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Abstract. The study of the invariant error dynamics controller for a six-degrees-of-freedom 
(dof) electrohydraulic Stewart platform is presented. Rigid body and electrohydraulic 
models, including servovalve dynamics are employed. Friction is also included in the 
mechanical model. The developed controller employs the dynamic and hydraulic model of 
the system and yields the six servovalve input current vector, in analytical form. Using 
mechanism inverse kinematics, the desired Cartesian trajectories yield desired actuator 
length trajectories. Simulations with typical desired trajectories are presented and a good 
performance of the controller is obtained. 

1 Introduction 

Stewart platform type (Stewart, 1965-66) parallel manipulators have been studied in their 
kinematics (see, e.g., Shim et al., 1997, Liu et al., 2000, Gao et al., 2005) and dynamics (Lebret et 
al., 1993, Tsai, 1999, 2000). Although electrohydraulic Stewart platforms have been used in the 
past, even commercially–mainly in aircraft simulations, not much published work on their 
dynamics and control (see, e.g., Li and Salcudean, 1997, Sirouspour and Salcudean, 2000, Kim et 
al., 2000) exists. 

Hydraulics science combined with controls, has given new thrust to hydraulics applications. 
The main reasons why hydraulics are preferred to electromechanical drives in some industrial and 
mobile applications, include their ability to produce large forces at high speeds, their high 
durability and stiffness, and their rapid response (Merritt, 1967). Hydraulic systems differ from 
electromechanical ones, in that the force or torque output is not proportional to actuator current 
and therefore, hydraulic actuators cannot be modeled as force /torque sources. As a result, 
controllers that have been designed for robot control, assuming the capability of setting actuator 
force/torque, cannot be used here. 

Control techniques are used to compensate for the nonlinearities of electrohydraulic 
servosystems. Nonlinear adaptive control techniques for hydraulic servosystems have been 
proposed by researchers assuming linearization (Garagic and Srinivasan, 2004) and backstepping 
(Sirouspour and Salcudean, 2001), approaches. The modelling of an experimental hydraulic robot 
arm and the implementation of a model-based motion controller that compensates for dynamic 
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forces have been presented by Honegger and Corke (2001). A tracking controller for 
electrohydraulic servosystems has been developed (Davliakos and Papadopoulos, 2005) 
including a fast model-based force tracking loop. 

Nguyen et al. (1992) have developed a joint-space adaptive control scheme applied to an 
electromechanically driven Stewart platform-based manipulator, using the Lyapunov direct 
method under the assumption that Stewart platform motion was slow compared to the controller 
adaptation rate. Also, Kim and Lee (1998), studied and applied a high speed tracking control of a 
6-6 electric Stewart platform, using an enhanced sliding mode control approach. 

Further, the modeling and control of an inverted, ceiling-mounted electrohydraulically driven 
Stewart platform has been researched (Li and Salcudean, 1997), using the virtual work principle 
and a pressure feedback control approach. Extended work of the same mechanism has been 
studied and applied (Sirouspour and Salcudean, 2000), in which the Lyapunov analysis approach 
has been used for a nonlinear controller. A robust tracking control design for a 6-dof 
hydraulically driven Stewart type mechanism has been developed (Kim et al., 2000) and has been 
achieved, using two types of controllers, which were based on Lyapunov analysis. 

In this paper, a simulation of the invariant error dynamics controller for a 6-dof 
electrohydraulic Stewart platform is developed. Dynamic models are presented and they describe 
the rigid body equations of motion and the hydraulic dynamics of the main elements. Friction is 
included in the model. The developed control scheme employs the dynamic and hydraulic model 
of the system and yields the six servovalve input current vector, in analytical form. Using 
mechanism inverse kinematics, the desired Cartesian trajectories yield desired actuator length 
trajectories. Simulations with typical desired trajectories are presented and a good performance of 
the controller is obtained. The approach can be further extended to hydraulic manipulator and 
simulator control. 

2 Dynamic Modelling of the Six - Dof Electrohydraulic Stewart Platform 

In this section, the dynamic model of a 6-dof electrohydraulic Stewart platform servomechanism 
(Stewart, 1965-66) is developed. This is a six dof closed kinematic chain mechanism consisting 
of a fixed base and a movable platform with six linear actuators supporting it. The mechanism is 
illustrated schematically in Figure 1. 
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Figure 1. (a) Drawing two of the six servoactuators, (b) Schematic view of a six-dof Stewart Platform. 



A full servosystem model includes the moving mass equation of motion. This system 
provides a relation between the actuator torques/forces and the resulting motion. The equation of 
motion for the Stewart platform system is derived applying a Lagrangian formulation and is 
written as 

( ) ( , ) ( ) ( )+ + + =M fr pl l V l l G l F l F   (1) 

where l  is the 6 1×  displacement vector of the mechanism actuators, ( )M l  is the 6 6×  positive 
definite mass matrix of the system, the 6 1×  vector ( , )V l l  represents forces/torques arising from 
centrifugal and Coriolis forces, the 6 1×  vector ( )G l  represents torques due to gravity, ( )frF l  is 
the 6 1×  vector of the forces / torques due to friction and pF  is the 6 1×  vector of the actuator 
forces p, j , 1, 2,...,6F j =  (see section 3). 

A number of methods exists, that model the friction vector ( )frF l , (Helouvry et al., 1994). A 
widely used method computes friction vector, the elements of which are given by, 

,

, , ,

, , , ,

sgn( ) , 0
( ) , , 0, 0

sgn( ) , , 0, 0

C j j j j j

fr j ext j ext j s j j j

s j ext j ext j s j j j

f l b l l
F l f f f l l

f f f f l l

⎧ + ≠
⎪

= < = =⎨
⎪ > = ≠⎩

   (2) 

where jl  is the j  actuator displacement, jb , ,C jf , ,ext jf , ,s jf  are the  j  parameters of viscous 
friction coefficient, Coulomb friction, external force and breakaway force, which is the limit 
between static and kinetic friction, respectively, for 1,2,...,6j = , and sgn  is the sign function. 

If the motion of the platform is specified in the 6-dof Cartesian space 0 0 0( , , , , , )x y z p q r , 
where 0 0 0, ,x y z  are the Cartesian generalized coordinates of the platform center of mass (cm) 
and , ,p q r  are the Euler angles, then inverse kinematics must be used to determine the required 
leg lengths that correspond to the desired motion. 

3 Electrohydraulic Servosystem Modelling 

In this section, the dynamic modelling of high performance electrohydraulic servocylinders is 
presented briefly. An electrohydraulic servosystem consists of a servomechanism, including 
servovalves, servoactuators, controllers, mechanical loads and a hydraulic power supply. Next, 
simple models of major components are described. 

An ideal single rod hydraulic cylinder is described by 

, 1,2r rQ A l r= =   (3a) 

1 1 2 2 pp A p A F− =   (3b) 

where rQ  are the flows through its two chamber ports, 1p , 2p  are the chamber pressures, 1A  is 
the piston side area, 2A  is the rod side area, l  is the piston displacement and pF  is the piston 
output force. A real cylinder model also includes chamber oil compressibility, chamber leakages 
and other effects. However, these can be neglected at an initial stage. 

A typical hydraulic servovalve consists of four symmetric and matched servovalve orifices 
making up a four-legged flow path of four nonlinear resistors, modulated by the input voltage. 



Thereby, the servovalve is modeled as the hydraulic equivalent of a Wheatstone bridge, see 
Figure 2. When the servovalve input current is positive, 0i > , flow passes through the orifices 1 
and 3 (path P A B T→ → → ), and flow leakages exist in the valve orifices 2 and 4. Respectively, 
when the servovalve input current is negative, 0i < , flow passes through the path 
P B A T→ → → , and flow leakages exist in the valve orifices 1 and 3. This model is described by 

1 1 1 2 2 2 3 1 2 4 2 1( ) , ( ) , ( ) , ( )v s v s v T v TQ f i p p Q f i p p Q g i p p Q g i p p= − = − = − = −  (4) 

where sp  and Tp  are the power supply and return pressure of the servosystem, respectively, i  is 
the servovalve motor current (control command), 1( )f i , 2 ( )f i , 1( )g i  and 2 ( )g i  are servovalve 
nonlinear orifice conductances, functions of the servovalve motor current. Because of servovalve 
symmetry, the current functions are given by 

1 1 2 2 2 1( ) ( ) ( ), ( ) ( ) ( )f i g i f i f i g i f i= = − = = −    (5) 
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Figure 2. (a) A drawing of a real servovalve, (b) Schematic model of servovalve. 

A good approximation is to assume that current functions are linear functions in the input 
current, when flow passes through the main path and constants, when flow passes through the 
leakage flow path. For instance, when 0i > , the main flow path passes through the orifices 1 and 
3 and the functions are given by, 

1 1 0,1 2 0,2( ) + , ( )f i K i K f i K= =   (6) 

where 1K , 0,1K , and 0,2K  are positive constants, which correspond to the main and leakage valve 
flow path, and, 

0,1 0,2=K K   (7) 

Further, neglecting leakages flows, the flows through the orifices of the servovalve described 
in Eqs. (4), are equal to the flows through the cylinder chamber ports, see Eq. (3a) and are written 
in the form 

1 1 3 2= , =v vQ A l Q A l   (8) 



4 Invariant Error Dynamics Controller 

To control the platform in operational (Cartesian) space, first, manipulator inverse kinematics is 
solved to transform motion requirements from operational-space into the joint-space. Then, an 
invariant error dynamics control scheme is designed that allows tracking of the reference inputs. 

In electromechanical systems, the force acting on moving masses is proportional to actuator 
current. This simplifies their control laws and allows one to achieve second order error dynamics 
converging exponentially to zero. However, a simple relationship between force and current does 
not exist in electrohydraulic systems. Despite this, we are interested in studying whether such a 
system can be described by error dynamics such as 

+ + =v pK K 0e e e   (9) 

where dese = l l−  is the 6×1  vector position error of the actuator displacements, desl  is the 6×1  
desired vector of the actuator displacements, and pK  and vK  are 6×6  diagonal matrixes, which 
represent the control gains of the system and are given by, 

2 2 2
1 2 6 1 1 2 2 6 6diag{ , , ..., }, diag{2 , 2 , ..., 2 }ω ω ω ζ ω ζ ω ζ ωp vK K= =   (10) 

where , , 1, 2, ..., 6j jω ζ j=  are the closed-loop natural frequency and the critical system damping 
respectively, for the six linear actuators. 

Using Eqs. (4), (6) and (8), the servocylinder chamber pressures are computed, 

2 2
2 21 2

2 2
1 0,1 1 0,1

=[ ] , =[ ] , =1, 2, ..., 6
( + ) ( + )s Tj j

j j

A Ap p l p p l j
K i K K i K

− +1 2⋅ ⋅  (11) 

Substituting Eqs. (11) into Eq. (3b), the hydraulic forces of the servoactuators are computed as, 

3 3
21 2

1 2 1 2 2
1 0,1

+[ ] = [ ] , =1, 2, ..., 6
( + )s Tj

j

A Ap A p A A p A p l j
K i K

− − −1 2 ⋅  (12) 

In Eq. (12), ji  is the control input for the jth valve/ actuator and 1 2[ ] jp A p A−1 2  is the resulting 
actuator force. However, Eq. (12) is also function of the velocity of the actuators, jl . Substituting 
Eq. (12) in the system equation of motion, see Eqs. (1) - (2), the following equations of motion 
are derived, 

3 3
1 2 2

1 2 2
1 0,1 1

3 3
1 2 2

1 2 2
1 0,1 6

+[ ]
( + )

( ) ( , ) ( ) ( ) ...

+[ ]
( + )

s T

s T

A AA p A p l
K i K

A AA p A p l
K i K

⎡ ⎤
− − ⋅⎢ ⎥

⎢ ⎥
⎢ ⎥+ + + = ⎢ ⎥
⎢ ⎥

− − ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

M frl l V l l G l F l   (13) 



Solving Eq. (13) for the input commands, , 1, 2, ..., 6ji j= , the components of the servovalve 
current vector ( )T1 2 6...= i i ii  are computed as, 

0,1

1
1 1 23 3

1 2

= [ ] , 1,2,...,6
1 [ F ]
+

j

s T

j

Kli j =
K

K A p A p
A A

−
− −

 (14) 

where F
j
 represents the j  element of the vector ( ) ( , ) ( ) ( )+ + +M frl l V l l G l F l . 

Further, assuming that Eq. (9) has been satisfied, this equation is solved for l  which is 
substituted in the elements F

j
. Then, these elements are obtained, 

F =[ ( ) ]j j
+ + + + +v pM K K⋅ des frl e e V G F    (15) 

Finally, the servovalve current vector, the elements of which are given in Eq. (14) describes 
the invariant error dynamics control law scheme for the 6-dof electrohydraulic Stewart platform. 
Note that the control law requires feedback of both the position and velocity length errors, as well 
as it includes the mechanism dynamics and a servovalve model. 

Substituting Eq. (14) in Eq. (1), an equation of the form of Eq. (9) results, which demonstrates 
the stability of the system. The system control law is illustrated schematically in Figure 3. 
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Figure 3. Schematic view of the invariant error dynamics controller diagram. 

Simulation results. The tracking performance of the controller is evaluated on the servosystem, 
described by Eqs. (1) - (8), using Matlab/Simulink. The Cartesian desired trajectories of the 
platform cm are assumed to be 

0 0 0 1( ) = sin(2 ), ( ) = cos(2 ), ( ) = + sin(2 )c c c cx t x π f t y t y π f t z t z z π f t  (16a) 

( ) = cos(2 ), ( ) = sin(2 ), ( ) = sin(2 )c c cp t p π f t q t q π f t r t r π f t   (16b) 

where cx , cy , cz , 1cz , cp , cq  and cr  are trajectory constants. 
Simulation runs were obtained using a number of desirable trajectories. As an example, 

Figure 4 and Figure 5 show typical results, in which the desired trajectories are given by Eqs. (16) 
with platform mass = 300m kg , moments of inertia about the center of platform mass of , ,x y z  
axes 2= = 25xx yyI I kgm , 2=50zzI kgm , respectively, = 0.5f Hz , = 0.1cx m , = 0.2cy m , 



= 0.1cz m , 1 = 1.25cz m , o= 30cp , o= 20cq , o= 15cr , j =ω π rad/s , j =1ζ  and friction 
parameters j 200 Ns / mb = , , 20 NC jf = , and , 50 Ns jf = , 1, 2,...,6.j =  The platform 
displacements in the three Cartesian axes and orientation, and the position and orientation errors 
of the platform are shown in Figure 4. Also, one of the six leg lengths of the mechanism, the 
force acting on the platform, and the input signal for the same actuator, are depicted in Figure 5. 
The position errors converge to zero, as were expected, in settling time 

= 6/ [ ], 1, 2, ..., 6s, j jt ω s j = . The remaining position errors of the steady state are due to the 
inertial forces caused by the harmonic trajectory. 
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Figure 4. Simulation results. Platform displacement response, (a)-(c) and orientation, (g)-(i). Platform 

position errors, (d)-(f) and orientation errors, (j)-(l). 
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Figure 5. Simulation results. A servoactuator: (a) length position, (b) actuated force, (c) input signal. 

5 Conclusions 

This paper focused on the development of the invariant error dynamics controller for a 6-dof 
electrohydraulic Stewart platform. Rigid body and electrohydraulic models, which included 



servovalve dynamics and friction were employed. The developed controller employed the 
dynamic and hydraulic model of the system and yielded the six servovalve input current vector, 
in analytical form. Using mechanism inverse kinematics, the desired Cartesian trajectories 
yielded desired actuator length trajectories. Simulations with typical desired trajectories were 
presented and a good performance of the controller was obtained. The approach can be further 
extended to hydraulic manipulator and simulator control. 
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