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Abstract

Development and prototyping of robotic systems requires the involvement
of many people and many hours of design, development, and cooperation;
significant time and effort overhead is required for evaluating conceptual
ideas in design, control and technology, and for bringing them fast into
reality for testing. Based on the important advances of the last decade in
hardware and software, a simple and low-cost framework and its underlying
ideas are presented, with steps that aim at accelerating robotics research work
in academia and industry. The framework’s functionality is validated and
illustrated by two application examples concerning the control systems of
a single-legged hopping robot and an instrumented treadmill. The software
required to conduct the same experiments is provided, with the intention to
help the reader reuse it in similar applications.

6.1 Introduction

Cyber Physical Systems (CPSs) are electromechanical and mechatronic
systems interacting through physical actions with their environment (e.g.,
motorized motion), controlled by interconnected embedded computers. The
field of CPSs builds on embedded systems theory with a great focus on how
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subsystems communicate to form complex systems with more capabilities.
CPS research aims at a deep understanding of small embedded components,
and at their best possible integration into a whole system with increased func-
tionality [1]. The fields of dynamics, mechanical design, electrical/electronic
design, software design, control, and networking, assume equally important
roles and compose the multidisciplinary nature of the field of CPSs [2].
Apparent is the relation to robotic systems theory, which strongly builds on
advances in these same fields, and also to the recent developments of the
Industrial Internet of Things (IIoT) [3] and Industry 4.0 [4], and their promise
for smarter industrial procedures. During the last decades, CPSs have gained
attention as an important domain, bridging multiple theoretical and applied
technological fields toward promising application goals ranging from smart
devices to smart cities, and aiming to have strong impacts on most sectors of
human life (e.g., health, transportation, etc.) [5]. This chapter focuses on CPS
design, control, simulation and development.

In regard to the recent advances in robotics, an increasing tendency of
the community is witnessed to provide low cost and easy to implement
solutions concerning the theoretical analysis of a system (modeling, design,
simulation, and control), as well as its development (embedded hardware and
software). Already, important advances have led to big strides in software
(e.g., the ubiquitous use of the Robotics Operating System or ROS [6]),
and in hardware (e.g., the constantly increasing number of embedded single
board computers with high computational power and low cost [7]). However,
the robotics community still lacks a complete framework involving all the
necessary stages that lead from ideas to prototype development and testing.
There is a lack of standard procedures to help research teams create and share
design and development tools and build upon existing work to minimize time
and maximize research quality. The challenge here is to connect the pieces
from diverse science and technology fields toward coordinated steps in the
field of CPSs.

In this chapter, an attempt is made to provide new tools and also combine
existing ones in software and hardware with the goal to create a complete
framework to aid researchers bring conceptual ideas into reality in minimum
time and at minimum cost. To this end, the focus is on widely adopted
tools and techniques. Also all necessary material for anyone to reuse it
in a similar or modified manner is provided. First, the modeling and sim-
ulation stages are addressed for robots with multiple degrees of freedom
(dof) subject to frequent collisions with the environment – a typical class
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of problems – and template simulation software is provided. Second, simple
steps toward the design and development of prototypes are proposed, based
on the idea of easily interconnected, and low cost embedded computers.
Finally, two application examples – mostly concerning motion control – are
presented to exhibit the simulation and prototyping aspects of the proposed
framework.

6.2 A Framework for Simulation and Prototyping

The proposed simulation and prototyping framework provides solutions for
the stages of modeling, simulation, control, and system development. In
this section, each stage of the procedure is properly described, and simple
software and hardware solutions are provided for a class of problems com-
monly addressed in robotics, namely motion control and interaction with the
environment.

The first stage includes finding the most important unsolved problems
and proposing concepts and ideas toward their solutions. In this scope, this
stage mostly concerns ideas in the areas of design, control and technology.
Next, simulation experiments must be conducted to provide the first proof
of concept, hardware prototypes must be designed and built, and finally
hardware experiments must validate the previously derived theoretical results.

6.2.1 Modeling, Dynamics, and Simulation

6.2.1.1 Dynamics derivation and simulation methods
Before conducting hardware experiments, simulation experiments are con-
ducted to first evaluate the theoretical idea or concept. To this end, a model
of the system must be built, and then simulated. Two options are typically
followed and both present their own advantages; deriving the respective
system of differential equations and then solving it with numerical analysis
software, such as Mathematica and Matlab, or use 3D simulation software
packages such as Gazebo and Adams [8], for which a physical description
with mass properties is only required.

In the first option, the models are kept simple but representative, to aid the
dynamics derivation phase, to allow the understanding of each component’s
role in the equations, and also to be used in the design of model-based
controllers. This approach provides a simulation environment, but also tools
for design and control. The difficulties that arise concern the derivation of
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the often intricate and multi-dimensional system of equations, the tedious
programming, and the art of selecting the most important features to model.

Template Mathematica and Matlab files for deriving and solving the
Equations of Motion (EoM) for a model of the quadruped robot Laelaps
(Figure 6.1) – designed and built in the Control Systems Laboratory (CSL)
of the Mechanical Engineering Department of NTUA – are provided as
supplementary material for this chapter [9]. The EoM are derived in symbolic
form using Mathematica, and then imported for integration and animation in
Matlab; this approach was followed in designing and simulating the trotting
controller proposed in [10]. The software is designed such as to be easily
reconfigured for application in other systems of the same class, namely
multibody dynamical systems subject to impacts with the environment. The
reader is encouraged to employ the code as a tool for dynamics derivation and
simulation in related applications.

In the second option, in which a 3D dynamics simulation software pack-
age is used, a detailed model can be built easily. The focus here lies on
tuning the simulations so as to eliminate, if possible, the expected differences
from the experiments. A comparison of the best known and most used 3D
simulation packages for use in robotics can be found in [8], where Gazebo
appears to be a prevalent solution in terms of cost, community support and
ability for interconnection with other software like ROS, ubiquitously used
for robot control [6]. This exact combination – Gazebo for modeling and
simulation, and ROS for control – is proposed here for 3D simulations.
Application examples are presented next to show the packages’ ease of use,
functionality, and compatibility with the real robot’s firmware.

(a) (b)
Figure 6.1 (a) The quadruped robot Laelaps, designed and built at CSL. (b) The 2D model
of Laelaps animated in the simulation environment built in Matlab.
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6.2.1.2 Modeling the environment
Depending on the application, one has to model the environment with the
proper level of detail. In robotics, this includes, among others, the modeling
of walls, gravitational acceleration, terrain, aerodynamic or hydrodynamic
forces, impacts, etc. The descriptions are such that follow simple or complex
forms of physics equations: for example it may be enough to describe a wall
as a static object; then, a mobile robot has to avoid certain values in the
location of the object in order to avoid any interaction with the object. On
the other hand, it is common to require a description of interactions, because
the robot operates in a way that these interactions are unavoidable; the foot-
terrain interaction is a perfect example which will be analyzed a bit further to
give an insight on how to work on these cases.

The interest in this example is how to model impacts between a legged
robot and terrain, using a method which shall describe the interaction between
different materials, compliant (i.e., able to have deformations) and non-
compliant, retaining a high level of fidelity. The answer to this question is
important, because a well-established model is necessary for the accurate
representation of impacts on simulations. In principle, the impacts can be
modeled via three methods: the stereomechanical theory method, the Finite
Element Method (FEM), and the compliant/viscoelastic approach [11]. Each
method has its pros and cons but the use of the viscoelastic method seems
more appropriate, as the impact between different materials can be described
by lumped parameter models with suitable characteristics. There are various
viscoelastic models in the literature with more prominent the Hunt–Crossley
(HC) model, [12]; in fact the majority of the viscoelastic models use the HC
model as a basis and this will be also the basis here. In HC, the interaction
force is calculated by,

Fg(yg, ẏg) = kg · yng + bg · ẏg · yng (6.1)

where kg and bg are the stiffness and damping coefficients respectively, n
in the case of Hertzian non-adhesive contact is equal to 1.5, and yg is the
depth of interpenetration. In Figure 6.2(a) the shape of a typical HC impact
is given. The area inside the curve is the non-recoverable energy dissipated
during impact inside the materials due to mechanisms like internal vibrations
and local plastic deformations.

However, the behavior of real materials is somehow different according
to the experimental results in the literature. In Figure 6.2(b) the experimental
results of the impact of a metallic sphere on a rigidly supported thin laminate
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Figure 6.2 (a) Typical HC interaction force–penetration depth diagram. (b) Force–
indentation response of a metallic sphere impacting a rigidly supported thin laminate.

Figure 6.3 Impact curves for the proposed impact model (2) for various λ.

are shown. The qualitative similarity of the HC model is apparent; however,
the HC model fails to predict the permanent deformation analytically [13].

In order to tackle the issues that other impact descriptions have, the
authors have proposed a novel impact model which has viscoplastic char-
acteristics. This model shows very good correlation with experimental results
found in the literature and it can efficiently describe a large number of inter-
actions that occur in robotics (in terrestrial applications and also in space).
Briefly, the model calculates the interaction force Fg at impact instance i by,
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where subscript c stands for compression, r for restitution, ye is the pene-
tration depth, and the index i identifies the impact instance, while the term
Coefficient of Permanent Terrain Deformation λ is proposed. The result of
the model can be seen in Figure 6.3, however the interested reader should
consult [14] for details.

6.2.2 System Development: Hardware and Software

6.2.2.1 Introduction
In this section, methods for fast prototyping of robotic systems of various
structures and complexity levels are presented, which are scalable and can be
implemented relatively easy. Since hardware experiments provide the final
and most convincing proof of the claims made in the analysis and simulation
phases, it is critical to be able to design, build, and test a prototype in a
fast, low cost, and debuggable way. The focus here is on hardware and soft-
ware development for robotic applications like legged robots, which include
modules with low level read and write capabilities, e.g., microcontroller
units (MCUs), controlled through a network. Such systems, also known as
Networked Control Systems (NCSs) [15], are inextricably linked to CPSs and
will be the main subject of the following paragraphs. An example of an NCS
is shown in Figure 6.4, where sensor measurements that are used as feedback,
and control signals that are used as controlled reactions, are exchanged via the
network.

NCSs consist of distributed nodes and are typically controlled by one
or more Single Board Computers (SBCs) running an operating system, or
even a higher level meta-operating system like ROS. The number of nodes

Figure 6.4 The structure of a typical Networked Control System (NCS).
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comprising an NCS is indicative of the system’s complexity. Common appli-
cations for a node include controlling a DC motor, interfacing with sensors
like Inertial Measurement Units (IMUs), LIDAR, or force sensors, and more.
These low level devices come with specifications for communication, with
common interfaces including Quadrature Encoder Interfaces (QEIs), Pulse
Width Modulation (PWM) modules, serial interfaces such as Serial Periph-
eral Interfaces (SPI), etc. Thus, in the design phase of an NCS, suitable
embedded computers must be selected such as to first satisfy these low level
requirements. Note that some I/O capabilities like QEIs, or Digital to Analog
Converters (DAC) are only found in application specific MCUs, whereas
others like SPI are ubiquitous. Besides communicating with the devices, the
embedded computers must be able to connect to the network, through which
they will communicate with the other nodes. This network can have thousands
of nodes in the case of a factory or can be much smaller in the case of a small
mobile robot. Therefore, depending on the network type, another requirement
is added to the process of selecting the appropriate MCUs for each case. For
instance, if it is for a node to be connected to a CAN [16] or an EtherCAT
network [17], it must have the respective specifications.

Networking of embedded devices has been a subject of meticulous studies
for many years, with industry showing early the way by introducing numerous
communication protocols for use in factories, vehicles, medical devices,
etc. [18]. Interestingly, there is not yet a universally adopted protocol for
industrial communications, as there is, e.g., for the Internet. As networks and
related technology fields advance, many new communication technologies
emerge, many old ones become obsolete, and the future goals get higher in
terms of speed, safety and determinism.

The following paragraphs gradually introduce and discuss the fundamen-
tal concepts behind industrial communications, aiming at setting the basis
on which the proposed methods will be presented. The main focus is on the
aspects of communication speed and determinism, which are critical for real-
time closed loop applications. Lastly, the hardware and software aspects of
the proposed NCS are described.

6.2.2.2 The automation pyramid
The topics discussed are strongly connected with the old automation pyramid
idea [19], which separates an industrial network in different logical and
topological hierarchical layers. The network types in the pyramid differ in
size, complexity, requirements and purpose. On the top, the Global Area
Networks (GANs) are met, able to cover even intercontinental distances, next
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are the Wide Area Networks (WANs) followed by the Local Area Networks
(LANs), and below are the Field Area Networks (FANs), (Figure 6.5). During
the last decades, important advances occurred in both LANs and FANs,
aiming at serving different communication purposes; high bandwidth for
large data packets delivery for the former, compared to real-time delivery
of small data packets for the latter. However, this difference gradually lost
importance, as Ethernet started occupying an increasingly wider range in the
pyramid, penetrating every level and replacing almost all of the older variants.

Here the interest lies in the lowest levels of the automation hierarchy,
where high accuracy embedded control takes place. There, depending on the
number of nodes connected to the network, complexity rises and the need
of systematic approaches concerning the communication system emerges.
Regarding communication at this so called field level, the seminal works
on Fieldbus technologies, which have been advancing for the last 30 years,
have already set a rigid basis under the idea of connecting multiple devices
via a bus-like shared medium [20]. This Fieldbus revolution pushed indus-
trial communications to a high level, with applications spreading across all
technology domains under various standards. Interestingly though, a sec-
ond promising revolution has recently begun, building upon the widespread
Ethernet technology [21]; Ethernet-based control systems will be rigorously
studied herein.

6.2.2.3 The OSI model and Media Access Control (MAC)
methods

Regarding the structure of an industrial network, studies refer to the physical
and the logical topology as the two key characteristics [22]. The physical
topology describes the installation of the nodes (in a star, ring or other for-
mation), the cabling and the hardware required, while the logical topology –
not necessarily similar to the physical one – defines the protocol used by
the signals to transfer data. Of great importance in networks history was the
establishment of the Open System Interconnection (OSI) model, as a seven-
layer open reference model describing the required hardware and software
components for connecting all the – incompatible in the past – types of net-
works [22]. A clarification needed is that the numerous standards occupying
the different layers are not considered parts of the OSI model. According
to the model, in a typical communication channel, the transmitting side
encodes each data packet following the steps from layer 7 down to layer 1
before sending the package to the receiving side, where the inverse process
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Figure 6.5 (a) The automation pyramid and (b) the OSI model.

takes place. Each layer, in the transmitter prepares data to be read by the
peer layer on the receiving side, and then transmits the data to the lower layer
to do the same until the packet is finally sent out from the physical layer
(Figure 6.5(b)).

The Media Access Control (MAC) methods occupy a part of the data link
layer of the OSI model, as mechanisms to access the network and manage
the bandwidth for achieving the desired communication characteristics. The
MAC sub layer has a major role in defining the determinism of the communi-
cation; depending on the application, the method may favor large data packet
transfer with high and unbounded delays, or small data packets with low and
bounded delays. Known MAC methods include Frequency Division Multiple
Access (FDMA), Code Division Multiple Access (CDMA), Space Division
Multiple Access (SDMA), and Time Division Multiple Access (TDMA) [20].
The applications studied here typically use the latter, with which the nodes
use the medium sequentially. Referring to TDMA methods, the available
sub-strategies include Polling, Token Passing, Time-Slot-Based, and Random
Access methods [20]. Ethernet adopts the Random Access strategy, and thus
it is of our main interest in this chapter.

Random Access methods include various Carrier Sense Multiple Access
(CSMA) methods; some are modified for collision avoidance (CSMA/CA),
as for example in CAN, and others for collision detection (CSMA/CD),
as in Ethernet’s original version with shared medium [23]. Focusing on
CSMA/CD, collisions are immediately detected by the sending nodes, which
monitor the bus while sending. After collision detection, the nodes abort the
data transfer and wait for a random time before trying again, clearly showing
a nondeterministic behavior, unsuitable for control applications. However,
with the introduction of switched full-duplex Ethernet, collisions can now
be avoided as described next.
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6.2.2.4 Networked Control System design
When designing an NCS, there is no rule of thumb that one should always
follow. Taking into account the available software and hardware and their
costs, merits and demerits come to the surface and point toward the final
solution. In this chapter, we propose a simple but powerful control network
structure based on Ethernet and the User Datagram Protocol (UDP) [22].
The Ethernet standard is the most common way to connect devices in a
local area network, and it occupies layers 1 and 2 of the OSI model. So
far, Ethernet was considered mostly for the upper levels of the automation
pyramid, but recently it has gained ground toward the lower field levels
with industrial standards ensuring high-speed, reliability, and determinism
[23]. Moreover, besides the usually costly industrial solutions, simple and
cost-effective nonindustrial UDP implementations have been also shown for
real-time embedded systems [24–26].

In general, Ethernet technology presents many advantages for use in
CPSs; here, we sum up some critical aspects. Firstly, it is a fast, inexpensive
technology that can suit many purposes. It can transfer data ranging from
short messages to big files and over long distances, it has minimum require-
ments in hardware and software design – since related hardware modules
and software packages are widely available – and it can take advantage of
numerous higher-level protocols such as IP and UDP, or other industrial
variants like EtherCAT [27]. Finally, most computers have Ethernet support
built in, which favors the direct interface of an Ethernet-based CPS with a
personal computer.

Throughout the next paragraphs, a generic case is analyzed to show
how an NCS can be built using the herein discussed toolsets. Consider a
common application, where n DC motors are connected to n MCUs and are
controlled through a switched Ethernet network by a computer running ROS,
Figure 6.6. To analyze the proposed NCS, the important aspects of Ethernet
and UDP in terms of determinism and system performance are examined.

Figure 6.6 The architecture of the proposed NCS.
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Also, software design methods for the MCU nodes and the ROS nodes are
rigorously discussed.

6.2.2.5 Switched Ethernet and determinism
Before switches, Ethernet networks used hubs. In a hub-based network,
packets received by the hub were broadcasted to all ports, raising the risk of
message collisions, and packet retransmissions after randomly long waiting
times, as defined by CSMA/CD. On the other hand, a switch is a device that
can learn the network’s topology, divide it into different collision domains,
and send packets only to their destination ports. The main switch types are
store and forward, which examine the whole packet before transmitting, and
cut through, which immediately forward the packet to its destination port.
Store and forward is slower, but it is the most common type of switching.

Regarding sending and receiving packets through the same wire, another
risk for collisions emerges even for switched Ethernet. In the early half-
duplex Ethernet, where a node could not send and receive data at the
same time, emerging collisions were addressed with CSMA/CD resulting
again in a nondeterministic communication type. However, when full-duplex
Ethernet was standardized, every node was provided with a unique collision
domain allowing for sending and receiving simultaneously, while doubling
the available bandwidth [28].

Conclusively, switched Ethernet can assume a deterministic nature, since
collisions can be prevented, and thus no random waiting times are required.
Yet, a last point requires the designer’s attention to ensure the desired real-
time character. In case a switch port receives a large number of packets, the
port’s buffer may overflow and lead to unexpected delays or data loss [29].
By default, switches use first-in-first-out (FIFO) queues. That said, to avoid
the risk of data loss and to ensure a high level of determinism (i.e., bounded
latency), a control network should be designed such that it would not need
large buffers in nominal operation. To this end, congested segments must be
avoided early in the design phase. Depending on the hardware components
used and the network architecture, the proper data rate for each communica-
tion path must be defined in software. For instance, say the network is badly
designed, and network traffic for the nominal case is intense at several nodes
finally leading to always full buffers. Apart from packet dropping, there is
also unwanted latency introduced to the system, equal to the time required to
empty the respective buffers. Along these lines, the software developer must
carefully take into account all the limitations regarding hardware data rates to
achieve optimal performance.
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6.2.2.6 Quality of Service (QoS)
The QoS parameters refer to measures of how well a network performs
according to criteria of timeliness, reliability and other [30]. The bottlenecks
concerning these parameters must be identified and taken under consideration
in the design phase. To this end, the most important QoS parameters are
shortly presented here.

• Bandwidth: a measure of the maximum amount of data bits that can
pass in a given interval between two network nodes – measured in bps
(bits per second).

• Throughput: the actual rate that the data are transferred.
• Delay: a measure of how long it takes for a unit of data to be transferred

from the source node to the receiver node.
• Jitter: the variation in packet delay.

6.2.2.7 Latency in switched Ethernet
Adding to the above, determinism can be considered a QoS parameter of
great significance when referring to NCSs. It refers to the unbounded delays
that may occur in any layer of the OSI model. An analysis on the delays
introduced in the various stages of Ethernet communication is useful here.
The total delay for a communication channel is the main indicator for deter-
minism and can be calculated as follows based on the analyses conducted in
[23] and [29]:

Tdelay = Tpre + Twait + Tframe + Tprop + Tswitch + Tpost (6.3)

with the time components defined as follows.
Preprocessing and Postprocessing times: Tpre is the time required for the

sender to encode the data for sending over the network, and Tpost is the time
required for the receiver to decode the received data. These depend on the
devices and they can be the prevalent cause of delay.

Waiting time: Twait is the waiting before transmitting time in case the
network medium is unavailable. It depends on the MAC strategy followed
and the network traffic.

Frame time: Tframe is the time required to send a packet, and can be
calculated as:

Tframe = (Ndata +Novhd +Npad)8Tbit (6.4)

where Ndata is the data size in bytes, Novhd is the number of bytes used as
overhead, Npad the number of bytes required to reach the minimum frame
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size, and Tbit is the time to transmit 1 bit, calculated as the inverse of the data
rate (e.g., Tbit = 10 ns for 100 Mb/s Ethernet).

Propagation time: Tprop is the time required to propagate a message
between two devices. It is defined by the velocity factor (VF) of the trans-
mission medium, which is the ratio of the speed of a wavefront passing
through the medium, to the speed of light in a vacuum [31]. Depending on
the insulating material, typical VF values lie between 0.4 and 0.7, with 0.7
corresponding to approximately 2.1 × 108 m/s. Tprop is less than 1 µs for
distances below 100 m for most networks.

Switch delay: is the time a frame is delayed at the switch, and can be
calculated as Tswitch = Tmux+Tqueue, where Tmux is the multiplexing delay,
after which the switch starts to transmit the frame once it is received, and
Tqueue is the time the frame waits in the switch queue plus the time required
to transmit it [29].

6.2.2.8 Message exchange using Ethernet, IP, and UDP
A computer sending a UDP message, first places the message in a UDP
datagram consisting of a UDP header followed by the data payload, and then
places the datagram in the data area of an IP datagram. The IP address does
not contain information about the physical location of the destination, and
therefore the datagram is placed in an Ethernet frame that contains this kind
of information. Finally, an Ethernet driver sends the packet on the network.
Conversely, on the receiving side, the Ethernet layer passes the IP datagram
to the IP layer, which removes the IP header and passes the data included in
the UDP datagram to the port specified in the datagram’s header – Figure 6.7
for a visualization of the procedure.

At this point, a detailed description of the Ethernet frame and the resulting
message is needed to better understand the basics of Ethernet communication.
Referring to Figure 6.7, the Preamble field (PRE) consists of seven bytes of
the form 10101010, and is used for bit synchronization. The Start Frame
Delimiter (SFD) is the byte 10101011, which indicates the start of a frame.
The source and destination MAC (Media Access Control) addresses (SA and
DA) are the physical hardware addresses consisting of 6 bytes each. The
Ethertype indicates the sort of data contained in the frame; for an IP datagram,
the field would contain the value 0x0800. The Data field contains a message
of size ranging from 46 to 1500 bytes, including information for IP, UDP or
other. Note that if the data size is less than 46 bytes, the remaining bits are
padded as zeros. Finally, the Frame Check Sequence (FCS) is used to detect
errors in a received frame, and the Interpacket gap (IPG) contains 12 bytes



6.2 A Framework for Simulation and Prototyping 191

Figure 6.7 The UDP/IP stack.

to cause the required pause between the network frames. Based on these, the
size of an Ethernet message always lies between 84 and 1538 bytes.

Details for the path of the data through the Network, the Transport and
the Application layers of the proposed architecture are given next.

6.2.2.9 Network layer: The Internet Protocol
The Internet Protocol (IP) helps the data packet find the way to its destination
on the Internet. Several communications also use IP in local networks to
employ its companion protocols, TCP and UDP. It is a connectionless and
unreliable protocol, since it doesn’t provide flow control and error checking of
the payload. The structure of an IP datagram and its header is well described
in Kurose and Keith [22]. A protocol field is included in the datagram so the
IP layer will know where to pass the received data, Figure 6.7. For instance,
for UDP, decimal 17 is used.

6.2.2.10 Transport layer: The User Datagram Protocol
Both UDP (User Datagram Protocol) and TCP (Transmission Control Proto-
col) communications are established between logical endpoints called sockets
and existing only in software. A socket is defined by a port number and an
IP address. The port numbers identify the sending and receiving processes
running on the communicating devices. Although in an Ethernet frame, the
address fields already identify the communicating interfaces, UDP and TCP
precisely specify the source and destination nodes by naming the respective
ports. Here we focus on UDP, which only adds port addressing and optional
error detection to the message being sent. Unlike TCP, it is a connectionless
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protocol, meaning that a computer can send a message without establishing
if the target computer is available on the network. These make it unreliable
but simpler to implement and faster. UDP can also send a message to mul-
tiple destinations at once, while TCP cannot. Those said, and based on the
considerations made about the protocol’s determinism and reliability, it is
considered more suitable than TCP for the discussed control applications.

6.2.2.11 Application layer
The data payload contained in the UDP datagram (Figure 6.7) must also
follow a protocol to let the receiving application know what to do with
the incoming data. An application may use a standard protocol such as the
hypertext transfer protocol (HTTP) for requesting and sending Web pages,
the file transfer protocol (FTP) for transferring files, or the simple mail
transfer protocol (SMTP) for exchanging e-mail messages. Other applications
however may use simpler custom protocols, e.g. in an embedded system like
the one shown in Figure 6.6, an application may periodically receive sensor
measurements and use the data to control motors, relays, or other circuits.

Before further discussing the proposed software structure at the appli-
cation layer, putting the possible communication types into categories will
help define the nature of the proposed NCS and understand the logic behind
the design. A first categorization can be made into cyclic and acyclic com-
munication types. Connectionless services – like the ones used here – are
typically used for cyclic data exchange in the sense that lost packages are
not being sent again delayed and outdated, favoring new data to be sent.
In practice, buffers are used in a FIFO logic at all nodes to store the most
recent data. On the contrary, acyclic communications typically use protocols
with reception acknowledgement and packet retransmission mechanisms. A
second categorization would be into time-triggered and event-triggered com-
munication types, with the former mostly used for periodic data exchange,
as in the presented case. Finally, regarding the way the central control node
communicates with the distributed slave nodes, the communication types can
be based on the client–server or the publisher-subscriber paradigms [20]. For
instance, the processes (nodes) in a ROS system typically communicate using
a publisher-subscriber type of communication.

6.2.2.12 Software design for the MCU node
On the MCU side, the software must handle the signal level communications,
and also set up the node’s connection to the network. Specifically in the motor
control case, the MCU must read the signals from the encoder attached to the
motor, and send a PWM signal to the motor drive. Here, instead of closing the
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loop on the MCU, it is preferred that the loop is closed on the ROS computer
in order to use its rich toolsets for control. To this end, the MCU must send the
encoder measurements via UDP to the ROS computer to calculate the control
output and send it back to the MCU also via UDP.

Along these lines, a suitable MCU is selected such as to have motor
control features and Internet connection capabilities. Interestingly, a very
limited number of ready-to test and low cost development boards with such
specifications are available in the market. The TivaTM C Series TM4C1294
Connected LaunchPad [32] by Texas Instruments is a good candidate, since it
features an 120MHz 32-bit ARM Cortex-M4 CPU, Ethernet connectivity and
a QEI module, at the price of $20. Also provided by Texas Instruments is the
TivaWare library, which significantly accelerates the software development.
Those said and without loss of generality in the design process, TM4C1294
is used in the applications presented herein.

In the n-motor control case shown in Figure 6.6, n TM4C1294 boards are
used. Encoder measurements are sampled from the boards and sent with a
desired frequency to the ROS computer via UDP to calculate and send back
the corresponding control outputs. The choice of the sampling frequency is
of great importance to achieve the desired system performance; a too slow
sampling rate will give low resolution and a slower control loop, while a too
fast sampling rate will lead to a saturated network and data loss [23]. In terms
of software design, a timer is used to strictly define the sampling and the
transmission rate.

In general, the achievable data rate is limited by several factors; an
important one is the speed of the connection. Typical Ethernet speeds are 10
Mb/s, 100 Mb/s, and 1,000 Mb/s. For a full-duplex 100 Mb/s connection and
a minimum message size of 84 bytes (Figure 6.7) the minimum frame delay
Tframe is (84 × 8)/(100 × 106) = 6.72 µs, corresponding to a maximum
frequency of 148.81 kHz. This delay is fixed if the useful data packet size
is less than the minimum size of 18 bytes. For a full message of 1538 bytes
the theoretical minimum delay is (1538× 8)/(100× 106) = 123.04 µs, cor-
responding to a maximum frequency of 8.1274 kHz. In control applications
the messages are short and so the frame delays are expected to be close to 10
µs, based on the previous calculations. Interestingly, there is no difference in
delay when sending 1 and 18 bytes of useful data; the optimal exploitation of
the frame would be to send 18 bytes of information.

Although, the above discussed network delay can become a bottleneck
as the system size increases and the performance requirements raise, the
node processing delays are those that typically dominate in small networks.
The processing power of the hardware, and the software design determine
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Table 6.1 The structure of the message contained in the UDP data frame
Message ID Data Description
0x31 1 byte (PWM duty cycle) PWM and DIR command
0x42 4 byte (encoder) Encoder measurement

how fast the data can be processed at the nodes. Referring to (3), besides
the already discussed Tframe, the components Tpre, Tpost and Tswitch are the
most important for estimating the total delay, since the waiting time Twait

and the propagation time Tprop are negligibly small. To achieve the desired
Tpre and Tpost, suitable embedded computers must be properly selected and
programmed. Finally, to keep Tswitch to a minimum the data rates must be set
in software such that segment congestions are always avoided.

The calculations made set the first limitation for the maximum achievable
frequency at 150 kHz. Adding also the node and the switch delays this
frequency is further reduced. However, since it is hard to estimate the total
delay, this is found experimentally in most cases. This is a critical point
as the developer must guarantee that the data rates in all network segments
are always kept below the maximum values. Real experiments are presented
in the last section showing realistic high frequency control loops and the
resulting performance.

As far as software design at the application layer is concerned, a custom
protocol is used on top of UDP, for a node and a ROS computer to exchange
sensor measurements and control outputs. This includes a byte for defining
the message ID, and a number of bytes of data depending on the message ID,
see Table 6.1. The protocol is easily adjustable to other applications, as will
be shown in the example cases.

6.2.2.13 Software design for the ROS computer
In system design, there is always a discussion concerning the software
tool chains that should be used. Also with most platforms, the software
created for specific hardware components cannot be transferred easily and
reliably to a version consisting of different parts. On the other hand,
ROS is a platform including a large database of drivers for devices and
sensors, allowing for easy cross communication between processes; this
way the need for custom software to handle communication is eliminated.
ROS runs on Linux, thus allowing for running the same software on
most computers in a technology lab. Also, software for common appli-
cations, such as motor control can be used off-the shelf with minimum
modifications.
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Communication between processes is one of the first challenges a devel-
oper faces when designing a robot. ROS provides a messaging system that
manages all the communication details, eliminating this way the need for
setting up communication protocols, defining data exchange rates etc. Specif-
ically, ROS’s basic communication system is an anonymous, asynchronous
publish/subscribe mechanism, using nodes (the ROS form of executable
files, written in C++, Python or other). A node can publish messages on
a bus called topic, to which other nodes can subscribe and receive them.
This organization leads to less complex and more readable code. ROS also
includes other communication structures like services and actions that can be
used depending on the case.

Those said, a ROS running computer is selected here to play the role of the
master of the NCS shown in Figure 6.6. In this generic case, the application
layer software in the ROS computer side needs to be designed such as to
control n motors by exchanging messages with n MCUs, as defined by the
protocol described in Table 6.1. To this end, two ROS nodes are required for
each motor’s low-level control, and a third node to play the coordinating role
of a higher level controller.

The first node handles the UDP communication with an MCU; it receives
encoder measurements and transmits control outputs, i.e. PWM signal values,
back to the MCU. It also communicates with the nodes that implement the
controller, the user interface etc. In this interface node, an asynchronous
server is set up to receive and send packets, and the IP and the send/receive
ports are also defined. The incoming encoder data are read by the node using
a sigaction function. Every time it receives a message, the signal handler is
triggered, the execution of the main function is interrupted, the data are read,
and then the execution of the main function continues from where it stopped.
Next, the encoder value is published to a topic usually named /state, as a way
of sharing the data with other nodes, e.g. the controller node. Depending on
the case, publishing can be done in two ways. If it is done inside the signal
handler, the data are published at the same rate they are received, and thus
the MCU transmission rate determines also the publishing rate of the node.
Alternatively, publishing can be done inside the main function. In this way,
and since ROS allows the user to set the loop rate of the main function, the
publishing rate is determined by this predefined loop rate and is different from
the MCU’s transmission rate. Actually, the achieved rate of the node may
deviate from the predefined one, since it also depends on the transmission
rate of the MCU, the computer resources, the number of running processes
and other factors.
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Except for sending data, the interface node also needs to receive data
from other nodes; by subscribing to a topic named /control effort, it reads the
calculated by the controller node PWM duty cycle and sends it back to the
MCU via UDP. This second controller node operates at the rate it receives
messages, i.e. at the rate the /state topic is published. The publishing rate of
the /state topic is in fact the rate of the control loop. Finally, a third node is
typically used as a higher level controller, e.g. to coordinate n actuators to
perform a task.

Great attention must be paid to the data rates defined in software design.
As can be seen in Figure 6.6, given that n motors are controlled at the
same time by the ROS computer, the segment connecting this computer with
the switch is where the maximum traffic will appear. Consider a message
transmission rate ftransm defined for each MCU and the maximum achievable
data rate for a segment fmax as defined in the previous paragraphs, then for
n MCUs the inequality ftransm < fmax/n must always hold to ensure good
system performance.

A last critical point concerning the software design of the ROS computer
is the processing delay introduced in the total control loop delay, e.g. it is big
if graphics are running or data are printed. Also, the non-real time character of
the Linux-ROS system gives a non-deterministic character to the system, and
thus attention must be paid to the number and the kind of processes running
each time. Graphical user interfaces or similar tasks should better run on a
different ROS computer connected to the network; ROS allows for easily
distributing the application nodes to run in multiple computers.

6.3 Application Experiments

The methods discussed theoretically in the previous sections are applied here
to real applications. Two examples concerning legged robotics are presented.
The first describes the control system of an instrumented treadmill, on
which a single actuated hopping robot – presented as the second application
example – can be tested.

6.3.1 Treadmill Control

6.3.1.1 System description
The first example concerns the velocity control of a treadmill (Figure 6.8)
placed in the Control Systems Lab (CSL) of the National Technical Uni-
versity of Athens. It is 6 m long and driven by two 3-phase induction
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Figure 6.8 (a) The treadmill placed in the Control Systems Lab (CSL) of the NTUA,
(b), (c) The treadmill’s control system.

motors. The first motor (model MS 100L 2-4, XIUSHI) drives the belt’s
main pulley achieving a maximum running velocity of 12.6 m/s. The second
motor (model FC80-4, Electro Adda) actuates on an endless screw and a
rack-pinion system that regulates the treadmill’s inclination. Both are driven
by inverters; an EMERSON M200-022 model for the belt’s motor and a
SIEMENS SINAMICS G110 for the inclination motor. These control the
motors’ velocity according to the formula n = 120f/P , where f is the AC
current frequency and P the number of poles.

Motor control can be achieved using the control inputs (terminals in
Figure 6.9) or the control panel provided by the inverters. While in terminal
control mode, at minimum three connections are required (Figure 6.10):
system activation through the enable terminal 11, selection of rotation direc-
tion (terminals 12 or 13 for forward or reverse respectively) and reference
input voltage (terminals 1–2). To drive the motor, both direction and enable
terminals have to be connected. With these connections established the motor
runs in a minimum frequency predefined in its memory (7–8 Hz). To make
the system controllable the terminals need to be connected/disconnected
electronically. As the manufacturer specifies, they require a 24-V input, which
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Figure 6.9 The terminal layout of the treadmill’s inverter.

Figure 6.10 The electronic schematic of the treadmill’s control system.
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can be provided by terminal 9; one needs to short-circuit terminals 9–11 and
9–12 or 9–13 according to the desired direction of motion. To define the
frequency, a 0- to10-V input is required on terminal 1 and GND on terminal 2.
Three relay modules are used for this, which require a 5-V power supply and
a logical signal. To measure the speed of the belt an HEDL-5540 incremental
encoder is installed.

To satisfy all requirements, the basic components used are a TM4C1294
Connected LaunchPad, a TP-LINK AC1750 router, and a regular PC running
Ubuntu 16.04 and ROS Kinetic. With this setup the treadmill can be con-
trolled also by any other PC on the network. The system built is shown in
Figure 6.8.

6.3.1.2 Software design: MCU side
On the MCU side, one needs to enable the QEI and PWM modules and to
set up the UDP communication. Moreover, the IP addresses of the MCU and
the ROS computer, the device subnet, the device gateway and the send and
receive ports must be defined. The software is available on [33].

6.3.1.3 Software design: ROS side
The software designed for the ROS computer consists of three nodes. The first
is named ros speed enable and it is the interface between ROS and the MCU.
It sets up the UDP communication, receives velocity measurements from the

Figure 6.11 The communication system as a ROS graph.
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encoder, and publishes them on the topic named/state. Also, it subscribes on
the topic named /control effort to receive the calculated PWM commands,
which are sent back to the MCU. Note that the send port of the MCU is the
receive port for ROS and vice versa. The last topic is published by the control
node pid node, which receives the measured velocity from the /state topic
and the desired velocity from the /setpoint topic as published by the third
node ros read velocity. The latter is the user interface reading the desired
speed from the keyboard. The software structure is shown in Figure 6.11 and
the software is available on [33].

6.3.1.4 Hardware experiment
An experiment was conducted, where the treadmill was commanded to follow
a velocity profile rising linearly with time to 10 m/s, then reducing to 6 m/s,
rising again to 10 m/s and finally slowing down back to 0 m/s (Figure 6.12.
The sampling frequency was set at 10 kHz, the PID control node frequency
was set at 2 kHz, and the velocity was estimated with a frequency of 15 Hz,
which however worked well. Also, adjustments of the gains Kp and Kd had
to be made.

As deduced from the results shown in Figure 6.12, this is a particularly
slow system mainly because of the inverter, which applies a fixed acceleration
rate for security reasons; it takes about 22 s to reach 10 m/s. It also seems that
the controller needs modifications to reduce the high-frequency oscillations
that appear.

Figure 6.12 Results from the treadmill experiment.
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6.3.2 Single Actuated Hopping Robot (SAHR)

This example refers to the Single Actuated Hopping Robot (SAHR), designed
and built in CSL [34]. Practically, it is a realization of the standard Spring
Loaded Inverted Pendulum (SLIP) model. Here, the hardware and software
are redesigned based on the principles presented in the previous sections.

6.3.2.1 Robot description
The system is designed to move on the sagittal plane and has an actuated rev-
olute hip joint, and a passively compliant prismatic knee joint using a spring
of stiffness 5900 N/m. Most parts are made of aluminum, while the leg shaft
receiving most of the impact loads is made of steel. A Maxon motor (RE35,
90 W) is used with maximum continuous current 3.36 A, nominal voltage
24 V and maximum continuous torque 0.0933 Nm. A planetary gearhead with
gear ratio 26:1 is attached together with a belt drive of reduction ratio 2:1 to
move the hip axis. The motor drive is an AZBDC12A8 by Advanced Motion
Controls (AMC), supplying up to 6 A continuous and 12 A intermittent
current. To use it, one has to send an enabling signal to the corresponding
pin, a High/Low signal to the direction pin, and a PWM signal corre-
sponding to the desired current (by default, 100% duty cycle corresponds
to 12 A).

Regarding the sensory system, two incremental encoders measure the
spring compression and the hip angle, providing three pulses, A, B, and
Index. Measurements from the spring encoder can be used to calculate the
body CoM position in stance phase, detect transitions from stance to flight
phase and vice versa, or even estimate the ground force. However, for a better
ground force measurement, a 3-Axis force sensor by BOTA Systems is also
installed.

6.3.2.2 Software design: MCU side
Two TM4C1294 boards are used to read the sensors since each board has only
one QEI module. The board that reads the hip encoder also sends commands
to the motor drive. Their programming is identical to that for the treadmill
control system, with small modifications concerning the IP addresses and the
encoder related parameters. The software is available on [33].

6.3.2.3 Software design: ROS side
In this case, where two encoders need to be read, the advantages of ROS
become apparent. Two identical MCU interface nodes are used for the



202 A Framework for Research and Prototyping in Robotics

Figure 6.13 The ROS graph for the control system of SAHR.

encoder measurements to become available for every node that needs them.
To control the hip angle a PID controller node from the ros pid package
[35] is used. The force sensor connected to the computer is ROS-ready and
only the driver needs to be built. Extra nodes can be also added depending
on the application. For a position control experiment a user interface is
required to send commands, and for a force sensing experiment the force
sensor driver must run. In the case of a hopping experiment, a high level
controller is also required to read the knee encoder or the force sensor data
and decide if the leg is in stance or flight phase (Figure 6.13). In flight
phase it can position the leg for landing, while in stance it can push the
body forward with a predefined torque. However, more complex control
algorithms can be used by taking into account the ground stiffness and
the energy losses as proposed in Vasilopoulos et al. [36]. The software is
available on [33].

6.3.2.4 Simulation experiment
The purpose of the experiment is to determine how close a Gazebo simulation
is to reality, but also to test the developed ROS system. A big advantage
of the Gazebo and ROS setup is the direct simulation with the software
used on the actual hardware. In this case two custom plugins are used; one
to publish the joint states and one to subscribe to a topic to receive hip
commands (just like the MCUs in the real robot).

The robot was left to fall from a height of 0.1 m, and the leg was
controlled to remain vertical. The ground was considered infinitely stiff, and
this might be one of the reasons that a small deviation between simulation and
experiment was observed. The ODE solver was used with a 0.001 s maximum
step size. The simulation results are shown in Figure 6.14 and also in the
video presented in SAHR [37].
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Figure 6.14 Gazebo simulation for the monopod hopper SAHR.

6.3.2.5 Hardware experiment
To constraint the robot to move on the sagittal plane, it is mounted on a
supporting mechanism on the treadmill. Like in the simulation, the leg is
controlled to stay in the vertical position with a PD controller, as shown in
Figure 6.15. Leaving the rest of the ROS system the same, the MCU nodes
are added. The transmission frequency of each MCU is set to 15 kHz and the
PID frequency to 1 kHz.

Of great importance is the good matching between simulation and experi-
ment for many aspects in robotics research. As deduced from Figure 6.14 and
Figure 6.16, simulation and reality were close in this experiment, showing
the same number of bounces, the same settling time (about 2.3 s) and the
same steady-state compression (0.012 m). A slight difference is observed in
the maximum compression appearing higher in simulation, which could be

Figure 6.15 The Single Actuated Hopping Robot (SAHR) in a hopping experiment.
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Figure 6.16 Results from the SAHR hopping experiment.

explained by unmodeled frictional losses. A video of the experiment can be
found in SAHR [37].

6.3.2.6 Simulations on interactions with terrains
Another interesting example of simulations with SAHR, is the case of
planetary environments with different gravitational accelerations and differ-
ent terrain types. In the following example [38], a controller presented in
Vasilopoulos et al. [36], tries to move the SAHR in three different envi-
ronments. It is interesting to see how the motion profiles are affected by
the abovementioned parameters. The robot behavior was simulated for the

Figure 6.17 Controller performance on shallow crater: (a, c, e) Forward Velocity on
Earth, Mars and Moon respectively, (b, d, f) Main Body Height on Earth, Mars and Moon,
respectively.
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Earth (g = 9.81 m/s2), the Mars (g = 3.711 m/s2) and the Moon
(g = 1.622 m/s2). While the controller adapted quickly to each terrain
and followed the desired objectives of forward velocity and body height in
each case, as it is shown in Figure 6.17, it can be observed that the response
converged more slowly to the desired commands as the acceleration of gravity
decreased.

6.4 Conclusions

In this chapter, advanced but easy to implement and low-cost methods were
proposed for modeling, control, design and development of robotic systems.
Widely used software tools such as Matlab, Gazebo, and ROS were combined
to form a framework for fast simulation and prototyping of robots seen as
Networked Control Systems (NCSs). The focus was on giving guidelines on
how to directly test a conceptual idea in design and control using low-cost
solutions in software and hardware. Two application examples concerning
legged robotics were finally presented as a proof of concept, and all the
software was built such as to be easily reused by the reader in similar or
modified applications.
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