICATION TO WORKSPACE ANALYSIS

As discussed above, the motions of a space manipulator,
if not controlled, will disturb the attitude and position of
its spacecraft. Due to the lack of a fixed base, planning
and controlling the motions of such systems is difficult.
This section reviews a very effective analytical modeling
method for space manipulators called the Virtual Manipulator
(VM). The kinematics and dynamics of a free-floating space
manipulator system, can be described relatively easily using

the VM. As a result, the planning and control of these systems
can be made far easier. A more complete description of the
VM and its applications can be found in references [49]-[52].

The VM is an ideal kinematic chain connecting its base, the
virtual base (VB) to any point on a free-floating manipulator.
This point can be chosen as the manipulator’s end effector.
As the real manipulator moves, the end of the VM remains
coincident with the selected point on the real manipulator,
and its base remains attached to a fixed point in inertial
space, called a virtual ground (VG). It can be shown that
the joint displacements of the real manipulator and those of
the VM are equal for revolute joints, and they are simply
related for prismatic joints. The VG is located at the CM
of the manipulator-spacecraft system. The VM gives system
analysts and designers the ability to represent a free-floating
system by a much simpler fixed system. In this section the
VM s described and applied in studying space manipulator
workspaces.

A. The Virtual Manipulator Structure And Its Construction

The 1st VM link corresponds to the spacecraft, and its
orientation corresponds to the spacecraft’s attitude, see Fig. 3.
This link is attached to the fixed VG by a spherical joint that
permits the three spacecraft rotations with respect to inertial
space. The end of the virtual manipulator terminates at the end-
effector of the real manipulator, point E, fixed in the Nth link.
A VM can be constructed to any point in the real manipulator,
a useful fact in writing the dynamic equations for the system
[50]. The ith VM joint will be a revolute or a prismatic joint
depending upon whether the ith joint of the real manipulator is
revolute or prismatic joint. The axis of rotation for a revolute
VM joint is parallel to the axis of the real manipulator joint
J;. Similarly the translational axis of prismatic VM joints
is parallel to the corresponding axis of the real manipulator
prismatic joints.

Virtual manipulators exist for different manipulator struc-
tures, such as open or closed chains, or multiple arms. Here
the analytical construction of the virtual manipulator is given
for an NV body serial manipulator system, see Fig. 3. The ith
joint is referred to as J;, and C; is the CM of the sth body. The
first body is the spacecraft, and the Nth body is a combination
of the end effector and its payload. The body fixed vectors R;
and L; are defined in Fig. 3. The vector Ry connects Cn
to the end effector, E. The ith link in this system’s virtual
manipulator, shown in Fig. 3, is defined by the vector V;,
where

Vi=D;

Vo=H,+ D,

Vi=H;,.1+ D,

Vn=Hy-1+Dn )]

where D; and H; are given by

@)

z N
D; = ,:ZMq/ZMq}Ri i=1,--
gq=1 q=1
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L i=1,---.N-1. @)

z N
H, = [Z Mg/ > M,
q=1 g=1

The VG is located at the CM of the system and given by

Vo=(miS+me(S+Ri+L)+ - +mn(S+R;
+Li+--+Ry_14+ Ly_1))/(my +ma+ -+ mp).
G}

where S is the vector locating the spacecraft CM, see Fig. 3.

Equations (1) through (4) specify a VM in a position
corresponding to the initial position of the real system. The
VM will move as the joints of the real manipulator move. The
angular rotations of the VM revolute joints, from their initial
position, are equal to the angular rotations of the corresponding
revolute joints of the real manipulator. The prismatic virtual
joint translations are ratios of the corresponding real prismatic
joint translations. For the end effector VM, the translation of
the virtual joint, P;, is given by

N N
Pi/Ty=3 Mg/ M, i=1--N-1 (5
q=1 q=1

where T is the translation of the jth real prismatic joint.

B. Workspace Analysis: An Example Application of the
VM Approach

The virtual manipulator approach can be applied to a
number of space manipulator problems. VMs can be used to
simplify the inverse kinematics of manipulators, calculate the
workspace of the system, to aid in path planning analysis,
design, and control synthesis, and to formulate the equations
of motion, see references [51]-[53]. It should be noted that
these problems are far more difficult for manipulators in space
than for standard manipulators with fixed bases. The use of the
VM in calculating the workspaces of a free-floating system is
briefly presented in this section to demonstrate its utility.

First, three different types of space manipulator workspaces
need to be defined. These depend on whether the system
uses reaction jets, reaction wheels or neither to control its
spacecraft. If reaction jets keep the spacecraft stationary, the
system workspace is simply the same as it would be on
earth, called here the fixed spacecraft workspace. Clearly,
conventional workspace analysis methods, such as described
in [59], can be used to solve this problem. If neither reaction
jets nor reaction wheels are used, the spacecraft will move,
and this will affect the manipulator end-effector’s location
in inertial space. Hence, a free-floating manipulator will not
be able to reach all the points that could be reached by the
same manipulator with a fixed base. This reduced workspace is
called the Free Spacecraft Workspace, or the Free Workspace.
Finally in cases where the attitude, but not the location, of
the spacecraft can be controlled, say by reaction wheels, a
third workspace called the Constrained Spacecraft Attitude
Workspace results, or the Constrained Workspace. These latter
two more complex workspaces can be understood and found

Attitude Workspace
Inner Boundry

Work Sg:oe Boundry
N\ (Partially shown)

Fig. 4. Space system with its fixed and constrained spacecraft attitude work
spaces.

quite easily using the VM approach. First, a system’s VM is
found. Any joint limits of the real manipulator are transformed
into VM joint limits. The Constrained Workspace can be found
directly from applying conventional analysis methods to this
VM representation because, in this case, all the links of the
VM, including the first, are controlled. This workspace will in
general be a spherical shell due to the three possible rotations
of the spacecraft.

Fig. 4 shows the fixed spacecraft, and Constrained Space-
craft Attitude Workspaces for a simple planar manipulator
system. As can be seen in Fig. 4, the Fixed Workspace is
quite large. The Constrained Spacecraft Attitude Workspace,
found using the VM, is substantially smaller.

In finding the workspace of a completely free-floating ma-
nipulator system, it needs to be recognized that the spacecraft
attitude affects which points the manipulator can reach. Since
this attitude is not controlled, the free workspace is the
region in inertial space that the manipulator is able to reach,
without regard to its spacecraft attitude. This workspace can
be found by first finding all VM workspaces corresponding to
all fixed spacecraft attitudes, such as the one shown in Fig.
5. These are found relatively easily using the conventional
methods with the first link of the VM held stationary with an
orientation corresponding to the assumed spacecraft attitude.
The intersection of all of these workspaces forms the Free
Workspace. Any point in this region can be reached without
consideration of the spacecraft attitude. Fig. 5 shows the
Free Workspace of the simple manipulator shown in Fig. 4.
Additional analysis of the workspaces for free-floating systems
will be given in Section VI,

In this section, the concept of the Virtual Manipulator, an
approach based on the fundamental mechanics of space robotic
systems, has been introduced and shown that can be useful
in analyzing and understanding the complex kinematic and
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for a Given Spacecraft
Attitude

Free Spacecraft Work
Space Boundries

Fig. 5. Finding a system’s free spacecraft work space using its Virtual

Manipulator.

dynamic characteristics of space robotic systems. In the cited
references it has been shown also to be effective for treating
a number of other planning, design and control problems.

V. PATH PLANNING—FINDING MANIPULATOR MOTIONS
TO REDUCE SPACECRAFT ATTITUDE DISTURBANCES

As discussed above, the dynamic disturbances of a space
manipulator’s motions to a system’s attitude and position can
be controlled using its attitude control reaction jets. However,
the control fuel required could limit the life of the system
[5]). Planning algorithms to minimize the dynamic disturbances
have been proposed [6], [9], [11], [32], [45], [46], (48], [50].
In this section a method, called the Enhanced Disturbance Map
(EDM), is briefly described. Its use for planning the motions
of a redundant space manipulator to reduce attitude fuel usage
is outlined.

A. The Enhanced Disturbance Map (EDM)

Consider an N -DOF rigid manipulator mounted on a space-
craft. The spacecraft’s inertial position and orientation in body
fixed axes are X, = [z,y,2]7, and 6, = [¢,0,v]T, respec-
tively. The manipulator joint angles are ¢ = [q1.q2, -+, qn]”.
Infinitesimal changes in the spacecraft’s attitude measured
with respect to its body-fixed axes, 66,, can be expressed
as a function of infinitesimal manipulator joint motions, q, as
60, = G(q)bq, where G is a 3 by N disturbance sensitivity
matrix [50]. The vector 6, is defined as the instantaneous
disturbance.

Singular value decomposition of G(q) gives the directions
and magnitudes of the maximum and minimum spacecraft
disturbances in joint space. These directions are orthogonal in
joint space, and in some cases the magnitude of the minimum
disturbance is exactly zero. In the original disturbance map
these maximum disturbances were mapped onto each point
g in joint space, [48], [S0]. The more effective EDM [45],
[46], [8], [9] can be found by writing the system’s generalized
momentum vector, , as

; A B
= HEE= G ] ©

Joint 2 (rad)

/2 n
Joint 1 (rad)

Fig. 6. An Enhanced Disturbance Map.

where £ is [XT,0F ,qT)T,H(£) is an N + 6 by N + 6 sym-
metric, positive definite inertia matrix, and the elements of o
are Ty, Ty, Ty, W, TG, Wap, 1, W2, * * *, Tp. The Ty, Ty, and 7,
terms are the z, y, z linear momentum components of the CM
of the spacecraft; and 74, mg,and 7, are the components of the
angular momentum of the spacecraft, all measured with respect
to the spacecraft fixed axes. The =y, 7o, -+, 7, terms are the
generalized momentum components in the direction of each of
the manipulator’s respective joint axes. The submatrices A, B,
C, and D are defined in [46]. Assuming zero external forces
or moments, and a system initially at rest, # is equal to zero,
and (6) yields

X, .6, = -A"'Bq ™

A discussion of the validity and utility of the above as-
sumption in fuel minimization path planing is contained in
[45]. Replacing the derivative operation by a variation, letting

Z = [2],25]T = —~A7'B, and noting that z; and 2, are 3
by N matrices, (7) becomes

§X,] _ [Z

o= 2] ®

Equation (8) gives a relationship between the changes in
orientation of the base 66, and motion of the manipulator
joints 6q, 66, = z20q. So G required for the EDM is simply
29, a submatrix of —A~!B, which can be computed easily
[46]. Singular value decomposition of the matrix z, gives
the directions and magnitudes of maximum and minimum
disturbances (usually zero). The EDM shows the directions of
minimum disturbances at an arbitrary point in joint space, q.
In the map, these directions are jointed into lines of minimum
disturbance, such as shown in Fig. 6. Manipulator motions
on a path following these lines will not disturb the attitude
of its spacecraft. The lines are colored proportionally to the
maximum disturbance magnitude that would result for joint
motions perpendicular to the line.

B. Reducing Spacecraft Disturbance Path Planning

A number of methods using the EDM to suggest paths
which result in reduced rotational spacecraft disturbances have
been developed and studied in detail [8], [9], [45], [46].
The exact relationship between reduced rotational spacecraft
disturbances and minimizing total fuel usage is not simple, see
[45]. However, it generally is the case that a manipulator path
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M o

(b)

Fig. 7. Redundant manipulator paths-common inertial space end-points.
(a) An arbitrary path. (b) Minumm disturbance path.

that results in a low disturbance, will result in relatively low
fuel usage.

Here, an example of using an EDM to find minimum dis-
turbance paths for a redundant manipulator, is briefly outlined.
Consider the three-link redundant manipulator, shown in Fig.
7(a), moving in a planar space from inertial point I to inertial
point F.

The three-dimensional EDM for this system is shown in
Fig. 8. For this redundant manipulator, paths of minimum
angular disturbance motion lie on two dimensional manifolds,
or surfaces in the EDM, rather than on lines as is the case for
nonredundant manipulators. The minimum disturbance surface
passing through the initial configuration of system, see Fig. 8,
can be found by the direct application of the above equations
and singular value decomposition. Because the manipulator
is redundant, the final position of the end effector in inertial
space, F', maps into a locus of points, a curved line, in the
EDM. If the final EDM position is chosen as the intersection
of the minimum disturbance surface passing through the initial
configuration and this locus, and if the path from the initial to
final configuration is chosen to lie in the minimum disturbance
surface, then manipulator motion will not result in any angular
disturbance to the spacecraft. This can be computed relatively
easily [45].

Fig. 8 shows two EDM paths. The first is the minimum
disturbance path computed as described above. The second
joint path to the final inertial end-point position is selected
arbitrarily, and does not lie on the minimum disturbance
surface passing from the initial configuration. These two paths
are shown in inertial space in Fig. 7. The motions along the
two paths were simulated allowing reaction jets to compensate
for any dynamic disturbance, and the fuel usage was recorded.
The velocity profile along the path was chosen to be a half
sinusoidal wave with initial and final velocities equal to zero,
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N " ! Zero Disturbance
Final Configuration

Surface

Zero Disturbance
Path Point
(a)
ero Disturbance
Surface
~ P

Arbil ~—Zero
Fina:ary Disturbance
Configuration —,
Arbitary

Configuration
Point

(b)
Redundant manipulator EDM paths. (a) Front view. (b) Back view.

Fig. 8.

and with a maneuvers time of 2 seconds. For the arbitrary
path, the total angular and linear fuel required was 0.587 units
of fuel. The minimum disturbance path required only 0.160
units, a substantial reduction. This minimum disturbance path
fuel was required mostly to compensate for the translational
disturbances to the spacecraft.

Planning the motions of space manipulators involves prob-
lems such as the minimization of dynamic disturbances, not
found in conventional robotic systems. However, methods
such as the Enhanced Disturbance Map can be developed to
aid in understanding these problems, and in generating solu-
tions. The EDM has evolved from studying the fundamental
dynamic properties of space robotic systems. A more complete
description of the EDM and its applications can be found in
references [8], [9], [45], [46]

VI. THE CONTROL OF FREE-FLYING/ FLOATING SPACE
ROBOTS—A FUNDAMENTAL APPROACH

A. Free-Flying Space Robots

In free-flying space robots, spacecraft thrusters can be
used to either maintain a constant spacecraft position and
orientation, or track a prescribed one, despite any dynamic
disturbances induced by a system’s manipulator. Since both
a manipulator and its spacecraft can be controlled, system
safety can be improved by commanding trajectories that avoid
collisions with other neighboring objects. In addition, by
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controlling a spacecraft’s position and orientation, the end
effector can reach its target with the manipulator in a pre-
determined desired configuration, i.e., a configuration suitable
for applying some prescribed forces, or in one that is away
from singularities. For the above reasons, it is advantageous
to be able to control simultaneously both a free-flying system’s
spacecraft and its manipulator. To this end, a dynamic model
describing the behavior of the free-flying system as a whole,
is required. This is addressed next.

B. Dynamic Modeling of a Free-Flying Space Manipulator

Constructing a dynamic model can be achieved in many
ways depending on the principles used, coordinates used,
etc. Here, a quasi-Lagrangian method is used to reveal the
structure of the system equations of motion. The system CM
is chosen to represent the translational motion of the system.
This choice has the advantage of decoupling the translational
variables from the rotational variables. The resulting equations
readily yield the conservation of momentum equations when
the spacecraft’s actuators are not in use and the system is free-
floating. In the following sections, left superscripts correspond
to the frame in which a vector or matrix is written. A missing
left superscript implies a vector or matrix expressed in the
inertial frame.

Fig. 9 shows a free-flying space robot consisting of a
spacecraft (body 0), and an N -DOF manipulator (bodies
1,---,N) with revolute joints, in an open chain kinematic
configuration. The manipulator joint angles are described by
the N x 1 vector q. The system CM linear velocity %fcp,
the spacecraft angular velocity expressed in the spacecraft’s
frame ®w, and the manipulator joint rates ¢ are chosen as
the system independent velocities, and are grouped in vector
v = 7 %E, 477, see Fig. 9. The linear and angular
velocity of point m in body k. vy .., is given by

+
k.m

= diag(To.To)* I}, (q)v ©

Vi = [ wi]" = JY 0

where Ty is a rotation matrix that describes the orientation of
the spacecraft, and J, and °J}  are 6 by N 46 nonsquare
matrices, even when N = 6. This underlines the redundant
nature of such a system. Since any position or orientation
can be reached by moving the spacecraft alone, the rank of
these Jacobians is always six [33], [37]. For the end-effector
velocity vg, we write simply

vp = 7L Wi = J T

(10)

The equations of motion for the system shown in Fig. 9,
are written using a Lagrangian approach. The potential energy
due to gravity is zero and since the system is assumed to be
rigid, the potential energy due to strain is also zero. Hence,
the system Lagrangian is equal to the system kinetic energy
given by [33], [37]

1
T=-v'H"(q)v

2 an

N-DOF
Manipulator

Spacecraft Fem
(body 0)

4] (o]
0 Spacecraft Inertially Fixed
thrusters Origin

Fig. 9. A free-flying space manipulator system.

where H* (q) is a N 4+6 by N +6 positive definite symmetric
inertia matrix, given by

M1 0 0
HY(@)=| 0 °D(g) °Dy(q) (12)
0 ODq(Q)T Oqu(Q)

where 1 is the unit 3 by 3 matrix, 0 a zero matrix of appropriate
size, and M the system total mass. °D is the 3 by 3 system
inertia matrix with respect to the system CM, and as such it is
a positive definite symmetric matrix. ODq is a 3 by /N matrix,
and °Dy, is an N by N matrix. The matrices °D,°D, and
%D, are functions of the configuration g only, and they can
be expressed as functions of the body-fixed barycentric vectors
[55], [37]. The inverse of °D always exists because the system
inertia matrix is positive definite. The N + 6 equations of
motion are, see [33], [37]

H (@)9+C*(q,°w0.9) = Q. + Qu

where the term C7 contains the nonlinear terms of the
equations of motion, @, is a disturbance vector, and Q, is
a control force vector, given by

Q. = JI0fEOn

(13)

(14)

The control forces @, include the spacecraft forces ° f 5 that
can be generated by thruster actuators, the spacecraft torques
Yns which can be generated by thruster actuators, momentum
gyros or reaction wheels, and the manipulator joint torques, 7.
The transmission Jacobian, J, is square and always invertible.

C. Control of Free-Flying Systems

To control the end-effector and the spacecraft Cartesian
position and orientation, z = [rL,6L.7r%,6%]7, in a coor-
dinated way, a relation between the independent velocities v,
and the output velocities 2, is required. To this end, the Euler
angle rates of the k*" body, Oy, are expressed as functions of
the corresponding wy,

6, =8 6wr k=0,---,N (15)

where S is an invertible matrix, except at some isolated points.
Using (9) written for the spacecraft CM, and (10) and (15), an
expression for the output velocities, 2, is obtained

2= [#L,05.7565)T = J.v 16)
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where J, is a 12 by 12 Jacobian matrix (N = 6). Ne-
glecting the nonphysical representational singularities, J. is
an invertible matrix, unless the manipulator is kinematically
singular.

The equations of motion (13) and the Jacobian given by (16)
can be used to implement various motion control techniques
in a way similar to the operational space approach, where
a Jacobian relating generalized joint velocities to operational
velocities is used to design controllers in the operational space
[25]. The equations of motion in the z space can be found by
substituting (16) into (13) to obtain the form

Hz+C=(J.")7Q, a7
where C contains the nonlinear terms, and H= (J;l)THJr
J- 1 is positive definite if J, is nonsingular. If z is provided by
inertial feedback, and the desired end-effector and spacecraft
inertial trajectory, z4.s, is provided by a trajectory planner
or a system operator, a tracking error e can be defined as
e = 24es — z. When the manipulator is not kinematically
singular, the control law

Q. = JT{H(Kpe + Kgé + 24e5) + C} (18)

where K, and Ky are positive definite diagonal matrices,
reduces the error dynamics to a set of 12 homogeneous linear
decoupled second order equations. Therefore, the tracking
error converges to zero exponentially. Since this algorithm is
based on a transposed Jacobian, it will fail gracefully in case of
conflicting trajectories for the spacecraft and the end-effector.
The spacecraft forces and moments and the joint torques can
be found by inverting J, in (14). This is possible since this
Jacobian is always nonsingular. Equation (18) permits the
coordinated control of both the spacecraft and its manipulator,
based on inertial measurements of the spacecraft and end-
effector locations and orientations. If no such measurements
are available, then the error e can be estimated by integrating
the equations of motion in real time, but then errors due to
model uncertainties will be introduced. A small disturbance
will result in a small steady state error since this controller
is of PD type.

To demonstrate the coordinated control law, a planar 5-DOF
free-flying system is simulated [33]. Fig. 10 shows the motion
of the free-flying system in inertial space. The end-effector
converges almost along a straight line to the desired point,
while the spacecraft assumes the desired position and attitude.
Note that if the spacecraft were fixed at its initial position,
the end-effector would have reached point B in an almost
singular configuration.

D. Free-Floating Space Robots

Free-flying space robots have the disadvantage of a limited
life because of the use of jet fuel. To increase a system’s
life, a free-floating mode can be employed. Operation in a
free-floating mode is also advantageous during the capture
of fragile payloads. If no external forces act on the system,
the system CM does not accelerate, and the system linear
momentum is constant, i.e., %%, = 0. With the further
assumption of zero initial momentum, the system CM remains

Final
spacecraft

sition B Final location
positi

Initial
spacecraft
position

Spacecraft Center
of Mass

Fig. 10. Coordinated spacecraft/manipulator motion in the inertial space.

fixed in inertial space, and can be taken as the origin of a
fixed frame of reference.

E. Dynamic Modeling of a Free-Flying Space Manipulator

The end-effector inertial linear and angular velocities, T g,
and wg, are functions of the joint rates ¢ and of the spacecraft
angular velocity, wy, see (10). It can be shown that under the
above assumptions, the conservation of angular momentum
can be written as [35]-[37]

O = _Op-! Oin] (19)

Equation (19) is used to express ‘wp in (10) as a function
of ¢, and hence to derive a free-floating system’s Jacobian J*,
defined by

e, wel’ = JT"q (20)
where J* is a 6 x N matrix given by
J*(Os,q) = diag(To(65), To(65))° I (g).  (21)

Since (19) was used in constructing J*, this Jacobian depends
not only on the kinematic properties of the system, but also
on configuration dependent inertias. Therefore, the singular
configurations for a free-floating system, i.e., ones in which
0J* has rank less than six, are not the same to the ones for
fixed based systems, as they depend on the mass distribution.
The equations of motion for a free-floating system can be
found either using a Lagrangian approach or by setting all
external forces and moments in (13) equal to zero, and by
subsequent elimination of wy [36]. The resulting equations
are
H* (q)§+C(q.q)qg=" 22)
where H*(q) = °Dyy—°D;] °D™" "Dy is the reduced system
inertia matrix, and C*(q, ¢)¢ contains the nonlinear centrifugal
and Coriolis terms. The vector 7 is the manipulator joint torque
vector equal to [1,72,---,7n]T. It is easy to show that the
system inertia matrix, H", is an N by N positive definite
symmetric inertia matrix, which depends on ¢ and the system
mass properties [36], [37]. Some fundamental characteristics
of free-floating systems are discussed next.

1 LAGIIULU DDLU AUUHAITIUAaL L VU UL
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Fig. 11. A free-floating manipulator in a dynamically singular configuration.

F. Path Dependence and Dynamic Singularities

The angular momentum, given by (19), cannot be integrated
to yield the spacecraft’s orientation &g as a function of
the system’s configuration, ¢, with the exception of a planar
two body system [37]-[39]. This equation can be integrated
numerically, but in such case the resulting final spacecraft
orientation will be a function of the path taken in the joint
space. Joint space paths that start and end at the same joint
space points, but otherwise are different, will result in different
final spacecraft orientations. In addition, since the inertial
location of the end-effector is a function of €5, moving
from one workspace location to another through different
paths results in different final spacecraft orientations &g, and
different final configurations q. Clearly, the nonintegrability in-
troduces nonholonomic characteristics to free-floating systems.
However, these are due to the dynamic structure of the system,
and not to kinematic constraints, as the ones experienced by
a rolling disk.

On the basis of the structural similarity of (20) and (22)
to the ones derived for a fixed based system, [36] suggested
that if singularities of J* can be avoided, nearly any control
algorithm applied to fixed-based systems can be used in free-
floating systems. Therefore, the nature of the singularities of
J* is briefly reviewed here. Since the rotation matrix T’ in
(21) is in general not singular, then a square J™ loses its full
rank when

det[°J*(¢)] = 0. (23)

This condition shows that free-floating system singularities are
fixed in joint space. Since °J* is a function of configuration
dependent inertias, these singularities are different from the
ones for fixed-based systems, while their location in joint space
depends on the dynamic properties of the system; for these
reasons, they were called dynamic singularities [35]-[37].
If the system is in a dynamically singular configuration,
the end-effector can move only along directions that lie in
a subspace of dimension lower than six (N = 6); some
workspace points may not be reachable with whatever small
6q. Fig. 11 depicts a planar space manipulator in a dynamically
singular configuration. This characteristic represents a physical
limitation of free-floating systems, and must be considered in
designing and controlling such systems.

® System Center
of Mass

Path Dependent

@ Workspace (PDW)

o

E

> Path Independent
Workspace (PIW)

Reachable Workspace
Boundaries

x {meters)

Fig. 12. The reachable, Path Independent and Path Dependent Workspaces
for the system shown in Fig. 11. Paths like A cannot induce dynamic
singularities, while paths like B can.

It is interesting to examine the location of the dynamic
singularities in a system’s workspace. To this end, we need a
one to one correspondence from the joint space to the Cartesian
workspace. However, such correspondence does not exist,
even in the case of a six-DOF manipulator, because the end-
effector position r g and orientation © g, are not only functions
of the system’s configuration g, but also of the path dependent
spacecraft orientation, @s. Out of all the pairs (6s.q) with
which a particular workspace point can be reached, some will
correspond to a singular configuration, g,. In other words, a
workspace point may or may not induce a dynamic singularity,
depending on the joint space path taken to reach it.

To resolve this ambiguity, Path Dependent Workspaces
(PDW) were defined to contain all workspace locations that
may induce a dynamic singularity [35], [36]. To find these
points, note that the distance of a workspace location from the
system CM, R, does not depend on the spacecraft’s orientation,
but is only a function of the configuration ¢, i.e., R = R(q).
This equation represents a spherical shell in the workspace. All
the singular configurations ¢, are mapped to a set of shells,
whose union gives the PDW. If we subtract the PDW from the
reachable workspace, we get the Path Independent Workspace,
(PIW). All points in the PIW are guaranteed not to induce
dynamic singularities. Then, any point in the PIW can be
reached from all other points in the PIW, by any path that
belongs entirely to the PIW. It can be shown that the PIW is
a subset of the Free Workspace discussed in Section 1V, see
also [37]. Fig. 12 shows the PIW and PDW for the system
depicted in Fig. 11.

G. Control in the Joint and Cartesian Space

Assume that one task requires control of the manipulator
configuration g, only. This is the case of Spacecraft-Referenced
End-Point Motion Control, where the manipulator is com-
manded to move with respect to its floating base, [36]. Since
H™ is positive definite, a linearizing feedforward control law
T = H*(qJu+C"(q.¢)q, where w € R" is an auxiliary control
input, reduces the equations of motion to a decoupled second
order controllable system.

Assume next that the task is to move the end-effector to
some inertially fixed position and orientation, and for sim-
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Fig. 13. Due to a dynamic singularity at B, the end-effector misses point D

and moves to point C, which is an equilibrium point.

plicity, that N = 6. This is the case of Inertially-Referenced
End-Point Motion Control, and is required in inspection or
capture tasks, [36]. As shown in the same reference, almost
any controller can be used, provided that J* is not singular. If
a controller based on the inverse of this Jacobian is used, then
the control algorithm will fail computationally at a dynamic
singularity. A controller based on a transposed Jacobian will
result in large errors. For example, Fig. 13 shows the path
taken by a system’s end-effector when commanded to move
from point A to point C. A simple transposed Jacobian control
law is used

7= T{K, (24es — x) — KuT}. (24)

where z represents the Cartesian location of the end-effector,
and Zqes the desired location. Since this Cartesian path lies
in the PDW of the free-floating system, a dynamic singularity
occurs at point B, and the end-effector diverges to point C,
which is an equilibrium point. This does not mean that point
C is not reachable from point A. In fact, as shown in [38], a
path to point D can be constructed by exploiting the properties
of the PIW and PDW. An example of such a path is depicted
in Fig. 14(a). Fig. 14(b) shows the change of the spacecraft
orientation when the end-effector follows the path shown in
Fig. 14(a). It can be seen that the effect of path ABC is to
gradually change the spacecraft orientation to one from which
point D is reachable.

This section demonstrated some of the complex dynamics
and control challenges unique in free-flying and free-floating
space robotic systems. It was shown that a thorough under-
standing of the dynamics of such systems is a prerequisite in
solving the associated control and planning problems.

VII. CONCLUSION

Autonomous robotic and telerobotic systems have been
proposed for a number of important missions in space. How-
ever, these ambitious systems will require the solution of a
number of critical dynamics and control problems, some of
which are unique to space robotics. These problems are also
challenging, principally because the dynamics of these systems
are complex. This paper has attempted to give a sense of
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Fig. 14. (a) Path ABCD avoids singularities by employing small circles at
point B. (b) The orientation of the spacecraft ¢ as a function of the path
ABCD, in Fig. 6(a).

some of the planning and control problems posed by free-
flying and free-floating space robotic systems. Clearly there
are many other important, unsolved problems, not discussed.
Many of these have not even been recognized yet. Some of
the accomplishments of the research community have been
briefly reviewed, and three specific examples of space robotics
problems and their solutions have been presented. These
suggest that the key to solving the problems of planning and
control of space robotic systems lies in understanding the
fundamental dynamic behavior of these systems.
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