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Abstract— A planning and control methodology is 
developed for manipulating passive objects by 
cooperating orbital free-flying servicers in zero gravity. 
Both on-off base thrusters and manipulator continuous 
forces are used in handling on-orbit passive objects and 
eliminating the effects of on-off control on them. For two 
different contact types, the system dynamics are 
presented. Using a two-layer optimization process, a 
planning strategy for the trajectory tracking motion of a 
passive object including optimal end-effector contact 
point selection, is developed. A model-based controller 
adapted to the special characteristics of the system such 
as the unilateral constraints and the on-off thrusting, is 
presented and its response is discussed, for both contact 
cases. The manipulation strategy is illustrated using a 3D 
task. For the cases studied, the system performance 
exhibits desirable response characteristics, such as 
remarkable positioning accuracy and reduced thruster 
fuel consumption. 

 

Index Terms—Space robotics, robot cooperation, free-
flying robots, object manipulation on orbit. 

I. INTRODUCTION 

he growing number of orbital structures and the rapid 
commercialization of space require systems capable of 

fulfilling tasks such as construction, maintenance, astronaut 
assistance, docking and inspection, or even orbital debris 
handling and disposal. These tasks fall under the concept of 
On-Orbit Servicing (OOS), a relatively new but growing 
area of interest in space. Some of these tasks can be 
performed by astronauts in Extra Vehicular Activities 
(EVA). However, EVA is dangerous and subject to 
limitations such as limits to the force/torque an astronaut can 
apply, the motions that can be performed or even the EVA 
temporal constraints. To relieve astronauts from EVA, to 
enhance performance and to extend the range of feasible 
tasks, robotic servicers will be required. 

As man’s activities in space proliferate, passive object 
manipulation functions such as debris handling and 
deorbiting, handling of fuel-less satellites or even handling 
of orbital-construction parts, are going to be on demand 
increasingly. Large manipulators such as the Canadarm 2 
(C2), mounted on a large base such as the International 
Space Station, are already used for object manipulation. In 
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such cases though, the manipulator base is so large 
compared to the handled object that the base can be 
considered quasi-fixed. Similarly, the maximum allowed 
payload for the space shuttle Canadarm was one third of the 
Shuttle’s mass. To handle larger payloads, additional 
servicers would be required. Systems like the above are 
designed for limited on orbit mobility and cannot be 
available on demand at various locations on orbit. They also 
move payloads with respect to their base, and not with 
respect to a Cartesian frame or to another object. In the 
former motion, attitude disturbances may not be important, 
while in the later they must be considered. To address such 
challenges, multiple cooperating robotic servicers handling a 
payload of size comparable or larger than their own is 
proposed. To this end, the dynamics, planning and control of 
such systems must be studied. 

Robotic OOS has been discussed a lot during the last two 
decades, and a number of architectures have been proposed 
[1]. Important robotic tasks, such as orbital assembly and 
debris handling, require passive object handling capabilities. 
The first step in the handling procedure is to securely grasp 
the passive object, a task called docking. Studies in this field 
have provided several theoretical approaches [2], [3], some 
of which resulted in experimental servicers [4], [5]. 
However, actual handling of a captured passive object has 
not been studied adequately and issues such as large object 
handling remain open. On-orbit object handling has 
similarities to cooperative manipulation of passive objects 
on Earth [6]-[17], with the additional complexities that in 
space no fixed ground to support the manipulators exists, 
thus letting momentum changes to play a key role in body 
motion, and that the development of control forces is of on-
off nature, thus reducing system positioning capabilities. 

Several prototype robotic servicers have been proposed 
and studied since the 1990’s [4], [5], [18], [19]. 
Nevertheless, only a few studies exist concerning the 
dynamics and control of an already captured object. 
Dubowsky et al. proposed a control method for handling 
large flexible objects, aiming at reducing flexibility-induced 
vibrations. Robotic servicers use their thrusters as a low 
frequency control of rigid body motion, and their 
manipulators, as a high frequency control, cancelling out 
vibrations this motion causes on the flexible modes [20]. 
Fitz-Coy and Hiramatsu presented a post-docking control 
approach based on game theory, minimizing interaction 
forces, and thus helping avoid the loss of firm grasp [21]. 
Moosavian et al. presented a passive object manipulation 
method by a single servicer with multiple manipulators, 
aiming at an object prescribed impedance behavior, in case 
of contact with the environment [22]. In a simplified 2D 
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manipulator could achieve handling. Nevertheless, because 
of requirement (b), a single servicer will face the problem of 
not being able to exert thruster forces in one or more 
directions. Thus, even in the case of firm grasps, a number 
of cooperating free-flyers are needed, with two servicers 
being the minimum. In practice, the number of the servicers 
also depends on whether they are capable of applying the 
required magnitude of forces/ torques on the object. 

(c2) In the point contact case, at least three single-
manipulator servicers are required to produce any required 
force and torque vector on the passive object. This results 
from the fact that two manipulators with a point contact are 
not able to exert on the passive object a torque around an 
axis parallel to the line connecting the two contact points. 

(d) To protect thruster valves from space conditions, 
continuous or pulse-width-modulation (PWM) thruster 
control is avoided in space. This is because the generation of 
low control thrusts (e.g when the tracking errors are small), 
requires rapid thruster switching (up to several thousand 
times per second). However, electromechanical thruster 
valves cannot follow rapid PWM commands, deteriorating 
controller response and performance. Rapid switching may 
result in valve closing before it has fully opened, or opening 
before it has fully closed, resulting in nozzle ice formation, 
deterioration of thruster performance, and eventual damages. 
For example, the performance of thrusters deteriorates to 
levels below 80%, if the duration of thrust pulses is less than 
300 ms, even for 1N thrusters [29]. Simple on-off or Pulse 
Width Pulse Frequency (PWPF) modulation, both with 
minimum on/off times, are not subject to these limitations 
and are preferred in space [30-33]. However, even these are 
used in satellite attitude control where thruster firing is 
sparse, and not in trajectory tracking, where the controller 
must update thrust values several times per second. 

(e) In the point contact case, manipulators can only push a 
passive body, introducing unilateral constraints and 
complicating manipulation. Such issues have been studied 
for terrestrial systems, but not for systems in zero-g, where 
the absence of a fixed base or of gravity pulling all bodies 
towards the same direction, makes the aspect of losing 
contact a critically important parameter. Thus, to avoid end-
effector slipping, or risking losing the object, the applied 
forces must stay within the local friction cone. 

Since the focus of this work is on minimizing thruster fuel 
during accurate object cooperative manipulation on orbit, 
and having introduced the manipulation concepts as well as 
the related assumptions and requirements, an important 
question arises: Is the introduction of manipulators 
beneficial for passive object manipulation? Or more 
specifically, can they result in accurate trajectory tracking 
control of a passive object not subject to limit cycles, while 
limiting thruster fuel use? Next, we will demonstrate that the 
answer is affirmative on both counts. 

III. SPATIAL SYSTEM DYNAMICS 

The dynamics of a system of n orbital robotic servicers 
controlling a rigid passive body via manipulators is studied 
next. The equations of motion for passive object (i =0) and 
free-flying servicer bases (i =1,…,n) have the form [34]: 

  ,i i i i i i H q C q q Q   (1) 

where qi are the generalized coordinates for the object (i = 
0) and the servicer bases (i = 1,…, n), 

  , ,  ,  ,  ,  ,  
T TT T T

i i i i i i i i ix y z      q r   (2) 

where [xi yi zi]
T is the position vector ri of body i with 

respect to the Cartesian frame and [θi φi ψi]
 T denote the 

Euler angles θi of the same body. If the attitude is close to an 
Euler angle singularity, the attitude description is switched 
to a different Euler angle set. Because of assumption (ii), the 
manipulators act as end-effector force/torque transmission to 
the servicer base. Hi are the 6×6 mass matrices of body i: 
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where I3x3 is the 3×3 identity matrix, Ri is the rotation matrix 
transforming vectors from the frame i to the Cartesian frame, 
Ii and mi are the inertia matrix and mass of body i 
respectively, Ei is a 3×3 matrix mapping the Euler rates i

  
of body i to its angular velocity ωi : 

 i i iE    (4) 

Ci are 6×1 vectors containing the nonlinear velocity terms, 
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and Qi (i = 1,…,n) are 6×1 vectors that include thruster 
forces, reaction wheel moments and manipulator forces/ 
torques acting on the ith servicer base, 
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where nt is the number of thrusters, fij and ni are the thruster 
forces and reaction wheel moments acting on the ith servicer 
base, fbi and nbi are the forces and moments transmitted to 
the ith servicer base by its manipulator, dij is the vector 
locating the jth thruster of the ith servicer base with respect to 
the base CM, and pi is the position vector locating the ith 
manipulator mount with respect to the base CM, (see Fig. 2). 

The manipulators can be attached to the object through a 
firm grasp or through a contact point. In the case of firm 
grasp, the vector Q0 includes forces and moments applied on 
the passive object by the n end-effectors: 

 

 
10

0
0

1

n

Ei
if

n
Tn
i i Ei Ei

i





 
                





f
q

Q
q

E d f n
 (7) 

where fEi, nEi are respectively the forces and moments 
applied to the passive object by the ith end-effector, and di is 
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Note that the two-layer optimization yielding the optimal 
contact points does not need to be executed in real time. In 
fact, it must be performed off-line, so as to obtain the 
optimal contact points, subject to geometric constraints, as 
preparation for the actual motion. During the actual motion, 
only the first-layer of the optimization method needs to be 
running, to resolve the required control force/ moments to 
the end-effectors, while the contact points are assumed to be 
given. This improves the execution time of the algorithm. 

First layer. We set the three end-effector forces fEi and the 
three end-effector moments nEi, as the design parameters. 
Equation (7) is a linear constraint, while (15) is a non-linear 
constraint to be observed. Applying (14), the desired 
trajectory provides the required generalized object forces. 
Then, the optimization process returns the contact forces fEi 
and moments nEi that must be applied by the manipulators so 
that the object trajectory is followed, the forces/moments 
norm is minimized and the constraints observed. To that end, 
the performance index is chosen as, 

    
3 3

2 2
1 2

,
1 1

1
2( ) min

Ei Ei
Ei Ei

i i

t w
 

 
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 
 

n f
f n  (16) 

so that the weighted sums of the squared norms of both the 
applied forces and moments is minimized. In (16), w2 is a 
weighting factor with appropriate units. The initial guess for 
each optimization step is the fEi and nEi of the previous step, 
while for the first step, the initial guess is fEi = nEi = 0. 

The case of point contacts is described by (1) to (12), 
where (7) is replaced by (8). The model-based controller of 
(14) is used again. In this case, though, unilateral constraints 
are introduced for the contact forces fEi. To avoid loss of 
contact, these forces must have a normal component towards 
the object. Thus the following constraint must hold 
 0,   1,2,3Ei i i  f s  (17) 

where si is the unit vector at the ith contact point Ai, 
perpendicular to the surface of the passive object and facing 
outwards. In addition, these forces must remain within the 
friction cone of the contacting surfaces, so that slip of the 
end-effector on the surface of the passive object is avoided. 
Therefore, an additional constraint for fEi must hold, 

     atan2 , atan ,   1,2,3i Ei Ei i i i    s f f s  (18) 

where μi is the corresponding friction coefficient between 
the two contacting surfaces. In (18), function atan2 is used to 
take into account the direction of fEi. 

Thus, in this case, (17) and (18) apply as additional linear 
and non-linear constraints respectively and (8) is used as a 
linear constraint, while (14) is again used as a non-linear 
constraint. Moreover, the return of the optimization process 
includes only the forces fEi, applied on the passive object by 
the servicer manipulators. Thus, the performance index in 
(16) is reduced to, 

  
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1

1
2( ) min
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Ei
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t
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f

f  (19) 

thus minimizing the sum of the squared applied forces. 
The required generalized forces Q0 are resolved into the 

nine contact force components fE by optimization. The two 
vectors are related by: A fE = Q0, where the 6×9 matrix A 

depends on the positions of the three contact points, with 
respect to the passive object center of mass. Solution to this 
problem requires that the matrix A AT is of full rank, i.e six. 
This holds true always if at least two of the contact points do 
not coincide with the passive object center of mass. Under 
this assumption, the problem of force distribution has 
infinite solutions, as stated in requirement c2. As is true for 
all optimization techniques, a local minimum may result, 
pointing to a suboptimal solution. However, the primary task 
for the optimization, is to resolve the Q0 to the three contact 
forces; this task is achieved still. 

Second Layer. Since the fuel consumption depends on the 
locations of the contact points, it is beneficial to search for 
optimal contact point locations. To this end, an additional 
optimization is set up, having the coordinates of the contact 
point vectors di as the design parameters. This search can be 
done offline, i.e. before the actual trajectories are executed. 
The performance index is now of min-max type, 

  2 1min max ( )
i t

t  
d

 (20) 

where the maximization over time t means that, for a given 
set of di, the trajectory tracking motion is simulated and the 
overall max Λ1(t), i.e. the worse force requirement over time 
is obtained. The optimization process then chooses a 
different set of di until max Λ1(t) is minimized during object 
desired motion. The procedure yields the optimal contact 
point vectors di, subject to geometrical constraints defined 
by the object geometry. With the completion of the 
optimization process, the optimal contact points for the free-
flying servicers are obtained. 

Next, the design of the servicer controllers, both in terms 
of manipulator and in terms of servicer base position and 
attitude (pose), is presented. Planning the desired servicer 
trajectory is a complex process, as the servicer manipulator 
will have to apply the required fEi on the object while 
maintaining a desired pose of its base that takes into account 
workspace and collision avoidance requirements. To this 
end, appropriate initial servicer base pose with respect to the 
passive object is chosen. Ιt is then desired that it is 
maintained within certain safety limits, throughout the 
motion. Hence, the desired servicer base trajectory qi,d is 
computed based on the object trajectory and sent to its 
motion controller, presented next. 

In the case of firm grasp, the servicer motion controller 
takes as feedback the pose of the servicer base and uses it to 
compute the motion tracking errors, with respect to qi,d. 
Employing a model-based controller, the control inputs on a 
servicer are given by, 
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where, 
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The KPi, KDi are control gain diagonal matrices, *
iH and 

*
iC are defined in (3) and (5), ei = qi,d - qi is the tracking 



 
 

error, and fb

transmitted to
To apply 

reaction force
are related to
torque nEi by 

 

where Ji is a
which resolve
base. Becaus
Resolving fEi 
manipulator e
Taking into a
and their des
that manipul
required joint

Equation (2
part, consistin
ni and thus c
given by (23)
Σfij must be 
strategy inclu
the Σfij to 
projection of
obtaining thre
thruster on, w
exceeds a pre
is six uni-late
in adequate b
satellite attitu
lower part of 

Since whe
moments ex
employing pa
ni of (21), (22
strategy as in 

Recall at 
required to ke
and needed 
obtained by e
control force 

 , diamb i F

where KrPi a
while er_i = r
of the service
When the dir
thrusting are
component a
repulsive for
component im
servicer away
of the Fmb,i al
the opposite. 
thrusters, and

bi, nbi are th
o the ith service

the controlle
e fbi and mom
o the manipu
the manipulat

3 3 3 3

i

x x

 
 
  

J

0 I
a 3×6 matrix, 
es the end-effe
se of assump

and nEi to jo
end-effector J
account the ve
sign specifica
lator actuator
t torques. 
21) can be se
ng of the first 
an be solved 
). Since the th
approximated

udes the follo
the correspo
f the force 
ee bi-lateral c
when the corr
eset threshold 
eral on-off fij 
bounded erro
ude control. T
(21) along wi
eel-applied m
xceeding the
airs of on-off 
2) is also disc
the case of fij

this point th
eep the servic
in (15), is y
employing mo
Fmb,i is calcula

g( , , )i i im m m

and KrDi are 
ri,d - ri is the e
er ri,d and the
rection of si, 
ea, and depe
along the dir
rce fij_r is de
mplies the nee
y from the ob
long the direc
In this case, 

d thus, fij_r is ze

he reaction fo
er base by its 
er given by 
ment nbi must
ulator end-ef
tor force trans

b

T

Ei

Ei

       

f f

n n

function of m
ector force fEi 
ption (ii), (23
oint torques is
Jacobian, omit
ery slow motio
ations, it is re
rs will be a

eparated into t
three equatio
for the thrust

hrusters are on
d using a swit
owing steps: (
onding servic

along the t
ontinuous for
esponding co
value ft. The r
forces. This 
rs, such as th
The on-off fij

ith fbi and nbi, 
moments are 
se limits ca
thrusters. In t

cretized, using
j, with a preset
hat the comp
cer away from
yet to be def
odel-based co
ated first acco

 ,i d rPi rr K e

control gain
error between
e actual positi

defined in (
ending on t
rection of si

ecided. A neg
d for a repulsi

bject, and equ
ction of si. A p

the force can
ero. Therefore

forces and m
manipulator.
(21) and (2

t be available
ffector force 
smission equat

b

b

i

i




 

manipulator p
and torque nE

3) yields fbi

s achieved us
tted here for b
ons of space s
easonable to 
able to provi

two parts. The
ns, is indepen
ter forces fij, 
n-off, the con
tching strateg
(a) transforma
cer base fram
three thruster
rces, (c) turnin
ntinuous forc
result of this s
controller wil
he ones achie
j can be used
in order to ob

subject to 
an be appli
this case, con
g the same sw
t threshold va
putation of t
m the passive 
fined. This f

ontrol. To this
ording to, 

_ _r i rDi r iK e

n diagonal m
n the desired p
ion ri defined
17), lays in t
the sign of 
, the need f
gative sign f
ive force, to p

ual to the com
positive sign 
n be supplied
e, fij_r is obtain

moments 

22), the 
. These 
fEi and 
tion, 

(23) 

posture, 
Ei to the 
= -fEi. 

sing the 
brevity. 
systems 
assume 
ide the 

e upper 
ndent of 
with fbi 

ntinuous 
gy. This 
ation of 
me (b) 
r axes, 
ng each 

ce value 
strategy 
ll result 
eved in 

d in the 
btain ni. 

limits, 
ied by 

ntinuous 
witching 
alue nt. 
the fij_r 
object, 

force is 
s end, a 

  (24) 

matrices, 
position 
d in (2). 
the no-

Fmb,i’s 
for the 
for this 
push the 
mponent 

implies 
d by the 
ned as: 

Co
op
fEi

use
Th
for
me
req
off
on

can
the
(22
(Se
pa
ser
ser
co
be
inc
(19
mo
((2
act

the
co
ser
co
its
pa
err
sw
obj
Ly
Ly


_

0
ij r

 


F
f

Note that co
ontroller (24)
ptimization pr
, and thus, b
ed in its turn,

he controller 
rce twice, on
eans of the fij

quirement (b)
ff, thus discard
nly the manipu

In the point c

Having obtai
n also be obt
en the service
2) and (23) o
ection IV), w

assive object, 
rvicers as co
rvicers. Fig. 3
ntrol process
tween the fir
clude a diffe
9), a differen
oments ((7) or
23) or (26)), s
ting on the pa

Fig. 3. Flowchart

Although ser
e forces/mom
ntrolled passi
rvicer mass 
mpensate acti
 effects on th

assive object 
rors, a respo

witched forces
bject, for both
yapunov’s glo
yapunov funct

,  if

      if

mb i i iF s s

ontrollers (24
) is used to
rocess, the req
ecause of ass
, in (21)-(22),
in (21)-(22) 

nce as a PD 
j_r component
), thrusters in 
ding the thrust
ulator to apply
ontact case, (2

b
T

i Ei i J f f

ined fij_r, the 
tained, as sho
er actuator in
r (26). In this

which provide
provides also

omponents o
3 displays the
s for both c
rm grasp cas
rence in the 
nce at the p
r (8)) and a di
see Fig. 3. In b
assive object a

t of the servicers 

rvicer bases a
ments applied
ive object are
filters thrust

ively for any 
he manipulato

motion can 
onse that can
s. The contr
h contact-typ
obal stability
tion, 




f sgn

f sgn

mb i

mb i

F s

F s




4) and (21)-
o compute, b
quired repuls
sumption (ii),
 to compute t
computes a 
quantity in (

t of fbi, in (22
the direction

ter repulsive f
y the fij_r as an
26) is used ins

b

TT T
i i n  

required end
own earlier in
nputs are com
s way, the op
es the forces 
o the forces f

of the reactio
e block diagra
contact cases.
se and the po

optimization
passive objec
fference in the
both cases, th

are the same. 

control algorithm

are subject to 
d by the ma
e continuous. 
ts, and beca
residuals, as 

or are known 
be controlle

nnot be achi
oller stability

pe cases, can
 theorem, w

 
 

0

0

i i

i





s

s

-(22) are dis
by means of
ive componen
, of fbi. This 
the thruster fo
thruster repu

(21) and onc
2). Because o

n of fij_r are tu
force, and allo
n fbi componen
stead of (23).

d-effector forc
n Section IV,

mputed using
timization pro
fEi acting on

fij_r, acting on
on of fEi on
am of the ser
. The differe
oint contact 

n process ((16
ct applied fo
e calculation o

he forces/ mom

m. 

switching thr
anipulator on
This is becau

ause joint m
thruster firing
a-priori. Thu

ed with vanis
ieved using 
y for the pa
n be shown u
with the follo

 

(25) 

tinct. 
f the 
nt of 
fbi is 

orces. 
ulsive 
ce by 
of the 
urned 
owing 
nt. 
 

(26) 

ce fEi 
, and 
(21), 
ocess 
n the 
n the 
n the 
rvicer 
ences 
case, 
6) or 
orces/ 
of nbi 
ments 

 

rusts, 
n the 
use a 

motors 
g and 
us the 
shing 
only 

assive 
using 

owing 



 
 

 

    2
0 0 0 0 0 0 0 0 0 0

1
, 0 

2
T T

DV   e e e e w w    (27) 

with 0 0 0( (1),..., (6)) 0 anddiag a a   

 1
0 0 0 0 0= P D

w e e   (28) 

Differentiating (27) and using (1) to (5) for i = 0 along 
with (14), (7) (or (8)) and (28), we obtain 

 3
0 0 0 0 0 0DV   K e e  (29) 

simply by selecting the following condition 

 2
0 0P DK K  (30) 

Using Barbalat’s Lemma [35], it can be shown that 

  0 0lim
t

V


  (31) 

and in conjunction to (29), the following is obtained 

  0 0lim
t

e  (32) 

Thus, the error e0 converges to zero (see (32)), proving the 
stability of the proposed controller for the passive object. 
Examining the stability properties of the servicer controllers 
is more involved. As seen previously, model-based control 
was used as an intermediate step in developing a switching 
strategy for the on-off thruster forces. The nature of these 
forces introduces errors in the relative positions and attitudes 
between the passive object and each servicer. As mentioned 
already, these errors need only to remain bounded within 
certain limits; therefore the lack of asymptotic stability is not 
a limitation. The boundedness analysis is complicated since 
some of the forces are continuous (i.e fEi), while others are 
switched (i.e. fij). However, the bounded control response 
can be realized similarly to the on-off attitude control of 
satellites. The boundedness of servicer motions is 
demonstrated here via simulation results.  

V. SIMULATIONS RESULTS 

To demonstrate the developed methodology, we study the 
case of three single-manipulator servicers, both when 
applying point contact forces on the passive object and when 
having a firm grasp over it. Each servicer base has thrusters 
capable of producing forces or moments (thrusters facing the 
object are deactivated), reaction wheels, and a single 
PUMA-type manipulator. A series of simulations is run, 
with realistic parameters in terms of thruster and reaction 
wheel capabilities. The 2m×3m×2m orthogonal object has 
mass of 180 kg. The free-flying servicers have mass of 70 kg 
each, and their base is of cubic shape with a 0.7 m side. The 
three contact points lie on the object surfaces with normal 
vectors parallel to the 0 0ˆ ˆ, x x  and 0ŷ  unit vectors of the 
object body-fixed axes. The servicer thrusters develop per 
axis a force of 20 N, while their trigger threshold is set to ft 
=10 N. For attitude control, the servicers have additional 
pairs of thrusters that develop torque of 2 Nm per axis, and 
reaction wheels that can develop continuous torques up to nt 
=1 Nm per axis. The manipulator on each servicer has a 
reach of 2.1 m i.e. three times the cubic servicer base side. 
The above system parameters, including the object/ servicer 
mass ratio, were chosen taking into account realistic 

scenarios. In particular, if the object/ servicer mass ratio is 
too large, obviously either an extreme number of servicers 
will be needed, or the task will be physically impossible, 
depending on the required trajectory. With this ratio too 
small, the interaction between servicers and the object can be 
ignored. What is of interest here is the case in which the 
masses are comparable; this yields the mass of the object. 
The simulations are run on Matlab/ Simulink. Non-linear 
constrained optimization function fmincon [44] is used to 
obtain optimal end-effector forces/ torques and contact 
points. The optimization code running on a current average 
computer takes about 100 ms. In a dedicated computer with 
optimized and compiled code, this time will be far smaller, 
achieving a total loop time close to 100 ms. Although a 
performance gap between space and ground processors 
exists, long delays also occur in implementing new methods 
in space, during which, space-qualified hardware advances; 
thus this performance should be realizable by future systems. 

The motion of all four bodies is simulated with the 
passive object following a velocity trapezoidal trajectory in 
all DOF, see Table I. The accelerations were chosen to be 
compatible with servicer force/ moment capabilities. The 
desired servicer relative position with respect to the passive 
object is its initial relative position. This position is chosen 
so as to accomodate adequately the expected relative motion 
between each servicer and the passive object, and maintain 
the manipulator in its kinematic and force workspace [45]. 
Thus, the servicer position task is to keep the manipulator 
base at a distance of 1 m for two servicers contacting 
opposing sides of the passive object and of 0.6 m for the 
third servicer, measured along the object surface normal 
vector passing from the end-effector contact point. The 
servicer attitude control task is to maintain a relative attitude 
with respect to the object approximately constant. 

Table I. Passive object desired motion parameters. 

 

DOF 

const. accel. 
(m/s2)/ 
(rad/s2) 

up to 
(s) 

const. 
veloc. 
(m/s)/ 
(rad/s) 

up to 
(s) 

const. deccel. 
(m/s2)/ 
(rad/s2) 

up to 
(s) 

x0des 0.0003 56 0.0168 84 -0.0003 140

y0des -0.00036 50 -0.018 90 0.00036 140

z0des 0.0002 59 0.0118 81 -0.0002 140

θ0des 5*10-5 60 0.003 80 -5*10-5 140

φ0des 7*10-5 55 0.00385 85 -7*10-5 140

ψ0des 10-4 65 0.0065 75 -10-4 140

 

First the case of point contact is demonstrated. The 
bandwidth that corresponds to the control gains is 
constrained by reaction wheel and thruster limits. Moreover, 
higher gains would result in lower tracking errors, but more 
frequent thruster firing, thus higher fuel consumption. 

The tradeoff between tracking errors and fuel 
consumption can be used to obtain the desired gains, for a 
given desired motion. In this case, the control gains in (14) 
are KP0 = 3.24, KD0 = 1.8 (for all passive object translational 
DOF), KP0 = 0.64, KD0 = 0.8 (for all passive object 
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Fig. 8b shows that manipulator joint angles vary less around 
their initial positions for higher gains, while a comparison 
between Fig. 8c and Fig. 8d shows that fuel consumption has 
increased by more than 25%. 

 
Fig. 8. Typical manipulator joint-angles and fuel consumption, for the 

initial servicer control gains (a and c) and for increased gains (b and d). 

The response of the developed control law is compared to 
the one where the forces/torques are applied to the passive 
object by thruster equipped servicers (without manipulators) 
in direct contact to it and actuated by (a) pure on-off control 
with a deadband and, (b) by PWPF control, for the same 
passive object desired motion (Table I). All mass properties 
and the desired trajectory are kept the same. In both cases, 
the control law is model-based as in (14), where the required 
Q0 is transformed to the passive object frame. 

In the pure on-off control case, each thruster is turned on, 
when the corresponding continuous force or torque value 
exceeds a preset threshold value ft or nt respectively. The 
control gains were chosen as KP0 = 2.25, KD0 = 1.5 (for all 
passive object translational DOF), KP0 = 6, KD0 = 3 (for all 
passive object rotational DOF), while the threshold values 
were chosen as ft = 18N and nt = 1Nm. In the PWPF case, 
the PWPF modulator developed in [45] was employed. The 
control gains and the signal filter parameters were chosen as 
KP0 = 12.25, KD0 = 3.5, Km = 1, τm = 0.5 (for all passive 
object translational DOF), KP0 = 9, KD0 = 3, Km = 1, τm = 
0.95 (for all passive object rotational DOF), while the 
threshold Uon = [ft

T nt
T]T values were chosen as ft = 18N and 

nt = 1Nm and the Uoff values (hysteresis) were set at 80% of 
the Uon ones (thus leading to htrans = 3.6 and hrot = 0.20). 
These parameters ensure minimum pulse duration of 100 ms. 
The applied thruster forces/ torques were again 20N and 
2Nm respectively, for both the pure on-off and PWPF cases. 

Fig. 9 shows the tracking errors and the corresponding 
fuel consumption as a function of time, obtained again as in 
Figs. 8c and 8d. In this figure, it can be seen that the 
performance of the proposed system is superior to that of the 
system without manipulators, for both PWPF and pure on-
off control cases. Indeed, for the same fuel consumption 
(Figs. 9a and 9b), the position error for the proposed system 
is approximately six times less than the one for the PWPF 
control (Figs. 9d and 9e). Moreover, it can be seen that the 
performance of the PWPF control system is, as expected, 
superior to that of the pure on-off control, since, for slightly 
higher maximum tracking errors for the pure on-off control 
case (Figs. 9e and 9f) the fuel consumption is more than 

double (Fig. 9b and 9c). The tracking error of both the 
PWPF and the pure on-off control can be lowered with 
higher control gains (or equally with lower triggering 
thresholds), but that would result in a further increase in the 
fuel consumption. Moreover, the fuel consumption of the 
pure on-off control system can be lowered to the levels of 
the other two systems, but that would result in very high 
tracking errors. Note that for the thrusting of servicer bases 
with manipulators, pure on-off control was used for 
simplicity. If PWPF control were used, the fuel consumption 
of the proposed system would be even lower. 

 
Fig. 9. Tracking error and corresponding fuel consumption as a function 

of time. (a), (d) with manipulators, (b), (f) without manipulators (PWPF 
thrusters), and (c), (e) without manipulators (pure on-off thrusters). 

To investigate controller robustness to parameter 
variations, parametric inaccuracies, lag in applying thruster 
forces, and error in the application of a manipulator force 
were introduced, see Table II. The same controller and gains 
as before were used. Fig. 10 displays the same variables as 
those of Fig. 5. It can be seen that the tracking capability of 
the system is still remarkable, while the servicers are again 
within their workspace limits. 

 
Fig. 10. Point contact case with inaccuracies: Tracking errors in (a) 

object position and (b) attitude, (c) servicer base displacement, and (d) 
attitude. 

Several more simulations with various inaccuracies were 
run and had similar results; they are not shown here for 
brevity. These show that the developed controller is 
reasonably robust with respect to parametric and modeling 
errors. The developed controller can be extended to include 
adaptive capabilities. However, one should first consider the 
benefit in the resulting response versus the complexity and 
limitations of such algorithms. 
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Table II. Introduced Inaccuracies 

Object 
mass error 

Object center of 
mass position error 

Thruster 
f34 lag 

Thruster 
f23 lag 

Error in 
force fE1 

-20% -10% 0.4 s 0.4 s -10% 
 
The same desired motion scenario is simulated for the 

case of firm grasp. In Fig. 11, the same variables as in Fig. 5 
are shown for the case of firm grasping. In Fig. 12, a 
comparison on tracking errors and fuel consumption is being 
made, between the case of point contact (Fig. 12 a, c) and 
firm grasp (Fig. 12 b, d). It can be seen that, as expected, the 
case of firm grasping of the passive object by the servicer 
manipulators, displays even lower fuel consumption, with 
far lower tracking errors on the motion of the passive object.  

 
Fig. 11. (a) Firm grasp case: Tracking errors in (a) object position and 

(b) attitude, (c) servicer base displacement, and (d) attitude. 

 
Fig. 12. Tracking error history and corresponding consumed fuel for 

servicers with manipulators. (a), (c) firm grasp case, (b), (d) point contact. 

VI. CONCLUSIONS 

This work has studied the handling of an on orbit passive 
object via servicers, employing both on-off thrusters and 
manipulator continuous forces. In this technique, the on-off 
forces are filtered by the manipulator-servicer system, 
allowing accurate passive object motion and reducing fuel 
consumption. The dynamics of three cooperating single-
manipulator free-flying robotic servicers, handling a larger 
passive rigid object for the cases of firm grasps and for point 
contacts were studied. Using a two-layer optimization 
process, a planning strategy for trajectory tracking of a 
passive object including optimal end-effector contact point 

selection and an adapted model-based controller, were 
developed. For both cases studied, the performance of the 
manipulation method was shown by simulations to exhibit 
desirable response characteristics, such as remarkable 
positioning accuracy and reduced thruster fuel consumption. 
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