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Design and Evaluation of Dynamic Positioning
Controllers With Parasitic Thrust Reduction

for an Overactuated Floating Platform
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Abstract— We investigate which control technique is the most
suitable for the dynamic positioning of an overactuated platform.
To this end, we develop a backstepping and a model predictive
controller (MPC). The presence of redundant control inputs
makes the stabilization of the position and the orientation of
the platform challenging. Settling delays in the actuator thrust
and angle, thrust saturation bounds, and jet rotational velocity
bounds contribute to the challenge of the problem. To reduce
energy consumption, we propose a technique for restricting the
parasitic thrust effect. The significant energy reduction due to
parasitic thrust restriction is illustrated in tables. The perfor-
mance of the controllers is demonstrated by simulations, under
realistic environmental disturbances, and is compared with that
of a model-based PID controller previously developed, while the
platform accomplishes two typical tasks. The evaluation criteria
include energy consumption, robustness, and accuracy of the
dynamic positioning. Results show the superiority of the MPC.

Index Terms— Backstepping (BS), control systems evaluation,
dynamic positioning, model predictive controller (MPC), overac-
tuated robotics.

I. INTRODUCTION

SEA platforms are used in a wide range of applications in
the industrial and scientific sector. The petroleum industry

has instated sea platforms to particular sites for the extraction
and processing of oil and natural gas. Sea platforms are also
used for the submergence of equipment to be assembled under
water. Fixed-platform costs are high because they are designed
for long term use and they need continuous maintenance
because of salt water erosion. To reduce costs, moving floating
platforms are introduced. Autonomous floating platforms must
have the capability for dynamic positioning. To this end,
motion control and dynamic positioning techniques have been
proposed in [1] and [2]. A control allocation scheme must
be applied on overactuated platforms for the resolution of the
redundant control inputs. A survey on control allocation is
presented in [3].

Floating platforms are overactuated with maneuver capabili-
ties. However, the redundant control inputs, the settling delays
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Fig. 1. Vereniki.

in the actuator thrust and angle, the hardware limitations,
the strong environmental disturbances, and the need for mini-
mum energy consumption render the problem of their dynamic
positioning challenging.

Methodologies have been presented for the robust dynamic
positioning of marine vessels [4], for the tracking control of
overactuated surface vessels [5], and for the heading control
of yachts [6] and ships [7]. Results on the compensation
of sideslips forces acting on marine vessels are presented
in [8]. The development of an adaptive controller for ships
with partially unknown dynamics is presented in [9]. In these
works, the authors focus on the mathematical formulation of
the controller without taking into account settling delays and
hardware limitations inserted by the actuation mechanisms and
actuator dynamics.

Backstepping (BS) and model predictive controller (MPC)
[25] are widely applied control techniques for marine vessels
such as ships [10], [11], underwater vessels [12], [13], and
surface vessels [14], [15]. However, very few papers present
studies about the performance of the developed controllers. A
study on controller performance of marine robots is presented
in [16]. Comparative studies are even more rare.

The overactuated floating platform, named Vereniki
(see Figs. 1 and 2), was designed to deploy a deep-sea
telescope for the detection of neutrinos [17]. The initial study
on the modeling and control of Vereniki can be found in [18].
A detailed description of the model, the allocation scheme,
the environmental forces, namely, wind, wave, and current
forces, and the design of the model-based PID (MB-PID)
controller are presented in [19] and [22]. The design of a
BS controller for Vereniki and the proposal of a heuristic for
energy reduction were presented in [20]. An initial design of
the MPC for Vereniki was presented in [21]. In the design of
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Fig. 2. Vereniki geometrical representation.

the controllers of Vereniki, settling delays in the actuator thrust
and angle, thrust saturation bounds, jet rotational velocity
bounds, and actuator dynamics are taken into consideration.

We improve the BS and the MPC, we evaluate them,
and we compare them with an MB-PID developed previ-
ously [19], [22]. In Section II, we describe the mechanical
characteristics of the platform, the hydrodynamic and environ-
mental forces, the kinematics and dynamics, and the allocation
scheme.

In Section III, we present the problem of parasitic thrust
and we propose a novel technique for its restriction. The
restriction of parasitic thrust will considerably reduce the
energy consumed. The energy reduction for each controller
is presented in Tables VI and XVI in Section V. The proposed
technique can be applied to all vectored thrust vessels, surface,
underwater, or aerial, with considerable reduction in the energy
consumption.

In Section IV, we present the formulation of the controllers.
BS is given in detail, while in [20], we just give the formula
of the controls. BS accurately handles settling delays in the
development of the desired forces and torque on the center
mass (CM) of the platform produced by the actuators. These
delays are considered as some kind of disturbance in other
controllers, without any handling.

Compared with [21], the MPC is improved. In the previous
MPC, for a large prediction horizon, the optimization problem
was becoming ill-conditioned, meaning that slight changes in
the state vector could result in considerable changes on the
control input. This is unwanted when we have saturation limits.
In this paper, MPC handles this issue.

The evaluation presented in Section V was based on three
criteria: 1) robustness; 2) energy consumption; and 3) accuracy
of positioning, while the platform accomplishes two tasks. The
robustness in mass is an important feature, as these platforms
carry loads. The introduced performance index (PI) correlates
energy consumption and accuracy positioning. Based on sim-
ulations, we make a comparative study, which concludes with
the superiority of the MPC in both tasks.

II. DESCRIPTION AND MODELING

OF THE PLATFORM VERENIKI

Vereniki is an isosceles platform with a double cylinder
at each corner. The hollow cylinders contain the jet diesel
engines and the electrohydraulic motors responsible for the
rotation of the jets that apply thrust parallel to the sea surface.
This configuration restricts the motion of the platform on the
seaplane. The platform position and orientation are obtained
through GPS sensors [19]. In order to filter the noise inserted
from the measurements, the wind, and the waves, we use a
Butterworth filter. The controller compensates low-frequency
noise interference and the low-pass Butterworth cuts the
uncompensated high-frequency interference [22]. Hardware
limitations include the thrust upper limit of 20 kN and the
jet angular velocity limit of 0.84 rad/s. Thrust is never set to
zero. The settling time in developing the jet thrust response
is about 8 s and the jet angle response is about 4 s. The jet
thrust J and angle rotation ϕ dynamics are approximated by
a first-order system based on data from the manufacturer of
the jets

J̇i = (1/τJ )(Ji,des − Ji )

ϕ̇i = (1/τϕ)(ϕi,des − ϕi ) (1)

where τJ and τϕ are the jet thrust and the rotation time
constant, for i = A, B,C . Ji , ϕi ∈ R. In simulation, τJ = 2 s
and τϕ = 1 s. The desired thrust Ji,des is the thrust we would
like to be produced by each jet, respectively. The desired
angle ϕi,des is the direction we would like each jet to have.

A. Hydrodynamic Forces and Environmental Forces

The hydrodynamic force acting on each cylinder includes
two terms. The first term is the added mass force, which is a
linear function of the acceleration of each cylinder. The second
term is the drag force, which is a quadratic function of the
velocity of each cylinder (see [23], [24]). The normal to the
axis of each cylinder force on the double-cylinder structure
at point A (see Fig. 2) expressed in body-fixed frame {B} is
given according to Morison’s equation by

Bfh,A = Caπρw
[
R2

uc(Huc − h)+ R2
lc Hlc

](Bv̇⊥
wat − BaA

)

+ Cdρw[Ruc(Huc − h)+ Rlc Hlc]
∥∥(Bv⊥

wat − BvA
)∥∥

· (Bv⊥
wat − BvA

)
(2)

where ρw is the water density, Ca is the added mass coefficient,
and Cd the drag coefficient. BvA and BaA are the velocity
and acceleration of cylinder A, respectively. Bv⊥

wat is the
component of the velocity vector of the water normal to the
axis of each cylinder, calculated from the vectorial addition
of the sea current velocity, and the water flow velocity due to
sea waves, all expressed in the body-fixed frame [19], [22].
Parameters h, Ruc, Huc, Rlc, and Hlc denote the height of
the cylinder above the water surface and the radius and
height of the upper and lower cylinder sections, respectively
(see [19], [22] and Fig. 2).

The hydrodynamic forces on A given by (2) result in a
force acting on the platform CM: B fT

h,A and a moment about
it: (BsA/G × Bfh,A), where BsA/G is the position of point A
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Fig. 3. Environmental disturbances based on data from [17].

with respect to G expressed in {B} (see [19], [22] and Fig. 2).
All terms of the force BfT

h,A and the torque (BsA/G × Bfh,A)
that are quadratic functions of the velocity of the platform are
collected in vector

q = [ fx , fy ,mz]T (3)

where fx and fy are hydrodynamic forces along the x- and
y-axis, respectively, and mz is the torque along the z-axis. The
terms that depend linearly on water speed and acceleration are
incorporated in the models that generate the wave forces that
act on the platform (see [2]). Simulation models also generate
the wind and current forces [2]. Wind, wave, and current
generated disturbance forces and torques are gathered in qdist.
Both q,qdist ∈ R3. The controllers have no information
about the environmental disturbances. We have to tune the
controllers in a way such that the platform converges to (0, 0)
despite the disturbances qdist. Some characteristic values used
in the simulation are: dAG = 26.694 m, dBD = 18.241 m,
Ruc = 2.2 m, Huc = 6.3 m, Rlc = 3.4 m, Hlc = 3.0 m,
Ca = 0.55, Cd = 0.8, and ρ = 1025 kg/m3.

The hydrodynamic forces/torque acting on the platform CM
and the simulation models of forces/torque due to wind, waves,
and currents are described in detail in [2], [19], and [22].
Fig. 3 shows a typical sample of wind and wave forces
used in the simulation. Inertial sea current speed is vc(t) ≤
0.514 m/s (1 kn) and wind speed is vw(t) ≤ 7.9 m/s (15 kn).
Maximum values are retrieved from meteorological data [17].
Since the platform will perform on days with low wave
height of Douglas scale 0–2, we do not take into account the
forces from the waves on the z-axis of the platform. On the
simulations, the direction of the wind and wave forces is
against the motion of the platform for maximum resistance.
In this way, we test the platform in extreme environmental
conditions.

B. Kinematics and Dynamics

The kinematic equation for the platform planar motion is
⎡

⎣
ẋ
ẏ
ψ̇

⎤

⎦ =
⎡

⎣
cψ −sψ 0
sψ cψ 0
0 0 1

⎤

⎦

⎡

⎣
u
v
r

⎤

⎦ ⇒ ẋ = Rv (4)

where x = [x, y, ψ] ∈ R3, v = [u, v, r ] ∈ R3, and R3×3
is the rotation matrix. The variables x and y are platform
CM inertial coordinates defined at the inertial frame {I}
(see Fig. 2). In Fig. 2, point G stands for the CM of the
platform. Variable ψ represents the orientation of the body-
fixed frame {B} with origin at the platform CM (see Fig. 2).
Surge, sway, and yaw (angular) velocities are represented by
u, v, and r , respectively, defined in the body-fixed frame {B}
(see Fig. 2); s· = sin(·); c · = cos(·). Assuming that the
CM of the platform is at the triangle centroid and that
the motion is strictly planar, the equation of motion
on {B} is

Mv̇ = q + qdist + τ c (5)

where q is given in (3), qdist represents wind, wave,
and current generated disturbance forces and torques, and
τ c = [Fx , Fy,Mz ]T ∈ R3 represents the forces/torque devel-
oped on the CM due to the vectored thrusts provided by the
jets. The mass and added mass matrix M3×3 is

M = diag(m − 3ma,m − 3ma,m33)

m33 = Izz − (
d2

AG + 2d2
BD + 2d2

DG

)
ma

ma = −ρπCa
(
R2

uc(Huc − h)+ R2
lc Hlc

)
(6)

where m is the mass of the platform, ma is the added mass,
and Izz is the mass moment of inertia about the zb-axis
(see [19], [22]). The axes xb, yb, and zb form an orthogonal
system fixed on the platform CM (G) (see Fig. 2). The
values used in the simulation are: m = 425 ∗ 103 kg,

ma = −7.791 ∗ 104 kg, and Izz = 1.8159 ∗ 108 kgm2.
The kinematics, dynamics, matrix M, and added mass ma are
described in detail in [19] and [22].

C. Control Allocation

The controllers compute the desired forces (Fx,des, Fy,des)
and desired torque Mz,des to be applied to the CM of the
platform. The desired forces and torque must be resolved
to desired jet thrusts (JA,des, JB,des, JC,des) and desired jet
angles (ϕA,des, ϕB,des, ϕC,des), which denote the directions of
jets vectored thrust. A control allocation scheme is required
for the resolution of desired forces and torque to desired
thrusts and desired angles (see Fig. 7 for BS and Fig. 8 for
MPC). Forces and torque, applied to the platform CM, are
related to jet thrusts and angles, according to the following
relation:
τ c,des(3×1) = [Fx,des, Fy,des,Mz,des]T = B3×6fc,des(6×1) (7)

B =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

1 0 0
0 −1 −dAG

1 0 −dDC

0 −1 dDG

1 0 dDC

0 −1 dDG

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

T

, fc,des =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

JA,dessϕA,des

JA,descϕA,des

JB,dessϕB,des

JB,descϕB,des

JC,dessϕC,des

JC.descϕC,des

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

.

(8)

The dimensional parameters in B are defined in Fig. 2.
Two steps define the control allocation scheme.
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Fig. 4. (a) Parasitic thrust. (b) Ideal response.

1) Pseudoinversion of B, yielding fc,des.
2) Using fc,des that contains the components of desired

thrusts along the x- and y-axis {I}, we get desired
thrusts and angles

Ji,des =
√
(Ji,des sϕi,des)2 + (Ji,des cϕi,des)2

ϕi,des = a tan 2(Ji,des sϕi,des, Ji,des cϕi,des),

0 ≤ ϕi,des < 2π (9)

where i = A, B,C .

The signals of the desired thrusts and the desired angles will
be driven to the actual actuators of the platform, which are
the rotating jets (see Figs. 7 and 8). The thrust and the angle
response of the rotating jets are given by (1). As a result, the
jets will produce the forces (Fx , Fy) and the torque Mz (7)
that will drive the platform to a given position and with a
given orientation.

Since the minimization of the energy consumed is the most
important criterion of the evaluation process, we have to take
advantage of the overactuated configuration. The pseudoinver-
sion of B in (8) results the vector fc,des with the minimum
norm between all the possible solutions of (7)

min(‖ fc,des‖) = min
(√

J 2
A + J 2

B + J 2
C

)
⇒ min E . (10)

The fix angle configuration for our platform presented in [18]
consumes more energy and restricts the dynamic positioning
capabilities of the platform.

III. PARASITIC THRUST PHENOMENON

At the end of each computational cycle, the controller sends
to the actuation systems a set of desired thrusts and angles.
Hardware limitations, settling delays, and environmental dis-
turbances prevent the jets from reaching the desired angles
instantly. The vectored thrust attains the desired direction after
several control loops. The thrust component normal to the
desired direction is a parasitic thrust [see Fig. 4(a)]. The ideal
response is depicted in Fig. 4(b).

The parasitic thrust is a common phenomenon to sys-
tems controlled by vectored thrust, and in most cases, it is
considered as a disturbance, without any special treatment.
In this paper, we propose a technique to restrict the effect of
the parasitic thrust. The main idea is that it is preferable to
have very low thrust when this is too far from the desired
direction. So, Ji,des is multiplied with the factor ci ∈ R

ci = exp(−a|ϕi,des − ϕi |). (11)

Fig. 5. (a) Real response. (b) Thrust manipulation.

Fig. 6. F = J ∗ sin(ϕ); J , ϕ separately (left); F (right).

The coefficient a ∈ R is selected so that when |ϕi,des − ϕi |
is close to 180◦, ci is close to zero. With this technique,
we reduce the energy consumed for the counteraction of the
parasitic thrust. Fig. 5(a) shows the real response of the jet.
Fig. 5(b) illustrates the use of (11). The thrust is reduced
during jet rotation to be restored to the required thrust when
ϕi,des = ϕi . In the simulation, a = 0.735.

IV. DESIGN OF CONTROLLERS

A. Backstepping Controller

In BS, we accurately handle the settling delays. Since there
exists a settling delay in the development of the desired thrusts
and angles, we assume that there must also exist a settling
delay in the development of the desired forces and torque
on platform CM. Jet thrust and angle response are modeled
by a first-order system (1). The development of the forces
and the torque on platform CM is modeled by a second-order
system, as it can capture overshoots in the response generated
by multiplications of the thrust Ji with the s(·) or c(·) of the
angles, which does not a first-order system (see Fig. 6). So,
we have

τ̈ c = −(1/τ1)τ̇ c − (1/τ2)τ c + (1/τ3)τ c,des (12)

where τ1, τ2, and τ3 are time constants and τc,des is the input
vector

τ c,des = [Fx,des, Fy,des,Mz,des]T = [uFx , uFy , uMz ]T. (13)

The desired forces/torque are the controller inputs. In Fig. 6,
we can see the response of F = J ·sin(ϕ) in two cases. On the
left, we order J to change from 10 N to 20 kN and ϕ from
0◦ to 150◦, J and ϕ being governed by (1); and we plot the
result of the multiplication. On the right, we order quantity F
to change from 10 to 20000∗sin(150), F is governed by (12),
with τ1 = 10 s, τ2 = 20 s, and τ3 = 23 s. We see that (12)
captures the overshoot.
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We cannot apply the representation (12) in the MB-PID
or MPC because in the design of these controllers the
forces/torque are used as control variables for the cancellation
of the nonlinearities to yield a linear system with bounded
disturbance [see (79)]. For BS, the system under control is (4),
(5), and (12). Term qdist is treated as an external disturbance.
In order to make it easier for the reader to follow, the system
is repeated in the following equations:

ẋ = Rv (14)

v̇ = M−1(q + τ c) (15)

τ̈ c = −(1/τ1)τ̇ c − (1/τ1)τ c + (1/τ1)τ c,des. (16)

We consider the following transformation for the second-order
system (16):

τ̇ c = p

ṗ = −(1/τ1)p − (1/τ1)τ c − (1/τ1)τ c,des (17)

where

p = [px, py, pz]T = [Ḟx , Ḟy , Ṁz ]T. (18)

The transformation described in (17) and (18) for a second-
order system can be inductively extended to higher order
systems. The BS controller we develop does not depend on
the order of the dynamics which describe the development of
the forces and the torque on platform CM. The BS design with
first-order system in forces/torque was given in [20].

1) Preliminary Computations: The reference position,
direction, and velocities are denoted by xR , yR , ψR , u R ,
vR , and rR , respectively. The tracking errors are defined as
xe = x − xR , ye = y − yR , ψe = ψ − ψR , ue = u − u R ,
ve = v − vR , and re = r − rR . After the substitution of the
tracking errors into (4), the following equations result:
[

ẋe

ẏe

]
=

[
cψ −sψ
sψ cψ

] [
ue

ve

]
+

[
δ1
δ2

]
(19)

ψ̇e = re (20)

δ =
[
δ1
δ2

]
=

[
cψ−cψR −sψ + sψR

sψ−sψR cψ − cψR

] [
u R

vR

]
. (21)

Since u R and vR are bounded desired velocities, and quantities
δ1 and δ2 are treated as bounded disturbance. For a stabilized
ψ (ψ → ψR), this disturbance tends to zero.

2) Stabilization Process:
a) Step 1: We begin with the stabilization of (19). The

linear velocities ue and ve are the virtual control variables. The
desired values for the virtual controls ue and ve are given by

[
ue,des
ve,des

]
= −

[
cψ sψ

−sψ cψ

]
[K + K1]

[
xe

ye

]

K = diag(k, k), K1 = diag(k1, k1). (22)

The reason for choosing these desired values is that their
substitution into (19) results in an exponentially decreas-
ing response augmented by bounded disturbances, reassuring
convergence to (0, 0)

[
ẋe

ẏe

]
= −

[
k + k1 0

0 k + k1

] [
xe

ye

]
+

[
δ1
δ2

]
(23)

where k and k1 are positive numbers.

Using (19) and (22), we compute the derivatives of ue,des
and ve,des. To simplify the expressions, we take advantage of
the fact that the angular rate of the platform and as such of
the reference frame is so low that it can be neglected

u̇e,des = −(k + k1)ue − (k + k1)(δ1cψ + δ2sψ)

v̇e,des = −(k + k1)ve − (k + k1)(−δ1sψ + δ2cψ). (24)

We define the following Lyapunov function, as if we had to
stabilize only subsystem (19):

V1 = (1/2)x2
e + (1/2)y2

e (25)

V̇1 = −kx2
e − ky2

e − k1

(
xe − δ1

2k1

)2

− k1

(
ye − δ2

2k1

)2

+ ‖δ‖2

4k1
. (26)

Both k and k1 gains are necessary to formulate the quadratic
form (26). All terms in V̇1 are negative except to ||δ||2/4k1
which can be very small, by choosing a large k1. The linear
velocities ue and ve are virtual controls. We cannot attribute
to them desired values, but we can make them converge to
these desired values. To this end, we introduce the following
error variables and stabilize these to (0, 0):

zu = ue − ue,des ⇒ ue = zu + ue,des

zv = ve − ve,des ⇒ ve = zv + ve,des. (27)

Since we have defined these two new variables, we have to
make a change of variables in (19). Substituting (22) and (27)
into (19) yields the following subsystem:

[
ẋe

ẏe

]
= −

[
k + k1 0

0 k + k1

] [
xe

ye

]

+
[

cψ −sψ
sψ cψ

] [
zu

zv

]
+

[
δ1
δ2

]
. (28)

Based on (15), the derivatives of the linear velocities are

u̇e = (1/(m − 3ma))( fx + Fx )− u̇ R

v̇e = (1/(m − 3ma))( fy + Fy)− v̇R . (29)

To drive zu and zv to (0, 0), we have to describe their
dynamics. Using (24), (27), and (29), we compute the error
derivatives

żu = (1/(m − 3ma)) fx − u̇ R + (k + k1)ue

+ (k + k1)(δ1cψ + δ2sψ)+ (1/(m − 3ma))Fx

żv = (1/(m − 3ma)) fy − v̇R + (k + k1)ve

− (k + k1)(δ1sψ − δ2cψ)+ (1/(m − 3ma))Fy . (30)

b) Step 2: We continue with the stabilization of
system (30). The variables Fx and Fy are the virtual controls.
To stabilize (30), we compute the desired forces
Fx,des and Fy,des and make the forces Fx and Fy converge to
them. We update the Lyapunov

V2 = V1 + (1/2)
(
z2

u + z2
v

)
. (31)
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Then, we compute its derivative

V̇2 = V̇1 + zu((1/(m − 3ma)) fx − u̇ R + (k + k1)ue

+ (k + k1)(δ1cψ + δ2sψ) + (xecψ + yesψ)

+ (1/(m − 3ma))Fx )+ zv((1/(m − 3ma)) fy − v̇R

+ (k + k1)ve − (k + k1)(δ1sψ − δ2cψ)

+ (−xesψ + yecψ)+ (1/(m − 3ma))Fy). (32)

After the introduction of zu and zv, the derivatives of xe and ye

are given by (28). The desired forces (virtual controls) are

Fx,des = (m − 3ma)(−(1/(m − 3ma)) fx + u̇ R

− (k + k1)ue − (k + k1)(δ1cψ + δ2sψ)

− (xecψ + yesψ) − cuzu)

Fy,des = (m − 3ma)(−(1/(m − 3ma)) fy + v̇R

− (k + k1)ve + (k + k1)(δ1sψ − δ2cψ)

− (−xesψ + yecψ)− cvzv). (33)

The Lyapunov derivative takes the following form:
V̇2 = V̇1 − cuz2

u − cvz2
v . (34)

The variables Fx and Fy are the virtual controls. So, for the
same reason as in (27), we define the following errors:

zFx = Fx − Fx,des ⇒ Fx = zFx + Fx,des

zFy = Fy − Fy,des ⇒ Fy = zFy + Fy,des. (35)

Based on (18), we compute the dynamics of the errors (35)

żFx = px − Ḟx,des

żFy = py − Ḟy,des. (36)

Since we have defined two new variables, we have to make
the change of variables in (30). After substitution of (33) and
(35) into (30), we obtain the following subsystem:

żu = −cuzu − (xecψ + yesψ)+ (1/(m − 3ma))zFx

żv = −cvzv − (−xesψ + yecψ)+ (1/(m − 3ma))zFy .

(37)

c) Step 3: We will stabilize subsystem (36). The updated
Lyapunov function has the following form:

V3 = V2 + 1

2
z2

Fx
+ 1

2
z2

Fy
. (38)

After derivation of the Lyapunov function, we compute px,des
and py,des [see (18)], so that all terms are negative except
to ||δ||2/4k1

px,des = Ḟx,des − (1/(m − 3ma))zu − cFx zFx

py,des = Ḟy,des − (1/(m − 3ma))zv − cFy zFy . (39)

The derivative of V3 becomes

V̇3 = V̇2 − cFx z2
Fx

− cFy z2
Fy
. (40)

We also compute the respective errors and their time deriva-
tives, according to (17)

z px = px − px,des ⇒ px = z px + px,des

z py = py − py,des ⇒ py = z py + py,des (41)

ż px = −(1/τ1)px − (1/τ1)Fx − ṗx,des + (1/τ1)uFx

ż py = −(1/τ1)py − (1/τ1)Fy − ṗy,des + (1/τ1)uFy . (42)

Substitution of (39) and (41) into (36) yields the following
stabilized subsystem:

żFx = −cFx zFx − (1/(m − 3ma))zu + z px

żFy = −cFy zFy − (1/(m − 3ma))zv + z py . (43)

d) Step 4: For the stabilization of the subsystem (42), we
renew the Lyapunov function

V4 = V3 + (1/2)
(
z2

px
+ z2

py

)
. (44)

To have negative terms in V̇4, except for the term ||δ||2/4k1,
the control inputs are selected as

uFx = τ1
( − zFx + τ−1

1 px + τ−1
1 Fx + ṗx,des − cpx z px

)

uFy = τ1
( − zFy + τ−1

1 py + τ−1
1 Fy + ṗy,des − cpy z py

)
.

(45)

Then the derivative of V4 becomes

V̇4 = V̇3 − cpx z px − cpy z py . (46)

The substitution of the control inputs uFx and uFy into (42)
results in the following subsystem:

ż px = −cpx z px − zFx

ż py = −cpy z py − zFy . (47)

e) Step 5: To stabilize (20), the desired value for re is

re,des = −cψψe. (48)

The updated Lyapunov function and its derivative are

V5 = V4 + 1

2
ψ2

e

V̇5 = V̇4 − cψψ
2
e . (49)

The variable re is not a true control so we introduce the
following error variable:

zr = re − re,des ⇒ re = zr + re,des. (50)

After substitution into (20), we obtain

ψ̇e = −cψψe + zr . (51)

The time derivative of re from (15) is expressed as

ṙe = (1/m33)mz − ṙR + (1/m33)Mz . (52)

Using (48), (50), and (52), the time derivative of zr is

żr = (1/m33)mz − ṙR + cψre + (1/m33)Mz . (53)

For the new Lyapunov function, given below, we compute the
desired value of Mz

V6 = V5 + (1/2)z2
r (54)

V̇6 = V̇5+zr (ψe +(1/m33)mz −ṙR + cψre + (1/m33)Mz)

(55)

Mz,des = m33(−ψe − (1/m33)mz + ṙR − cψre − cr zr ) (56)

where Mz is not a true control, so we introduce the following
errors:

zMz = Mz − Mz,des ⇒ Mz = zMz + Mz,des. (57)
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The substitution of Mz into (53) yields

żr = −cr zr − ψe + (1/m33)zMz . (58)

The derivative of zMz is

żMz = pz − Ṁz,des. (59)

We again update the Lyapunov function

V7 = V6 + (1/2)z2
Mz

(60)

V̇7 = V̇6 + zMz (pz − Ṁz,des + (1/m33)zr ). (61)

The desired value for pz and the equivalent error variable are

pz,des = Ṁz,des − cMzzMz − (1/m33)zr (62)

z pz = pz − pz,des ⇒ pz = z pz + pz,des. (63)

After substitution of (63) into (59), we obtain

żMz = −cMzzMz − (1/m33)zr + z pz . (64)

Based on (17), the derivative of z pz is

ż pz = −(1/τ1)pz − (1/τ1)Mz − ṗz,des + (1/τ1)uMz . (65)

We update the Lyapunov function and we compute uMz

V8 = V7 + (1/2)z2
pz

(66)

V̇8 = V̇7 + z pz

(
zMz − 1

τ1
pz − 1

τ1
Mz − ṗz,des + 1

τ1
uMz

)

(67)

uMz = τ1
( − zMz + τ−1

1 pz + τ−1
1 Mz + ṗz,des − cpz z pz

)
.

(68)

After substitution of uMz into (65), we have

żMz = −cpzz pz − zMz . (69)

The final Lyapunov function is V8 and will be denoted by V f .
The final stabilized system consists of (28), (37), (43), (47),
(51), (64), and (69). The controller is defined by (45) and (68).

f) Step 6: To formally validate the convergence of the
controller to a neighborhood of (0, 0), we apply the com-
parison lemma. We define the errors vector: w = [xe, ye,
ψe, zu , zv, zr , zF x , zFy , zMz , zpx , zpy , zpz]T . We consider
g = min{k, k1, cu, cv, cψ , cF x , cFy , cMz , cpx , cpy , cpz}. Then,
the following hold:

V f = 1

2
‖w‖2 (70)

V̇ f ≤ −2gV f + (‖δ‖2/4k1). (71)

Following the employment of the comparison lemma, this
inequality yields:

V f (t) ≤ V f (0)e−2gt + (‖δ‖2/2g4k1), t ∈ [0, tfinal) (72)

‖w(t)‖ ≤ ‖w(0)‖e−gt + (

√
‖δ‖2/g4k1), t ∈ [0, tfinal). (73)

The error remains in a neighborhood of zero, which can be
reduced as desired by increasing k1. The three control inputs
uF x , uFy , and uMz are directed to the allocation scheme, in
the place of Fx , Fy , and Mz , to be resolved into thrust and
angle control inputs: Ja,des, Jb,des, and Jc,des and ϕa,des, ϕb,des,

Fig. 7. Allocation diagram BS controller.

and ϕc,des, respectively. Fig. 7 depicts the control allocation
for BS.

In (25), we are using a Lyapunov of the form
V1 = (1/2)x2

e + (1/2)y2
e . Even if, we chose a Lyapunov

with a nondiagonal positive definite matrix of the form
V = [xe, ye]P[xe, ye]T , we would change only the speed of
convergence of the controller. Since we can achieve any speed
of convergence with a diagonal matrix diag(1/2, 1/2) simply
by adjusting k (23), the extra entries of P will not provide
us more tuning capabilities in order to improve the energy
consumption, the accuracy of the dynamic positioning, or the
robustness of the platform. This holds for any intermediate
Lyapunov function we design in the BS process. Furthermore,
using a Lyapunov of the form V = [xe, ye]P[xe, ye]T does not
allow us to use the comparison lemma (70)–(73) in order to
formally validate the convergence of the controller.

3) Tuning Procedure: The final stabilized system can be
written in matrix form

ẋ = Ax + D (74)

where x = [xe, ye, ψe, zu , zv, zr , zFx , zFy , zMz , z px , z py , z pz ]T

and A is a square matrix 12 × 12. Diagonal entries can be
adjusted during the tuning process: a1,1 = −(k + k1), a2,2 =
−(k + k1), a3,3 = −cψ , a4,4 = −cu , a5,5 = −cv, a6,6 = −cr,
a7,7 = −cFx, a8,8 = −cFy, a9,9 = −cMz, a10,10 = −cpx,
a11,11 = −cpy, and a12,12 = −cpz. Diagonal terms must be
chosen so that the eigenvalues of A have negative real parts.
D = [δT |0]T . The real part of the eigenvalues determines the
rate of convergence of the errors to zero. The mass of the
platform, hardware limitations, and settling delays limit
the convergence rate and the gains cannot increase arbitrarily.

The platform carries heavy loads so the mass is not exactly
known. The velocities and the forces are not measured.
So, this multistep BS provides robustness to our controller
and more tolerance to the error propagation.

B. Model Predictive Controller

In a preliminary study of an MPC [21], we found
that when a large prediction horizon was applied, it was
observed that a slight change in the state values resulted
in considerable changes to the computed control input,
i.e., an undesired property for systems with limitations. Here,
we present an MPC, in which the large prediction horizon
issue is handled effectively. Therefore, here large prediction
horizons can be used in the tuning process, providing extended
capabilities to the MPC.
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In the design of the MB-PID [19] and of the MPC [21],
initially the model-based technique is employed. Forces and
torque are chosen such that nonlinearities are canceled. This
yields a linear system with bounded disturbances, which can
be regulated by a PID controller or by a linear MPC. We com-
pute ẋ(t) by subtracting two consecutive values of x and then
divide them by the time step of the GPS. We compute ẍ by
subtracting two consecutive values of ẋ and then divide by the
time step of the GPS. Position is provided through GPS and
orientation through a compass system.

1) Model-Based Technique: After derivation of the kine-
matic equation (4), we obtain

ẍ = Rv̇ + Ṙv ⇔ v̇ = R−1(ẍ − Ṙv). (75)

Substitution of (75) into the equation of motion (5) yields

τ c = MR−1ẍ − MR−1ṘR−1ẋ − q − qdist. (76)

To reduce our system under control to a linear system with
bounded disturbances, we select the following τ c,des:

τ c,des = MR−1ffb − MR−1ṘR
−1

ẋ − q. (77)

After substitution of τ c,des (77) into τ c (76), the following
linear system with bounded disturbances results:

ẍ = ffb − RM−1qdist (78)

where vector ffb(3×1) = [uF x , uFy, uMz]T is the control input.
The double integrator (78) can be rewritten as

ẋl =
[

03×3 I3×3
03×3 03×3

]
xl +

[
03×3
I3×3

]
ffb +

[
03×1

−RM−1qdist

]

y = [
I3×3 03×3

]
xl (79)

where xl = [x, y, ψ, ẋ, ẏ, ψ̇ ]T .
The vector RM−1qdist corresponds to the external bounded

disturbance. The eigenvalues of (79) are all equal to zero,
so our reduced system is not asymptotically stable. This
is the reason why, a large prediction horizon leads to an
ill-conditioned optimization problem.

2) Augmented Model: We introduce an augmented descrip-
tion of the linear system (79). The augmented state vector
consists of the time derivative of the state vector in (79)
augmented by the three observed outputs x , y, and ψ

ẋaug =
⎡

⎣
03×3 I3×3 03×3
03×3 03×3 03×3
I3×3 03×3 03×3

⎤

⎦ xaug +
⎡

⎣
03×3
I3×3
03×3

⎤

⎦ ḟfb

= Axaug + Bḟfb

yaug = [
03×3 I3×3

]
xaug (80)

where xaug = [ẋ, ẏ, ψ̇, ẍ, ÿ, ψ̈, x, y, ψ]T . Vector RM−1qdist
is treated as an external bounded disturbance, the control has
no information about qdist; that is why its derivative does not
appear in (80). The appearance of ḟfb as the control input
is essential, since the quadratic cost function of the MPC
contains ḟfb.

The augmented state vector contains the state vector of
the linear system (79), as well as the second derivative
of the position and orientation variables. By regulating the

augmented model, we also regulate the linear model (79).
So, the augmented model (80) will be used as system model
instead of (79). Note that the eigenvalues of (80) are all equal
to zero, so it is not asymptotically stable.

3) Receding Horizon Principle: In the developed MPC, we
compute the prediction of the state vector and the optimal
control input trajectory within a prediction horizon. After the
computation of the optimal trajectory of the derivative of ffb,
we integrate it, we feed the plant with the initial value of
the control input only, and the plant performs a small motion.
Afterward, we compute again the prediction of the state and
the optimal control trajectory, having as initial state the new
state of the plant. Our new prediction horizon is the previous
one, receded by one time instant. This procedure is repeated
until the plant reaches the desired position and orientation. The
use of the initial value of ḟfb led to the idea that the derivative
of the control can be a state feedback

ḟfb(t) = −Kmpcxaug(t). (81)

We focus on the computation of matrix Kmpc, which will
come of the optimization phase. In order to simplify our
computations and save memory space in our computing sys-
tems, we approximate the time derivative of ffb with a linear
combination of Laguerre functions

ḟfb(t) ≈
⎡

⎣
L1(t)T η1
L2(t)T η2
L3(t)T η3

⎤

⎦ (82)

where L j = [l1, . . . , lN j ]T and η j = [c1, . . . , cN j ]T ,
j = 1, 2, 3.

The upper bound for index j is equal to the size of
control vector ffb. The number of Laguerre functions used
in the approximation is given by N j . Vector ηj contains the
coefficients of the linear combination. Laguerre functions are
defined by

li (t) = √
2 p j

e p j t

(i − 1)!
di−1

dt
[t i−1e−2p j t ]. (83)

The coefficient p j is the time scaling factor for the Laguerre
functions participating in L j , which determines the rate of
their exponential decay. N j and p are design parameters
determined during the tuning procedure.

4) Cost Function: To shift the eigenvalues of (80) to the
left-half plane, we use the technique of exponential data
weighting. To this end, we introduce the following cost
function:

J1 =
∫ Tp

0

(
e−2aτxaug(ti + τ |ti )T Qxaug(ti + τ |ti )
+ e−2aτ ḟT

fbWḟfb
)
dτ (84)

subject to (80)

ẋaug(ti + τ |ti ) = Axaug(ti + τ |ti )+ Bḟfb(τ ), 0 ≤ τ ≤ Tp.

(85)

The cost function in (84) includes the derivative of the control
input f fb and xaug(ti + τ |ti ) is the prediction of the state
vector of the augmented model given by (85), for the time
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interval [ti , ti + Tp] [see (91)]. Q and W are diagonal positive
definite matrices, Tp is the prediction horizon, and a > 0 is
the exponential decay factor. These four design parameters are
determined during the tuning procedure.

If we make the following change of variables:
xaug,a(ti +τ |ti ) = e−aτxaug(ti + τ |ti ), ḟfb,a(τ ) = e−aτ ḟfb(τ )

(86)

xaug,a(ti |ti ) = xaug(ti |ti ), ḟfb,a(0) = ḟfb(0), for τ = 0

(87)

minimization of (84) subject to (85) is equivalent to

J =
∫ Tp

0

(
xaug,a(ti + τ |ti )T Qxaug,a(ti + τ |ti )
+ ḟT

fb,aWḟfb,a
)
dτ (88)

subject to

ẋaug,a(ti +τ |ti ) = Aαxaug,a(ti +τ |ti )+Bḟfb,a(τ ), 0≤τ ≤Tp

(89)

where Aa = A − aI.
The eigenvalues of Aa (89) are the eigenvalues of A (85)

shifted by −a, where a > 0 is the exponential decay factor.
Since these two minimization problems are equivalent, instead
of applying the MPC technique to (84) and (85), we can apply
it to (88) and (89). Note that, although the state vector xaug,a(·)
and the derivative of the control input ḟfb,a(·) in (89) are dif-
ferent from the state vector xaug(·) and the control input ḟfb(·)
in (85), their initial values are equal [see (87)]. Therefore,
the initial control values we provide to the system (80) do
not change, while the ill-conditioning issue is resolved. From
(81) and (86), it also holds

ḟfb,a(t) = −Kmpcxaug,a(t). (90)

5) Prediction Phase: The cost function (88) includes the
prediction of the state vector over the prediction horizon.
This can be achieved by solving the linear system (89), for
0 ≤ τ ≤ Tp . Therefore, we substitute (82) into (86) and then
into (89) to solve and obtain

xaug,a(ti + τ |ti ) = eAaτxaug,a(ti )+ ϕ(τ )T η, 0 ≤ τ ≤ Tp

(91)

where

ϕ(τ )T = [ϕ1(τ )
T ,ϕ2(τ )

T ,ϕ3(τ )
T ]

ϕ j (τ )
T =

∫ τ

0
eAa(τ−γ )B j L j (γ )

T dγ j = 1, 2, 3. (92)

The dimension of ϕ j (τ ) is equal to n × N j , i = 1, 2, 3, where
n is the dimension of xaug,a(·). The matrix ϕ j (τ )

T can be
computed as the solution of the following equation:
Aaϕ j (τ )

T − ϕ j (τ )
T AT

p j
= −B j L j (τ )

T + eAaτB j L j (0)T

(93)

where

Ap j =

⎡

⎢⎢
⎢
⎣

−p j 0 · · · 0
−2 p j −p j · · · 0
...

...
. . .

...
−2 p j · · · −2 p j −p j

⎤

⎥⎥
⎥
⎦
. (94)

The dimension of Ap j is N j × N j . The coefficients
η = [ηT

1 , η
T
2 , η

T
3 ]T will be computed in the optimization

phase.
6) Optimization Phase: Substituting (90) and (91) into (88),

we compute the optimal coefficients η that minimize the cost
function (88) for 0 ≤ τ ≤ Tp

η = −�−1�xaug,a(ti |ti ) (95)

where

� =
∫ Tp

0
ϕ(τ )Qϕ(τ )T dτ + WL ,� =

∫ Tp

0
ϕ(τ )QeAaτdτ

(96)

where W = diag{w1, w2, w3} and WL is a block diagonal
matrix with the j th block being W j = w j IN j×N j , j = 1, 2, 3.
From (87) and (95), it holds

η = −�−1�xaug(ti |ti ). (97)

Using (82) and (86), the trajectory of the derivative of the
control input is

ḟfb,a(τ ) = e−aτ

⎡

⎣
L1(τ )

T 0 0
0 L2(τ )

T 0
0 0 L3(τ )

T

⎤

⎦

⎡

⎣
η1
η2
η3

⎤

⎦. (98)

In each cycle of computation, we keep only the initial value
of the whole trajectory. After substitution of (97) into (98) and
according to (87), we obtain

ḟfb(0)t=ti =
⎡

⎣
L1(0)T 0 0

0 L2(0)T 0
0 0 L3(0)T

⎤

⎦ �−1�xaug(ti |ti )

(99)

Kmpc =
⎡

⎣
L1(0)T 0 0

0 L2(0)T 0
0 0 L3(0)T

⎤

⎦ �−1�. (100)

Methodologies for embedding the constraints in the algorithm
of the MPC exist. However, the constrained quadratic pro-
gramming optimization problem, which produces the solution,
is computationally intensive. In the proposed MPC, Kmpc is
computed once. In the methodologies where constraints are
embedded, Kmpc must be computed in every control loop,
adding significant time delays, which may lead to loss of
control. Instead of embedding the constraints, we penalize ḟfb
with appropriate tuning of W. Now, we have ffb. Using (77),
we can compute τ c,des = [Fx,des, Fy,des,Mz,des]T . Using the
allocation scheme, we resolve the desired forces/torque to
the signals of desired thrusts/angles which will be driven to
the actuators (Fig. 8).
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Fig. 8. Allocation diagram MPC.

7) Tuning Procedure: The exponential decay factor a > 0
must be positive enough so that all eigenvalues have negative
real parts. The prediction horizon Tp is selected sufficiently
large to capture the evolution of the state vector. The weight
matrices Q and W must be tuned so that the platform reaches
the target, overcoming the environmental disturbances, without
exceeding thruster limits. Two or three Laguerre functions are
adequate for the approximation of the ḟfb around a neighbor-
hood of the initial value. Laguerre decay coefficients p j are
not given high values to avoid zero input at the very beginning
of the prediction horizon. Fig. 8 depicts the control allocation
of the platform in case of the MPC.

V. EVALUATION OF THE CONTROLLERS

The goal is the platform to enter a target circle centered at
(0, 0) with radius r = 5 m and to be directed to a predefined
direction of 0◦. We evaluate the performance of the controller
while the platform performs Task A and Task B.

In Task A, the platform starts from an initial position
(−20,−20) with an initial orientation of −20◦. It has to
enter and remain inside the target circle at 0◦ with a toler-
ance of ±10◦ in the presence of environmental disturbances.
In Task B, the platform is placed at (0, 0) and at an orientation
of 5◦; it must remain inside the target circle at an orientation
of 0◦ with a tolerance ±10◦. In Task B, the controllers were
tuned so that they exhibit the same maximum displacement
from (0, 0) under the same disturbances.

The evaluation is based on three criteria: 1) energy con-
sumption; 2) accuracy of the dynamic positioning; and
3) robustness in mass changes.

1) The energy consumed (E) by the platform is computed
using a curve, which relates the thrust force to the
input power needed to produce this thrust. The curve is
provided by the manufacturer of the platform jets and is
introduced as a lookup table in the MATLAB/Simulink
simulation.

2) The accuracy of the dynamic positioning is measured by

G =
∫ T

0
e(t)dt (101)

where

e =
√
(x − xdes)2 + (y − ydes)2 + (ψ − ψdes)2. (102)

The smaller the time integral of this error, the better the
accuracy of the dynamic positioning.

TABLE I

MB-PID TUNING, TASK A

TABLE II

BS TUNING, TASK A

Especially, for the BS controller for Task A, the refer-
ence position and orientation xr , yr , and ψr are given
by a fifth-order time polynomial with an initial value
of −20 and a final value of 0. Since xr (0) = −20,
xr (Tfinal) = 0 and yr (0) = −20, yr (Tfinal) = 0,
the fifth-order time polynomial of xr is the same as
that of yr , xr = yr . Therefore, (xr , yr ) is a straight
line connecting (−20,−20) with (0, 0). For Task B,
xr and yr are set to zero and ψr = 5◦. The ur , vr ,
and rr are computed after time differentiation of the
polynomials of xr , yr , and ψr and then use of (4). The
other two controllers do not follow a trajectory. Our goal
is to design controllers, which provide the best possible
accuracy of dynamic positioning, while they consume
the least possible energy in given time T . To correlate
the accuracy of dynamic positioning with the energy
consumed, we introduce the PI characterizing controller
performance

PI = (E/T ) · (G/T ) (103)

where E is the energy consumed and T is the total time
of the task.

3) Platforms like Vereniki are used to carry loads to be
submerged, which change considerably the total mass
of the platform. It is important for the controllers to
endure large errors in the change of mass.

A. Comparative Study—Task A

1) Presentation of the Results: In this section, we are
presenting the results employing the controllers in Task A.
The simulation lasts for T = 600 s. The gains of the MB-PID
were chosen after trial and error in a way that the consumed
energy is kept low and the platform remains inside the circle
despite the environmental disturbances (see [19], [22]). The
results of the tuning process of the MB-PID controller are
given in Table I.

For the BS controller, the time constants are τ1 = τ2 =
τ3 = 50 s. Considerably, smaller time constants result in
inadequate handling of the delays, while a higher time constant
makes the response very slow. The gains of the BS controller
are given in Table II. Much higher gains result in high
convergence rate above the capabilities of the platform.

Table III presents the Q and W matrices for the MPC. Very
high values in the diagonal elements of Q result in thrust
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TABLE III

MPC Q-W TUNING, TASK A

TABLE IV

MPC LAGUERRE PARAMETERS TUNING, TASK A

Fig. 9. Model predictive controller dynamic positioning—Task A.

requirements above their limits. Much smaller values in the
diagonal elements of W result in control inputs that exceed the
limits. Very high values in the diagonal elements of W keep
the control inputs low; however, in such a case, the platform
cannot overcome the environmental disturbances.

Table IV includes the Laguerre decay coefficients and the
number of Laguerre functions for each control input. Much
higher values in pi result in immediate convergence of the
control input to zero. A large number of Laguerre functions
would increase drastically the computation time. The coef-
ficient of the exponential data weighting is a = −0.00001.
A higher a coefficient would increase the convergence rate
of the position and orientation to levels not supported by the
platform.

In Fig. 9, we observe that the MPC drives the platform to
its target and keeps it there with remarkable precision. The
platform is also directed to a desired orientation of 0◦. Inside
the target circle, jet average thrust is around 10 kN, while they
are directed at a constant angle each (see Fig. 10).

In Fig. 11, we observe that BS controller also drives the
platform to its target, keeps it there, and directs it to a

Fig. 10. Model predictive controller jet thrusts/angles—Task A.

Fig. 11. BS controller dynamic positioning—Task A.

predefined orientation of 0◦. The red line on the 2-D figure
and the red curve on the ψ figure depict the desired trajectory
and the desired orientation, respectively. As shown in Fig. 12,
thrusts take high values, while jets rotate around continuously
in order to reduce the positioning error.

In Fig. 13, we observe that the MB-PID controller exhibits a
high overshoot before finally reaching the target and remaining
permanently inside. The overshoot in the MB-PID occurs
because to keep the platform inside the circle despite the
environmental disturbances, relatively high gains were used.
These gains together with the controller integrator and high
speeds result in position overshoots. To reduce the overshoot,
the gains must be reduced, also reducing the positioning
accuracy G, which is undesirable. After the platform reaches
the target permanently, jet average thrust remains below 10 kN
and is directed at some constant angle each (see Fig. 14).
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Fig. 12. BS controller jet thrusts/angles—Task A.

Fig. 13. MB-PID controller dynamic positioning—Task A.

Table V summarizes the performance of the controllers.
The PI of the MPC is considerably lower compared with
the other two. The BS controller follows with better dynamic
positioning compared with the MB-PID, but with the highest
energy consumption.

To examine controller robustness in mass errors, the
platform mass is increased by 10%, 30%, 50%, 70%,
and 90%, and the changes in energy consumption (E) and
dynamic positioning accuracy (G) are noted. We consider
the controller that does not exhibit considerable changes
in E and G quantities while coping with large errors as robust.

Table VI shows the change in energy consumption
when the technique for parasitic thrust reduction is used
(see Figs. 4 and 5). Controllers consume less energy when the
technique is employed. It affects especially the BS because

Fig. 14. MB-PID controller jet thrusts/angles—Task A.

TABLE V

PERFORMANCE FOR TASK A

TABLE VI

ENERGY CONSUMPTION, TASK A

jet angles do not converge to constant values and there is
always a considerable difference between current and desired
angle.

In Table VII, the robustness results of the MPC are pre-
sented. We observe that even with a 90% increase in mass,
the energy consumption of the MPC remains at low levels
and it is lower compared with the energy consumption of
the BS with 0% increase and of the MB-PID, with a 10%
increase. Furthermore, we observe that despite a 90% increase
in mass, the G quantity of the MPC is lower compared
with the G quantities of BS and MB-PID, even with a 0%
increase in mass. The MPC exhibits the lowest PI, during
the whole examination process. This remarkable performance
characterizes MPC as the most robust controller compared
with the other two.
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TABLE VII

ROBUSTNESS RESULTS—MPC—TASK A

TABLE VIII

ROBUSTNESS RESULTS—BS—TASK A

TABLE IX

ROBUSTNESS RESULTS—MB-PID—TASK A

Table VIII presents the robustness results of the BS con-
troller. The energy consumption considerably increases. On the
other hand, the G of BS with 90% increase is lower to that
of MB-PID with 0% increase.

Table IX summarizes the robustness results of the MB-PID
controller. The quantity G is very high due to the overshoot
(see Fig. 13), which cannot be eliminated whatever the tun-
ing is. Note that the energy consumption, with a 90% increase
in mass, is lower to that of the BS with 0% increase.

In some cases, we observe that an increase in the mass may
result in a decrease in G. Increase in the mass results in a
smaller displacement of the platform from the initial position
and therefore in a smaller G. This cannot be interpreted as
improvement in the accuracy of the dynamic positioning. The
energy is increasing as the mass increases because thrusters
have to drive a higher load.

2) Conclusion—Task A: For Task A, we would definitely
propose MPC because it has considerably smaller PI compared
with the other two (see Table V). Table X summarizes the
results for Task A. As a second choice, we select BS because
it has the second lowest PI. The MB-PID has the second lowest
energy consumption.

TABLE X

PERFORMANCE FOR TASK A

TABLE XI

MB-PID TUNING, TASK B

TABLE XII

BS TUNING, TASK B

TABLE XIII

MPC Q-W TUNING, TASK B

TABLE XIV

MPC LAGUERRE PARAMETERS TUNING, TASK B

B. Comparative Study—Task B

1) Presentation of the Results: For Task B, the simulation
for the task runs for T = 600 s. The controllers were
tuned so that they have the same maximum displacement
from the center dmax = 13 m. The results of the tuning
process of the MB-PID controller [19], [22] are summarized
in Table XI.

The gains of the BS controller are summarized in Table XII.
The time constants are τ1 = τ2 = τ3 = 50 s.

The results of the tuning process of the MPC are provided
in Tables XIII and XIV. In the simulation, the value of a, we
use is a = −0.00001.

As can be seen in Fig. 15, although the disturbances
displace the platform, the MPC drives platform inside the
target and redirects it to 0◦. Inside the target circle, the average
thrust is below 10 kN, with jets directed at a constant angle
each (see Fig. 16).

In Fig. 17, we observe that BS achieves better dynamic
positioning compared with the model-based one. However,
the BS response has high energy requirements due to high
thrust (see Fig. 18).
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Fig. 15. Model predictive controller dynamic positioning—Task B.

Fig. 16. Model predictive controller jet thrusts/angles—Task B.

TABLE XV

PERFORMANCE FOR TASK B

In Fig. 19, note that the MB-PID redirects the platform
inside the target circle, and to the desired orientation, despite
the environmental disturbances. The dynamic positioning is
considerably worse compared with MPC; a fact illustrated.
On the other hand, it consumes the least energy among
the three. Inside the target circle, the thrusters are kept
below 10 kN on average, while the angles converge to constant
values, see Fig. 20.

Table XV summarizes the performance of the controllers.
The MPC has a considerably lower PI compared with the other

Fig. 17. BS controller dynamic positioning—Task B.

Fig. 18. BS controller jet thrusts/angles—Task B.

TABLE XVI

ENERGY CONSUMPTION, TASK B

two controllers, i.e., 0.469e + 03 J×m/s. The model-based
controller follows with a PI of 0.691e + 03 J×m/s. The BS
controller demonstrates a quite high PI compared with the
other two controllers.

Table XVI demonstrates the decrease in the energy con-
sumption when the technique for parasitic thrust reduction is
used (see Figs. 4 and 5). For the BS, we observe a considerable
decrease of energy because jet angles do not converge to a
constant value.
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Fig. 19. MB-PID controller dynamic positioning—Task B.

Fig. 20. MB-PID controller jet thrusts/angles—Task B.

We continue with the examination of the robustness for
Task B, following the same analysis, as we did for Task A.
In Table XVII, robustness results for the MPC are presented.
We note that even with a 50% increase in mass, the quantity G
is lower than that of the BS and MB-PID with 0% increase
in mass. For the MPC, we observe small changes in energy
consumption. The MPC PI remains below the BS PI and
the MB-PID PI during the entire robustness study process.
As a result, the MPC is considered the most robust controller
for Task B.

Table XVIII demonstrates the robustness results of the BS
controller. The energy consumption is the highest between the
three. On the other hand, the G quantity for BS remains below
the G for the MB-PID during whole study process.

Table XIX shows the robustness results of the MB-PID
controller. The energy consumption is the lowest between
the three controllers. However, the accuracy of the dynamic
positioning is the worst. The PI of the MB-PID remains below
the PI of the BS in the entire study.

TABLE XVII

ROBUSTNESS RESULTS—MPC—TASK B

TABLE XVIII

ROBUSTNESS RESULTS—BS—TASK B

TABLE XIX

ROBUSTNESS RESULTS—MB-PID—TASK B

TABLE XX

PERFORMANCE FOR TASK B

2) Conclusion—Task B: MPC has the lowest PI among the
three controllers, and it maintains the lowest PI in whole
robustness study process. For Task B, we would propose the
MPC as the most efficient controller (see Table XV). Table XX
summarizes the results for Task B. As a second choice, we
would choose the MB-PID, since the PI of the MB-PID
remains below the PI of the BS controller. If we focus only
on the accuracy of the dynamic positioning, BS wins.

VI. CONCLUSION

We presented the design of a BS and an MPC for an
overactuated marine platform. The controllers were evaluated
against an MB-PID developed previously. In the design of
the controllers, hardware limitations and settling delays in
the development of the desired jet thrust and the desired jet
angles were taken into consideration. We propose a technique
for parasitic thrust reduction, which decreases the energy
consumption of the controllers. A comparative study was
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presented based on simulation results under realistic environ-
mental disturbances. The introduction of the PI was used to
reach safer conclusions about which controller accomplishes
the dynamic positioning better. The MPC is characterized by
the least PI in both tasks and maintains the lowest PI despite
errors in platform mass estimates. This is partly due to the aug-
mented model design, which effectively adds an integrator to
the controller, resulting in a superior performance of the MPC.
The BS exhibits good accuracy in the dynamic positioning,
while the MB-PID is our second choice if we are to focus on
energy consumption only. The classification of the controllers
does not depend on the environmental disturbances. Even if
the disturbances are considerably reduced the superiority of
the MPC is maintained.
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