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• Consideration of the effects of permanent ground deformation and compaction.
• Development of a controller immune to terrain compliance.
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a b s t r a c t

One of the most intriguing research challenges in legged locomotion is robot performance on compliant
terrains. The foot-terrain interaction is usually tackled by disregarding some of the effects of ground
deformation, like permanent deformation and compaction; however this approach restricts their appli-
cation to stiff environments. In this work, the foot-terrain interaction is studied, and used in developing
a controller immune to terrain compliance. An impact dynamics model is developed, employing a
viscoplastic extension of viscoelastic impact models, and used to study the performance of a monopod
robot. To include the effects of compliance, a model of the robot that incorporates the description of the
foot-terrain interaction is presented. A novel monopod controller immune to ground energy dissipation
is developed, which does not require knowledge of ground parameters. The controller adapts to terrain
changes quickly, successfully tackles the effects of slip during touchdown, and copes with the problems,
which arise during hard impacts, as the terrain becomes stiffer. Simulation results demonstrate the
validity of the developed analysis.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A central goal in the field of legged robotics is the development
of machines able to traverse rough terrain, inaccessible to wheeled
vehicles. However, such machines are subject to more complex
control requirements. The problem is exacerbated when running
on terrain with unknown properties. Earlier approaches required a
known type of terrain, to be traversed with a statically stable gait,
hence simplifying control and stability issues [1]. On the contrary,
quadruped robots like Minitaur [2] and IIT’s HyQ have recently
shown satisfying dynamic response with specific locomotion
behaviors, such as bounding or trotting, by imitating animal gait
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patterns, on flat [3] or irregular terrains [4]. Other works focused
on bipeds running over stair-like terrain [5], while early studies
on the RHex platform demonstrated running on rough terrains [6].
However, this robot uses open-loop control, thus forward speed
is not controlled tightly. In contrast, the Boston Dynamics’ BigDog
is capable of performing a variety of locomotion scenarios, such
as walking, trotting or bounding, over unknown terrains; however
its motion is highly inefficient [7]. On the other hand, StarlETH
uses a foot placement strategy with an appropriate distribution of
virtual forces among the stance legs, so as to reach and maintain
a specific stable gait by rejecting perturbations, such as unex-
pected obstacles [8]. A similar approach with footstep planning
for overcoming significantly rough terrains was used in Boston
Dynamics’ LittleDog [9]; however, this robot is capable of static
walking only.

Despite the emergence of recent workswhere the ground prop-
erties are explicitly considered in the study of hopping [10,11],
running [12], walking [13] or tumbling [14], many notable studies
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disregard the importance of foot-terrain interaction. For example,
for the two-link monopod, the contact point between the foot and
the ground was modeled as a completely stiff revolute joint [15].
A similar assumption led to a controller for a monopod hopping
robot, able to control both its speed and height over rough terrain,
with a single actuator [16]. In fact, most efforts in the literature
consider the terrain as non-deformable. For theMIT Cheetah 2, the
authors determine a target ground force profile according to the
desired duty cycle and stride duration [17]. Again, the terrain is
considered stiff and completely flat. On the other hand, in [18],
the case of a rough terrain is considered and a control algorithm
for a monopod robot on rough terrain is proposed. However, the
robot was considered to possess two actuators, at its prismatic and
rotational joints, while themain body apex height, which is crucial
when running on rough terrain, was not controlled. Our recent
work involved the preliminary development of an energy-based
controller for a monopod hopping robot running over compliant
terrains using only one actuator [19]. This controller could com-
pensate for ground compliance but neglected friction andphenom-
ena related to hard impacts.

To incorporate the foot-terrain interaction that affects leg mo-
tion and energy dissipation, a realistic representation of this inter-
action is needed. Usually a simplified ground model is chosen, and
controllers consider ground effects as disturbances. However, this
approach fails in highly deformable environments. Facing compli-
ant terrains as a terramechanics issue [20], a number of researchers
make use of Bekker or similar models [21]. Yet, these approaches
do not result in an adequate representation of foot-terrain dynamic
interaction in all cases. For this reason, other approaches were
proposed inworks such as [22], where a viscoelastic model is used,
or such as [23] where the authors coined the term ‘‘terradynamics’’.
The approach in [23] is applicable to the locomotion of the robots
examined, but does not include the impact effects, prominent in
fast dynamic walking.

In the case of fast dynamic walking, it is reasonable to consider
the stance phase as an impact between the toe and the ground. In
principle, such impacts can bemodeled via threemethods [24]: the
stereomechanical theory method, the Finite Element Method (FEM)
and the compliant/viscoelastic approach. The stereomechanical the-
ory does not take into account the entire impact phase but consid-
ers it as a discontinuity, missing important impact information. On
the other hand, FEMmethods are computationally demanding and
difficult to use online. The use of compliant (viscoelastic) models
seems more appropriate, as different terrains can be described
by lumped parameter models with suitable characteristics [25].
However, even in the case of viscoelastic models, permanent de-
formations are not modeled; for this reason, in other engineering
areas, viscoplastic extensions of the viscoelastic models are pro-
posed [26] (the reader is referred to Fig. 3 for a brief comparison be-
tween viscoelastic and viscoplastic models). Earlier work employ-
ing this approach demonstrated its potential by proving that a vis-
coplastic model represents more accurate the foot-terrain interac-
tion [27]. Recentworks also focus onmodeling terrain compliance;
however they do not cope with repetitive terrain compressions,
while energy loss due to the terrain is neglected [28]. In another
work, a similar approach is presented, however again the issue
of repetitive loading is not modeled, although their experimental
data shows the existence of this issue during stance [29].

In this paper, legged locomotion and control in the presence of
foot-terrain interactions are studied. The adverse effects of terrain
deformation during motion are illustrated. A viscoplastic model
for impact dynamics is developed, which allows a realistic repre-
sentation of the behavior of fast dynamic walking on compliant
terrains. Using gait feedback, a new controller is developed, able
to maintain desired apex height and speed with a single actuator.
Preliminary results with an initial version of this controller were

Fig. 1. Monopod simple model.

presented in [19] and extended in [30] for irregular terrains, in [31]
formulti-legged robots and even for different gravities in [32]. Here
a new version of this controller, capable of retaining the desired
motion on terrains with permanent deformations is presented;
issues concerning recompressions, friction and extremely stiff ter-
rain are treated also. The importance of these phenomena in hybrid
systems is highlighted in a more recent study [33], but no specific
control action to cancel them is provided. Simulation results show
that the developed controller, called x-MP-II, overcomes terrain
variations under different motion scenarios, and achieves gait ob-
jectives, still using only one actuator at the robot hip.

2. Background on monopod control

Simple Model (SM). A hopping monopod robot with a single
actuator is considered. The robot is modeled as a body of massmb,
with a springy leg, as shown in Fig. 1. The free length of the leg is L,
the stiffness of the linear spring is k, and the torque applied by the
single actuator is τ . The angle of the leg with respect to the vertical
is γ and its instant length is l. The energy losses due to viscous
friction in the leg prismatic degree of freedom (dof) are modeled
by a damping coefficient b, while the legmass is considered for this
model to be negligible. During stance, and assuming a stiff ground
with adequate friction (to avoid slip), the ground interaction can be
modeled as a revolute joint. The system variables for both stance
and flight phases are taken to be the coordinates of the main body
x, y. The equations of motion for stance (s) are:

mbẍ + k (L − l) sγ − bl̇sγ = −τsl−1cγ (1)

mbÿ + mbg − k (L − l) cγ + bl̇cγ = −τsl−1sγ (2)

where sγ = sin γ , cγ = cos γ , and τs is the stance actuator
torque. During flight (f), the system is assumed to perform a bal-
listic trajectory, thus the equations of motion become

ẍ = 0 (3)

ÿ = −g (4)

During flight, the robot leg is servoed to a desired touchdown
angle γtd using a simple proportional derivative (PD) controller. As
the robot reaches γtd, its body must not have any residual angular
velocity to reduce overshoot. To this end, the control torque ap-
plied by the actuator is set by,

τf = kp (γtd − γ ) + kd (−γ̇ ) (5)

where kp and kd are controller gains.



V. Vasilopoulos et al. / Robotics and Autonomous Systems 102 (2018) 13–26 15

Fig. 2. Use of Raibert’s Controller and MP on a nondeformable ground: (a) Apex height. (b) Forward velocity. Although Raibert’s controller converges faster to the desired
forward speed, the MP controller is capable of regulating both the forward speed and the apex height.

Among the various monopod controllers, two characteristic
controllers are presentedbriefly for comparisonwith the controller
developed in this work: Raibert’s controller, since it has been used
extensively in the legged robotics literature, and theMP controller,
as an example of a hopping control law capable of regulating both
the apex height and the forward speed.

(a) Raibert’s Controller. A foot placement algorithm able to reg-
ulate the robot forward speed was proposed in [34]. The algorithm
uses the assumption that there is a unique foot position for each
forward speed, which results in zero net forward acceleration. This
foot position is called the ‘‘neutral point’’ and, for each gait j, it
can be determined as the forward displacement ∆xjf 0 of the foot
with respect to the robot center of mass just before touchdown as
follows

∆xjf 0 =

(
ẋj−1
lo ∆t j−1

s

)
/2 (6)

where ẋj−1
lo and ∆t j−1

s are the liftoff forward speed and stance
duration of gait j − 1 respectively. To accelerate or decelerate
the monopod for gait j, the difference between the actual speed
ẋj−1
lo and the desired forward speed ẋdes is used to determine the
displacement ∆xjf∆ from the neutral point:

∆xjf∆ = kx
(
ẋj−1
lo − ẋdes

)
(7)

where kx is a gain. Combining (6) and (7) yields the algorithm for
foot placement ∆xjf for gait j as follows

∆xjf = ∆xjf 0 + ∆xjf∆ =

(
ẋj−1
lo ∆t j−1

s

)
/2 + kx

(
ẋj−1
lo − ẋdes

)
(8)

Using ∆xjf∆, the desired touchdown angle is found as,

γ
j
td = sin−1

(
∆xjf L

−1
)

(9)

The controller in [34] also includes the means for reaching and
maintaining a desired hopping height; however, it requires two
actuators, i.e. it relies on the assumption that the leg spring is
actuated and that a specific amount of thrust can be delivered
during each stance phase. For the monopod used here, the leg
spring is not actuated, but behaves instead as a passive element.
Therefore, a moderate constant torque is applied in each stance
phase to compensate for losses and maintain main body motion.
Thus the goal for this controller herewill be tomaintain a specified
forward velocity only.

(b) MultiPart Controller. The MultiPart controller (MP) for
monopods that can control both the apex height and forward

velocity with a single hip actuator was proposed in [16] and [35].
Controlling apex height is important when running on unknown
terrain, allowing the foot to maintain a specific clearance from the
ground, thus avoiding obstacles (e.g. rocks). At the end of each
stance phase, the controller calculates a desired touchdown angle
γtd to achieve the desired apex height and a constant torque τs
applied during stance, to achieve the desired forward speed. To
keep the energy consumption to a minimum, the controller re-
quires an estimate of leg compliance and damping, while it applies
appropriate actuation to compensate for energy losses.

The desired γtd is found with the use of (2) by making the
assumptions: (i) during the stance phase the leg angle γ can be
approximated by a linear equation so that:

γ = γtd − ẋdes∆tL−1 (10)

where ẋdes and ∆t are the desired forward speed and time elapsed
since touchdown respectively, (ii) small angle trigonometric ap-
proximations are valid and (iii) the actuator torque τs does not
contribute to the body’s vertical motion during stance due to (ii).
Thus (2) takes the following form:

mbÿ + bẏ + ky = kL cos
(
γtd − ẋdes∆tL−1)

− mbg (11)

where the following expressions were used,

y = l cos γ (12)

ẏ ≈ l̇ cos γ (13)

With the appropriate initial conditions regarding the beginning of
the stance phase and the assumption of a ballistic trajectory during
flight, (11) can be integrated twice to yield the desired touchdown
angle:

γtd = f (state at liftoff, ẋdes, hdes) (14)

where hdes is the desired apex height.
Similarly, the necessary control torque to be applied during the

stance phase can be found by linearizing and integrating (1) twice
so that,

τs = g (state at liftoff, ẋdes, hdes, γtd) (15)

Following the end of the flight phase, the next stance begins, the
constant torque τs is applied, and the cycle repeats itself.

In Fig. 2 the motion of the monopod using the controllers pre-
sented earlier on non-compliant ground is shown. The parameters
of the robot are: bodymassmb = 4 kg, length of the leg L = 0.30m,
spring stiffness k = 12,000N/m and damping coefficient b =
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Fig. 3. Impact models (a) Standard viscoelastic and (b) Proposed viscoplastic. In contrast to standard viscoelastic models, our viscoplastic model is capable of describing
permanent ground deformations.

3Ns/m. The acceleration of gravity is 9.81 m/s2. The simulations
were executed in Matlab using ode23s with absolute and relative
tolerance 10−5 and 10−4 respectively and maximum step 10−4.
Regarding the PD controller presented in (5), the values of kp = 150
and kd = 2.4 were selected, for the controller to be fast enough to
reach γtd before the next touchdown, while avoiding overshooting
and undesired oscillations.

Although the controllers presented earlier satisfy the desired
gait targets, they both rely on the assumptions of an ideal massless
foot and of an interaction with a stiff ground that can be modeled
as a revolute joint. It turns out that this is common for most legged
robot controllers.

In the subsequent sections, the assumptions of stiff ground
and massless foot are dropped, and the corresponding effects on
controller performance and gait characteristics are studied. To this
end, a realistic terrain model is developed.

3. Viscoplastic impact model and friction

Introduction. The foot-terrain interaction during running on de-
formable terrains must be represented realistically. Here the focus
is on typical indoor or outdoor terrains, excluding granular media
such as sandy terrains, for which interaction forces are of hydro-
dynamic nature. The main parameters of interest include ground
compliance, the depth of the permanent deformation that may
occur, and the change of ground characteristics due to repetitive
loading at a particular point.

In a terramechanics approach, it is assumed that a wheel or
a foot is in touch with the ground for considerable amount of
time, or even permanently. This approach cannot be applied in
the case of fast dynamic walking, because the stance is practically
an impact. It is reasonable to assume that during the foot-terrain
interaction, time dependent phenomena, such as creepage, have
negligible effect compared to the inertia and interface stiffness or
damping effects. However the plastic deformations, which occur
to one or both of the interacting bodies, play an important role.
A method to incorporate the ground elastoplastic behavior is by
using a viscoplastic extension of the non-linear viscoelasticmodels.

According to the viscoelastic theory, a compliant surface can be
modeled by a combination of lumped parameter elements, i.e. by
springs and dampers. Common impact models include the Kelvin–
Voigt (KV) and the Hunt–Crossley (HC) models [25]. As the former
introduces non-physical nonlinearities such as non-zero forces at
the beginning or the end of an impact, the latter model, which is
free of these, will be used as a reference. Additionally, it is the basis
for many interesting viscoelastic models found in the literature.

According to the HC model, the interaction force Fg is,

Fg
(
yg , ẏg

)
= kgyng + bg ẏgyng (16)

where kg and bg are the stiffness and damping coefficients respec-
tively, n in the case of Hertzian non-adhesive contact is equal to 1.5,
and yg is the depth of penetration (positive towards the ground).
The parameter kg represents the equivalent stiffness between the
materials that come into contact, in this case the stiffness between
the foot and the terrain [36]. Damping is considered as a parameter
related to the equivalent stiffness according to [37],

bg = 1.5cakg (17)

where ca is usually between 0.01–0.5 depending on the materials
and the impact velocity [37]. Without affecting the generality of
the results, in this work ca = 0.2 is used.

Model Rationale. Existing viscoelastic models implicitly assume
that the impact starts and ends (e) at yg = ye = 0, i.e. that
no permanent deformation ye occurs. However, due to permanent
terrain deformation on a nonideal deformable ground, the robot
clears the ground at ye > 0; this has an effect on the final spring
elongation and the energy lost due to the permanent deformation.
In addition, in viscoelastic models, the terrain behavior under
repetitive loading or compaction is ignored. This is important
when rebounds occur. Hence a model that takes into account such
deformations is needed.

Assuming initially a viscoelastic model, such as the HC, suppose
that a body impacts the ground, as shown in Fig. 3a.

During compression, both the interaction force and depth in-
crease, while the relative to the ground velocity decreases. When
the foot velocity is zeroed, i.e. ẏg = 0, the maximum compres-
sion yc,max has been reached. Note that generally, the maximum
force appears before the maximum compression due to model
non-linearity. During restitution, the foot velocity increases, but
in the opposite direction, while the depth and the interaction
force decrease. The restitution ends when both the depth and the
interaction force are zeroed, but in fact this is due to the closed
form of the models. The key event characterizing the end of stance
is that the interaction force is zeroed, i.e. there is no more contact
between the impacting body and the terrain.

Experimental results as for example in [21], reveal that vis-
coelastic models do not describe accurately terrain deformation.
Yet, the strict viscoelastic description of the process can be ex-
tended in the case of plastic deformations via appropriate lumped
elements to result in a viscoplastic description. Here, a model that
treats the impact piecewise is developed, as shown in Fig. 3b.
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Fig. 4. Impact curves for the proposed impact model (18) for various λ.

According to this model, the compression phase is the same as
in the viscoelastic case. During this phase, part of the energy is
stored in the (fictitious) spring, which represents the interaction
stiffness, another part is dissipated throughmaterial internal losses
represented by damping bg , and the remainder is dissipated during
terrain shape deformation, e.g. due to cratering around the impact
point or compaction. As restitution is reached, material in the
direction of motion has been displaced due to the deformation,
and/or the terrain becomes stiffer because of compaction. Also,
the interaction spring cannot be extended to its initial length,
corresponding to ye = 0, but to a shorter length corresponding
to a new lower level with ye > 0 with respect to the undeformed
ground. As the interaction force will be zero at this new free length
of the spring, it follows that this new fictitious spring is shorter and
stiffer. Thus there is memory for the phase between compression
and restitution; this memory will be described by a piecewise
equation.

Proposed viscoplastic model. Based on the above, the interaction
force Fg at instance i can be described by,

F i
g

(
yg , ẏg

)
=

{
F i
c =

(
λi
ckg + bg ẏg

) (
yg − yi−1

e

)n
, ẏg ≥ 0

F i
r =

(
λi
rkg + bg ẏg

) (
yg − yie

)n
, ẏg < 0

(18)

where subscript c stands for compression, r for restitution, ye
is the penetration depth, and the index i identifies the impact
instance, see Fig. 3b. As the terrain inherits characteristics from
the previous instance, during successive impacts at the same point,
the Coefficient of Permanent Terrain Deformation λ is defined in
recursive form as,

λi
c =

⎧⎨⎩1, i = 1

λi−1
r , i > 1, i ∈ N

λi
r = λi

r (materials, velocity, i) , i ∈ N

(19)

Since the ground spring is stiffer during restitution than in com-
pression, λi

r ≥ λi
c ≥ 1. The equality λi

r = λi
c holds when the

terrain cannot be compressed further; then (18) corresponds to an
HC model with the same start and end point. Fig. 4 illustrates the
impact force as a function of the penetration depth for various fixed
values ofλ, as describedby (18), in the case of a 1 kg ball fallingwith
zero velocity froma0.5mheight to a surfacewith kg = 8·104 N/m.
Note that with λ increasing, the permanent deformation increases,
even though the compression phase is the same. The area under
the curve corresponds to interaction losses; these increase with λ.

Parameters for various soils can obtained easily from the litera-
ture, e.g. [21]. However, the experiments yielding these parameters

are of static nature, e.g. using the Bevameter technique, whichmay
not be adequate for dynamic impacts.

Generally, as the same contact area is compressed, it becomes
stiffer. Thus after a number of impacts at the same point, its
stiffness eventually reaches a critical limit. Tomodel this increasing
stiffness, the following function is proposed,

λi
r = 1 + a (i)

(
1 − e−iβ(i)) , i ∈ N (20)

where a(i) and β(i) are functions of the impact instance i and of
the materials and velocity. Note that if a (i) = 0 or β (i) = 0, (18)
reduces to the HC model. Parameter a sets the maximum value of
λi
r , whereas an increase inβ increases the speed to reach this value,

i.e. fewer impacts at the same point are needed to reach the critical
value.

The final depth yie after the ith impact can be calculated by
observing that at the maximum compression yic,max there is force
continuity, while the interface velocity is zero, i.e.

yic,max ⇔ F i
c = F i

r and ẏg = 0 (21)

Using (18) and (21) one can deduce

yie = yic,max

(
1 −

n
√

λi
c/λ

i
r

)
+ yi−1

e

(
n
√

λi
c/λ

i
r

)
(22)

where y0e = 0 for consistency.

Recompressions, rebounds, and hard impacts. Due to the simi-
larity with a compliant leg, we study the impact behavior of the
two-body system in Fig. 5, while it falls vertically. When the lower
mass comes into contact with the ground, the direction of the
velocity of the system Center of Mass (CoM) is downward. The
phases of compression and restitution occur, Fig. 5a and b, and
during restitution the lowermassmay ormay not clear the ground,
Fig. 5c. However the upper mass due to its larger inertia and leg
compliance, continues its downward motion and thus the forces
which are applied on the lower mass by the spring (and damper)
and the ground interaction can be equal in magnitude before the
direction of the velocity of the system CoM is upward. This will
start a ‘‘recompression’’ phase (impact instance i+1 for this terrain
point), Fig. 5d. The process can be repeated a number of times until
the robot as a whole clears the terrain and at the same time the
direction of the velocity of the system CoM becomes upward; only
then the stance is considered over.

The interaction force versus the penetration depth is presented
in Fig. 6 for very stiff ground case (kg = 106 N/m), where the
upper and lowermasses are 4 kg and 0.1 kg respectively, the length
of the leg is 0.30m and the spring stiffness is k = 12,000N/m.
For demonstration purposes, (20) is used with a = 0.5 and β =

1, corresponding to a very stiff terrain, which can be deformed
plastically to some small degree. The system falls from a height
of 1 cm with zero initial velocity. As can be seen from Fig. 6, a
number of compression and restitution phases are observed before
the interaction force is zeroed. The remaining compression is about
0.45 mm.

A rebound is completedwhen the lowermass clears the ground;
more than one rebound can occur during a single stance phase.
Fig. 7 illustrates this characteristic behavior for two different
stance cases. In the first, the lower body undergoes a number of
successive recompressions, without liftoff.

In the second, a liftoff of the lower body occurs, without liftoff
of the system CoM, which occurs much later. The actual depth
penetration as a function of the interaction force depends not only
on the materials and the initial impact velocity, but also on the
relative stiffness of the system with respect to the ground and the
systemmass ratio. As a force sensor is used often in legged robots to
establish the transition from stance to flight and vice versa, sensor
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Fig. 5. Description of recompression for a falling 2-body system where Fg is the ground force and Fk is the spring force: (a) Initial contact, (b) Compression, (c) Restitution
and (d) Recompression.

Fig. 6. Impact curve for a case with 5 recompressions. Recompressions are shown
as inner ‘‘loops’’ in the diagram.

signals can mislead the controller; therefore this behavior must be
taken into account in the controller design. Otherwise, flight and
stance controllers will be switched on and off very fast, resulting in
poor response or even in eventual loss of stability, especially when
the impacts are between stiff bodies [38]. Table 1 summarizes the
algorithm of the impact model.

Discussion. (a) An advantage of the developed model is that
it can be used for repetitive loading by increasing the impact
instance index i for a particular contact point. A special case of
repetitive loading occurs when the impacting body is a multibody
system, such as a legged robot. (b) This model is numerically stiff.

Table 1
Summary of the algorithm for the proposed viscoplastic model simulation.

<Set initial conditions> For kg , bg and λi
c from Eq. (19)

<For impact instant i run> Eq. (18) for F i
c untilẏ = 0.

<If ẏ = 0> Keep yic and calculate yif from Eq. (22). Set λi
r from Eq. (19)

<For impact instant i run> Eq. (18) for F i
r

<If F i
r = 0> Impact ends

<Elseif F i
r ̸= 0 and ẏ = 0>Recompression occurs.

<Set λi+1
c = λi

r and start over>
<End>

Depending on the complexity of the problem to solve, high accu-
racy in ODE solvers may be required, (c) The use of the HC model
as a basis in (18) is purely a matter of choice; the core idea of the
developed model is also applicable to other viscoelastic models,
and (d) Proper selection of λ can describe complex phenomena.

Friction. The foot response during stance also depends on fric-
tional forces. As the foot touches the ground, depending on the
touchdown angle, the velocity and the materials, the foot may
slip [25]. Additionally, as the normal component of the interac-
tion force given by (18) near the beginning and the end of the
stance phase is low, the same is true for friction. Therefore to
properly assess the behavior during stance, a friction description
is required. A number of friction models of increasing complexity
have been proposed, e.g. see [39]. Here, the classical Static-plus-
Coulomb model is employed, as it can produce adequate results
with reasonable computations. According to thismodel the friction

Fig. 7. Stance instances with recompressions and rebounds. Rebounds occur when the interaction force is zeroed.
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Fig. 8. Detailed Model (DM) of the single-legged robot under examination.

force Ft is

Ft =

{
−µcFgsgn ẋ, ẋ ̸= 0

−
⏐⏐F∥

⏐⏐ sgn F∥,
⏐⏐F∥

⏐⏐ < µs
⏐⏐Fg ⏐⏐ , ẋ = 0, ẍ ̸= 0

(23)

where Fg is the interaction force from (18) which is normal to
the ground tangential plane at the contact point, and F∥ is the
vectorial sum of all other forces applied, which are parallel to
the same tangential plane, µc is the Coulomb (kinetic) friction
coefficient and µs is the static friction coefficient. Usually, as the
depth increases, friction coefficients increase; however here it is
assumed that these values do not change during stance.

4. Systemmodel and control

To describe the overall response of the robot more accurately,
the leg is no longer considered massless. The goal is to make the
controller cope with terrain compliance and deformation as well
aswith friction. In this case, legmass becomes important, since any
ground force is introduced to the robot through its legs. Naturally
the leg mass will influence the system behavior during flight as
well. A detailed model of the monopod robot that also includes leg
inertia and viscous losses on the rotational degree of freedom is
developed next.

Detailed Model (DM). The model shown in Fig. 8 consists of a
mass M while the leg is considered to be a cylindrical rod of mass
ml and inertia Il. The foot is regarded as the bottom part of that rod
and its position (xft , yft ) can be used to determine the body position
(x, y) by the following kinematic equations

x = xft − l sin γ (24)

y = yft + l cos γ (25)

On the other hand, the leg Center of Mass (xl, yl) is considered to
be located at the middle of the leg, so that,

The energy losses due to viscous friction in the leg prismatic and
rotational degree of freedom are introduced through the damping
coefficients bl and bh respectively. The rest of the symbols are the
same to those in Section 2.

The ground forces Fg and Ft during the stance phase are calcu-
lated using (18) and (23) respectively, while during flight Fg , Ft =

0. It is assumed that: (i) A point contact occurs each time the foot
impacts the ground, (ii) bulldozing can be neglected, and (iii) the
actuator is torque limited, i.e the actuator maximum continuous
current is used to determine the actuator saturation level τmax for
continuous operation.

The systemvariables for both the flight and the stance phase are
the leg length l, the leg angle γ and the coordinates of the foot xft ,
yft . The equations of motion take the form

H (q) q̈ + V (q, q̇) = T (26)

where q = [l γ xft yft ]T and H (q), V (q, q̇) and T are given in
Appendix A. The foot-terrain interaction begins when the foot is
about to touch the ground (yft = 0), and terminates when the
normal ground force is zeroed (Fg = 0). During the foot impact
with the ground, the absolute value of the foot coordinate yft equals
to the depth of penetration.

Extended MultiPart controller II (x-MP-II). TheMP controller pre-
sented in Section 2 depends on robot parameters and is capable of
achieving and retaining a desired forward speed and apex height.
However, its application is restricted in the case of a monopod
robot running on absolutely stiff terrain. To achieve the same goals
in the presence of terrain compliance, a new controller called
Extended Multipart controller II or x-MP-II is developed here. This
controller is called at the end of each stance phase and calculates
a desired touchdown angle, and a constant torque to be applied
during the next stance phase. Also, it compensates for friction and
includes a method for maintaining the motion even when non-
desired rebounds occur. The controller uses information from a
force sensor yielding the ground reaction forces (Ft , Fg ) and from
two encoders that measure the leg angle γ and the leg length
l, and estimates the main body position (x, y) using the robot
dynamicmodel fusedwith data from an inertial sensor.With these
measurements, the foot position (xft , yft ) is computed using the
kinematic equations (24) and (25).

To develop this controller, first an equivalent mass M ′, spring
stiffness k′ and damping coefficient b′ for the system of the robot
as described by the DM are calculated. Then, these magnitudes are
used in order to relate the behavior of the DM to that of the SM.
As the leg massml is considered small compared to the bodymass,
the equivalent mass isM ′

= M .
To determine an appropriate stiffness k′, the stance phase of gait

j−1 is considered as half the period of a harmonic oscillation with
natural frequency ω

j−1
s thus,

∆t j−1
s = π/ω j−1

s = π ·

√
M ′/k′ ⇒ k′

=
(
π/∆t j−1

s

)2
M ′ (27)

with the stance duration ∆t j−1
s given by,

∆t j−1
s = t j−1

lo − t j−1
td (28)

where t j−1
td and t j−1

lo are the touchdown (td) and liftoff (lo) time
instants.

The equivalent damping coefficient, b′, required by the con-
troller, is calculated taking into account that the terrain is consid-
ered to be deformable (d). If the same main body vertical motion
were conducted on nondeformable (nd) terrain, the maximum
compression of the leg spring would have been

∆lj−1
max = L − yj−1

min (29)

where yj−1
min is the lowest height of the main body mass. Thus the

leg length lj−1
nd during stance is approximated as

lj−1
nd (t) = L − ∆lj−1

max · sin
[
ωj−1

s

(
t − t j−1

td

)]
(30)

where t j−1
td ≤ t ≤ t j−1

lo and ω
j−1
s is calculated using (27) and (28).

To determine the equivalent damping coefficient b′, we proceed
as follows. The energy losses at the SM are introduced only through
the viscous damping of the leg. There, no energy losses occur dur-
ing flight as the robotmass performs a ballistic trajectory. Thus, the
appropriate damping coefficient b′ to be used in the x-MP-II must
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Fig. 9. Predicted (dashed lines) robot motion for an entire stride.

be such as to compensate for all energy losses (leg/hip damping
and ground dissipation) that occurred during the stance phase of
gait j−1. Energy losses that occurred during the flight phasewill be
estimated for use by the torque calculation algorithm. By applying
energy conservation and using (30), the following applies

b′

∫ t j−1
lo

t j−1
td

(
l̇j−1
nd

)2
dt = E j−1

gdis + E j−1
damp,s (31)

where E j−1
gdis and E j−1

damp,s are the energy dissipated by the ground,
and the energy losses due to viscous friction at the stance phase,
respectively. These can be calculated as follows

E j−1
gdis =

⏐⏐⏐⏐⏐
∫ t j−1

lo

t j−1
td

F j−1
g ẏj−1

ft dt

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐
∫ t j−1

lo

t j−1
td

F j−1
t ẋj−1

ft dt

⏐⏐⏐⏐⏐ (32)

E j−1
damp,s = bl

∫ t j−1
lo

t j−1
td

(
l̇j−1)2dt + bh

∫ t j−1
lo

t j−1
td

(
γ̇ j−1)2dt (33)

where l̇ and γ̇ are the actual rates of leg length and leg angle change
respectively.

With the use of (27) and (31), k′ and b′ for the x-MP-II are
calculated. WithM ′, k′ and b′ calculated, the x-MP-II calculates the
touchdown angle γ

j
td and the constant torque to be applied during

the stance τ
j
s , as follows.

(a) Desired touchdownangle γ
j
td. The variables used in the control

algorithm are shown in Fig. 9, where a complete prediction of
the robot motion for an entire stride is presented. The main idea
for the calculation of the desired touchdown angle γ

j
td is to use a

prediction of the vertical motion of the robot main body yj (t) for
the (next) stance phase of gait j and determine the desired angle γtd
accordingly, so that a desired main body liftoff height and vertical
velocity be reached. In this way, the robot will be allowed to reach
the specified apex height, as the main body approximately follows
a ballistic trajectory during flight.

Assuming that the duration of the stance phase of gait j is
approximately equal to that of gait j−1, the vertical response of the
robot body during the stance phase of gait j can be found using (11)
with the new equivalent parameters,

M ′ÿj + b′ẏj + k′yj = k′L cos
(

γ
j
td −

ẋdest
L

)
− M ′g (34)

for 0 ≤ t ≤ ∆t j−1
s (t = 0 at touchdown). Eq. (34) is a second

order differential equation and can be solved with the following
boundary conditions:

yj (0) = yjtd,est = L cos γ
j
td (35)

ẏj (0) = ẏjtd,est = −

√
2g
(
yjapex,est − yjtd,est

)
(36)

where yjtd,est , ẏ
j
td,est and yjapex,est are the estimated body height at

touchdown, the estimated touchdown velocity and the estimated
apex height for gait j respectively. It must be noted that yjapex,est
can be found from the liftoff velocity ẏj−1

lo and the liftoff height
yj−1
lo of gait j − 1 assuming a ballistic trajectory during flight as

follows,

yjapex,est = yj−1
lo +

(
ẏj−1
lo

)2
(2g)−1 (37)

Using the boundary conditions (35) and (36), (34) is solved
analytically to yield the vertical height prediction

yj
(
t, ẋdes, γ

j
td

)
= c1ea1t cos (a2t) + c2ea1t sin (a2t)

+ A cos
(

γ
j
td −

ẋdest
L

)
+ B · sin

(
γ

j
td −

ẋdest
L

)
−

M ′g
k′

(38)

Expressions for the constants a1, a2, A, B, c1, c2 are given in Ap-
pendix B. Using Fig. 9 and assuming that the depth of ground
penetration at the end of the stance phase of gait j is approximately
equal to that of gait j − 1, the body height yjlo,est at the end of this
stance phase is approximated as,

yjlo,est = yj−1
ft,lo + L cos

(
γ

j
td − ẋdes∆t j−1

s L−1
)

(39)

Thus, to achieve the desired apex height hdes, the desired vertical
velocity ẏjlo,des at the end of stance phase of gait j is

ẏjlo,des =

√
2g
(
hdes − yjlo,est

)
(40)

Using (40) and the first time derivative of (38), the following equa-
tion must be solved analytically to determine the desired angle γ

j
td

for a specified desired forward velocity ẋdes and apex height hdes

ẏj
(
∆t j−1

s , ẋdes, γ
j
td

)
= ẏjlo,des

(
∆t j−1

s , ẋdes, hdes, γ
j
td

)
(41)

Using Taylor expansion series for ẏjtd,est and ẏjlo,des presented in (35)
and (40) with respect to γ

j
td, it can be shown that the desired

touchdown angle γ
j
td is given by (41) as

γ
j
td = θ + cos−1 (rR−1) (42)

where θ , r and R are given in Appendix B. The PD controller pre-
sented in (5) is used to position the leg at the desired touchdown
angle γtd during flight.

(b) Constant torque τ
j
s . The constant torque τ

j
s to be applied

during the stance phase so as to achieve and maintain the desired



V. Vasilopoulos et al. / Robotics and Autonomous Systems 102 (2018) 13–26 21

forward speed is calculated such that a desired energy level is
secured. The robot is commanded to have height hdes and speed
ẋdes at its apex point. It is assumed that at the apex, the leg spring
has reached its free length L, the leg has been positioned already at
the desired touchdown angle γ

j
td and does not rotate (γ̇ = 0), and

the robot body has reached the apex height hdes. Thus, the desired
energy level (kinetic and potential) that the systemmust maintain
at gait j is

E j
des =

1
2

(M + ml) ẋ2des + Mghdes + mlg
(
hdes − 0.5L cos γ

j
td

)
(43)

while the liftoff energy of the previous gait E j−1
lo is

E j−1
lo =

M
2

[(
ẋj−1
lo

)2
+

(
ẏj−1
lo

)2]
+

ml

2

[(
ẋj−1
l,lo

)2
+

(
ẏj−1
l,lo

)2]
+

Il
2
γ̇

j−1
lo + Mgyj−1

lo + mlgy
j−1
l,lo +

k
2

(
L − lj−1

lo

)2
(44)

Since the mass of the robot legml for the DM is considered signifi-
cantly smaller thanM , E j

des and E j−1
lo can be approximated as follows

E j
des ≈

1
2
Mẋ2des + Mghdes (45)

E j−1
lo ≈

M
2

[(
ẋj−1
lo

)2
+

(
ẏj−1
lo

)2]
+

Il
2
γ̇

j−1
lo

+ Mgyj−1
lo +

k
2

(
L − lj−1

lo

)2
(46)

The actuator during the stance phase of gait jmust compensate
for the losses and maintain the motion, thus the required energy
E j
m,s that it must provide is

E j
m,s =

(
E j
des − E j−1

lo

)
+ E j−1

gdis + E j−1
damp − E j−1

m,f (47)

where E j−1
m,f is the energy the actuator provided during the flight

phase of the gait j − 1, E j−1
gdis is the energy dissipated by the ground

as shown in (32) and E j−1
damp are the energy losses due to viscous

frictions for the whole gait j − 1 so that

E j−1
m,f =

∫ t j−1
lo

t j−2
lo

τ j−1γ̇ j−1dt (48)

and

E j−1
damp = bl

∫ t j−1
lo

t j−2
lo

(
l̇j−1)2dt + bh

∫ t j−1
lo

t j−2
lo

(
γ̇ j−1)2dt (49)

Using (47), the required torque τ
j
s is calculated by

E j
m,s = τ j

s

(
γ

j−1
lo − γ

j−1
td

)
⇒ τ j

s = E j
m,s

(
γ

j−1
lo − γ

j−1
td

)−1
(50)

If the system had zero losses and the controller achieved the
desired motion, then E j

des = E j−1
lo and as predicted by (47) and (50),

the motion would reduce to an ideal oscillation with τ
j
s ≃ 0, i.e. it

would correspond to a passive gait.

(c) Friction compensation. Except for the calculation of the de-
sired touchdown angle γtd and the constant torque τs to be applied
during the stance phase, a successful controller must be able to
tackle the problem of slip in the presence of inadequate friction.
Interestingly this occursmostly at the start of stance and affects the
gait characteristics since the foot moves in the horizontal direction
and therefore the linear approximation of γ presented in (10) may
not apply.

The time interval ∆t j−1
slip during which the foot may slip at the

start of stance phase of gait j−1 can be found from the time interval

during which ẋj−1
ft,s ̸= 0, where ẋj−1

ft,s is the horizontal component
of foot velocity during stance. A solution to the slip problem is
to command the actuator to exert maximum negative torque for
a time interval of ∆t j−1

slip after touchdown. It must be noted that
negative torque corresponds to positive work from the actuator,
since in this case the leg moves in the negative direction during
stance, which is desired. Using this method, ẋft,s is zeroed as fast as
possible and the system reaches quickly the desired static friction
zone where the foot does not slip in the horizontal direction.

(d) False liftoff rejection. Another issue in controller design is
related to the rebounds occurring during stance on a very stiff
terrain. In such a case, and following a flight phase, the stance
may be comprised of several rebounds; then the system loses
contact with the groundmomentarily, until the inertia of the main
body and the leg spring force the foot to impact again. This may
happen several times until a proper stance takes place, and if the
periods between these rebounds are detected as flight phases by
the controller, unstable gaits can result. To tackle this issue, during
the contact of the foot with the ground, the x-MP-II compares the
contact duration with the estimated stance duration ∆t j−1

s equal
to half of the system natural period

Tn = 2π
√

(M/k) (51)

Obviously, considering the ground effect as well as the viscous
losses, ∆t j−1

s cannot be less than 0.5Tn. In this way, if ∆t j−1
s ≤

0.5Tn, the controller does not apply new γtd or τs, but it ratherwaits
for the stance phase to be over properly before it applies these.
Note that in (51) the stiffness k was chosen instead of k′ as this
criterion is computed before the calculation of k′ in order to deter-
mine whether the controller should proceed to its calculations.

Discussion. The development of the x-MP-II relies on energy
calculations that donot require knowledge of terrain parameters or
of amore complex sensor system. For this reason, it is expected that
this controller would demonstrate robustness in measurement
noise and uncertainties. Also, its application can be easily extended
to irregular terrains, by accompanying it with an inclination es-
timation algorithm, as shown in [30]. Finally, the development
of x-MP-II allows its implementation on multi-legged machines;
with proper leg coordination, we have already demonstrated that
it can successfully generate a pronking gait on a quadrupedal
robot [31]. Since the x-MP-II uses data from the previous gait,
some approximate initial values are assumed before the first gait
is accomplished. The full x-MP-II algorithm is given in Table 2.

5. Simulations results

To evaluate the effects of the terrain and examine the behav-
ior of the controller, a set of simulations is run. The equivalent
stiffness kg between the materials in contact (i.e. foot and ground)
is used [36], where the properties of various terrains are taken
from [40]. For example, for a rubber foot and granite with Young’s
modulus E = 50 MPa and E = 50 GPa correspondingly, an
equivalent stiffness of kg ≈ 327,000 N/m applies. The friction
coefficients µs and µc were also selected for various terrains,
without affecting the generality of the conclusions [40]. The ground
types selected in comparisonwith the leg stiffness are: soft ground,
moderate ground and stiff ground, whose parameters are sum-
marized in Table 3. In all cases, a monopod described by the DM
(Fig. 8) is considered. Its parameters are given in Table 4. These
parameters were selected to match the values of the hardware
platform in [16]. The acceleration of gravity is 9.81m/s2. The
simulations were performed inMatlab using ode23s with absolute
and relative tolerance 10−2 and maximum step 10−5. To minimize
the zero-crossing arithmetic problems created by the numerical
stiffness, the impact was considered over when the interaction
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Table 2
Algorithm of the x-MP-II controller.

<Calculate ∆t j−1
s >

<If ∆t j−1
s ≤ 0.5Tn> A short-duration flight has occurred

<Use the former values of γtd and τs and exit>

<ElseIf ∆t j−1
s > 0.5Tn> Proceed to the main controller

<Calculate ∆lj−1
max> Eq. (29)

<Calculate E j−1
gdis and E j−1

damp,s> Eqs. (32) and (33)

<Calculate k
′ , b′

> Eqs. (27) and (31)

<Use k
′ , b′ to calculate γ

j
td> Eq. (42)

<Calculate E j
des and E j−1

lo > Eqs. (45) and (46)

<Calculate E j
m,f and E j−1

damp> Eqs. (48) and (49)

<Determine τ
j
s> Eqs. (47) and (50)

<Determine the time interval ∆t j−1
slip >

<End>

force between the foot and the terrain was below 5 N, while the
foot transition from slip to stick occurred when the foot horizontal
velocity was below 10−4 m/s. By increasing tolerances, these val-
ues can be lower, however this set was selected as it produces both
fast and reasonable results.

In Fig. 10, the responses of Raibert’s, of theMP, and of the x-MP-
II controllers for the defined ground types are compared. The initial
conditions are: height h0 = 0.32m, forward velocity ẋ0 = 1.0m/s.
The apex height is commanded to change from hdes = 0.32 m to
0.34 m at increments of 1 cm, the forward velocity to be ẋdes =

0.8 m/s, while the ground is becoming more compliant, in order
to make the task more challenging. The figure is divided into three
regions according to stiffness. When the ground is stiff, Raibert’s
and the MP try to achieve the objectives; however they fail to
reach the desired velocities. The x-MP-II quickly converges to the
desired values. In the moderate ground, Raibert’s controller fails
to maintain stability. The MP controller on the other hand fails
to achieve the desired goals in the moderate and soft ground; as
these become more demanding and the terrain compliance more
significant, the deviation of the apexheight andof the velocity from
thedesired goals increases. On the contrary, the x-MP-II follows the
desired commands.

As expected, Raibert’s andMP controllers perform better in stiff
terrain than in compliant terrains, i.e. kg → (≥106 N/m). As com-
pliance increases, they both deviate from the desired commands.
This is due to the fact that the mechanics of the impact between
the foot and the ground are disregarded; both controllers assume
no energy losses occur in stance due to ground compliance. On the
other hand, the x-MP-II adapts quickly to each terrain after some
transitional steps that depend on ground compliance and actuator
saturation level, and maintains its performance independently of
the ground.

Although the MP controller fails to achieve its objectives, it is
useful to examine the friction profile for an entire gait during the
motion of the DM. The profile is shown in Fig. 11, along with the
response of the leg angle (a typical normal force profile is shown
in Fig. 7). As can be seen in that figure, the leg slips for a short time
just after its touchdown and just before its liftoff, where the leg

Table 4
Robot parameters used in simulations.

Parameter Numerical value

Body mass M 4 kg
Leg massml 0.5 kg
Leg inertia Il 0.00325 kgm2

Leg length L 0.3 m
Spring stiffness k 12,000 N/m
Leg damping bl 3 Ns/m
Hip damping bh 0.2 Nms
Max torque τmax 4 Nm

angle is large. In this way, the assumption that the foot behaves as
a completely stiff revolute joint during each stance phase, onwhich
both Raibert’s controller and theMP rely, ceases to apply. This issue
is addressed by the x-MP-II, and is successfully tackled resulting
in stable motion of the hopping robot. Also, as shown in Fig. 11,
our controller achieves the desired result, although the small-angle
approximation ceases to apply, despite the fact that recent studies
like [41] show the important effect this assumption could have on
the control strategy.

Fig. 12 displays the response of the x-MP-II for various terrains
where except for different compliances, shape deformation occurs
and is described by (20), with α (i) = max λ−1 (max λ is included
in Fig. 12 for each case) and β (i) = 1; larger max λ represents
a terrain with deeper permanent deformation, e.g. wet clay. The
initial conditions are height h0 = 0.33m, forward velocity ẋ0 =

1.0 m/s, with the desired values for apex height and forward
velocity shown in Fig. 12. Considering the performance of the x-
MP-II with respect to terrain alterations, it can be observed from
Fig. 12 that the robot follows the set points for desired main body
apex height and forward velocity. In addition, it adapts easily to
sudden terrain changes, without being sensitive to permanent
terrain deformations.

Deviations during abrupt changes of forward velocity require a
few transient gaits until the controller reaches the required energy
level and the gaits become stable. The number of these transient
gaits increases as the desired values become more demanding
or as the terrain compliance increases significantly. This occurs
because the actuator is considered to be torque limited; when
the constant torque saturation level τmax is reached, it can only
provide a fixed maximum amount of energy per gait until the
actual energy level becomes equal to the system’s desired energy
level. This is shown in Fig. 13, where the torque applied by the
motor is displayed. During the first transient gaits of each terrain
type, the torque applied is generally higher and it may reach its
saturation level. Apart from that, it can be seen that the torque
increases as the ground becomes more compliant. In the inset of
Fig. 13, a profile of the torque applied for an entire gait is shown.
This profile consists of the PD controller part for the leg placement
at the desired touchdown angle, the maximum torque applied for
specific time interval after touchdown for slip compensation, and
the main torque applied during stance.

6. Conclusion

This paper studied legged locomotion in the presence of foot-
terrain interactions. The adverse effects of terrain deformation

Table 3
Terrain parameters used in simulations.

Terrain type Stiffness kg (N/m) Static friction coefficient µs Coulomb friction coefficient µc

Soft 80,000 0.5 0.4
Moderate 200,000 0.6 0.5
Stiff 400,000 0.7 0.6
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Fig. 10. Raibert’s Controller, MP & x-MP-II comparison for (a) apex height (b) forward velocity. Raibert’s controller fails upon transition to terrain with moderate stiffness
and the MP controller fails to achieve the objectives. The x-MP-II, on the other hand, always converges to the desired apex height and forward speed.

Fig. 11. (a) Friction profile and (b) Leg angle during a gait using the MP. Notice the rapid slip-to-stick transition described by our friction model and the almost monotonic
evolution of the leg angle during a stance phase.
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Fig. 12. Monopod runs on various terrains using the x-MP-II controller on DM: (a) Apex height and (b) Forward velocity. Our controller always achieves the control objectives
on terrains of various characteristics.

Fig. 13. Motor torque during monopod motion. Inset: the applied torque during a gait. Our controller is always successful and, at the same time, never violates the pre-
determined torque bounds.

during motion were illustrated. A viscoplastic model for impact
dynamics was presented, which allows a realistic representation
of the behavior of fast dynamic walking on compliant terrains.
Using gait feedback, a new controller was developed by extending
results from our previous work, able to maintain desired apex
height and speed with a single actuator. The new controller is
more robust in retaining the desired motion on terrains with
permanent deformations, while it maintains gait stability in the
presence of terrain recompressions, low friction, or extremely stiff
terrains. Simulation results show that the developed controller
overcomes terrain variations under different motion scenarios,
and achieves gait objectives, using only one actuator at the robot
hip.
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Appendix A

In this Appendix, the matrices H (q), V (q, q̇) and T used in
Section 4 for the DM, are presented:

H (q) =

⎡⎢⎢⎣
Ma 0 −Mbsγ Mbcγ
0 Mal2 + Il −Mblcγ −Mblsγ
−Mbsγ −Mblcγ M + ml 0
Mbcγ −Mblsγ 0 M + ml

⎤⎥⎥⎦ (A.1)

V (q, q̇) =

⎡⎢⎢⎣
bl l̇ − k (L − l) + Mbgcγ − Malγ̇ 2

bhγ̇ − Mbglsγ + 2Ma l̇lγ̇
Mblγ̇ 2sγ − 2Mb l̇γ̇ cγ

(M + ml)g − Mblγ̇ 2cγ − 2Mb l̇γ̇ sγ

⎤⎥⎥⎦ (A.2)

T = [0 τ Ft Fg ]T (A.3)

whereMa = M +ml/4 andMb = M +ml/2 are auxiliary variables.

Appendix B

The constants a1, a2, A, B, c1, c2 used for the main body vertical
height prediction in Section 4 are:

a1 = −b′
(
2M ′

)−1 (B.1)

a2 =

√
4M ′k′ − b′2

(
2M ′

)−1 (B.2)

A =
k′L
[
k′

− M ′(xdes)2L−2
](

k′ − M ′ẋ2desL−2
)2

+
(
b′ẋdesL−1

)2 (B.3)

B = −
k′b′ẋdes(

k′ − M ′ẋ2desL−2
)2

+
(
b′ẋdesL−1

)2 (B.4)

c1 = (L − A) cos γ
j
td − B sin γ

j
td +

M ′g
k′

(B.5)

c2 =

(
ẏjtd,est −

A · ẋdes
L

sin γ
j
td +

B · ẋdes
L

cos γ
j
td − c1a1

)
a−1
2 (B.6)

The constants θ , r and R used for the calculation of the desired
touchdown angle γ

j
td in Section 4 are:

θ = tan−1 (ρ2/ρ1) (B.7)

R =

√
ρ2
1 + ρ2

2 (B.8)

r = ε1 +
δ2

a2

(
a1

M ′g
k′

− ε5

)
− δ1

M ′g
k′

(B.9)

where

ρ1 = δ1 (L − A) +
δ2

a2

[
Bẋdes
L

− a1 (L − A) + ε6

]
+ δ3 − ε3 (B.10)

ρ2 = −Bδ1 +
δ2

a2

[
−

Aẋdes
L

+ a1B
]

+ δ4 − ε4 (B.11)

and the auxiliary constants δ1, δ2, δ3, δ4 and ε1, ε2, ε3, ε4, ε5, ε6 are
given by the following equations

δ1 = a1ea1∆t j−1
s cos

(
a2∆t j−1

s

)
− a2ea1∆t j−1

s sin
(
a2∆t j−1

s

)
(B.12)

δ2 = a1ea1∆t j−1
s sin

(
a2∆t j−1

s

)
+ a2ea1∆t j−1

s cos
(
a2∆t j−1

s

)
(B.13)

δ3 = −
Aẋdes
L

sin

(
ẋdes∆t j−1

s

L

)
−

Bẋdes
L

cos

(
ẋdes∆t j−1

s

L

)
(B.14)

δ4 =
Aẋdes
L

cos

(
ẋdes∆t j−1

s

L

)
−

Bẋdes
L

sin

(
ẋdes∆t j−1

s

L

)
(B.15)

ε1 =

√
2g
(
hdes − L − yj−1

ft,lo

)
+

gL√
2g
(
hdes − L − yj−1

ft,lo

) (B.16)

ε2 = −
gL√

2g
(
hdes − L − yj−1

ft,lo

) (B.17)

ε3 = ε2 cos
(
ẋdesL−1∆t j−1

s

)
(B.18)

ε4 = ε2 sin
(
ẋdesL−1∆t j−1

s

)
(B.19)

ε5 = −

√
2g
(
yjapex,est − L

)
−

gL√
2g
(
yjapex,est − L

) (B.20)

ε6 = gL
[
2g
(
yjapex,est − L

)]−1/2
(B.21)
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