DTD 5

Available online at www.sciencedirect.com

sc-suce@p.“cp Robotics and
Autonomous

Systems

.:n 5 S
ELSEVIER Robotics and Autonomous Systems xxx (2005) XXX—XXX

www.elsevier.com/locate/robot

Polynomial-based obstacle avoidance techniques for
nonholonomic mobile manipulator systems

Evangelos Papadopouf®s, lakovos Papadimitriotil, loannis Poulakakis!

a Department of Mechanical Engineering, National Technical University of Athens, Athens 157 80, Greece
b Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
¢ Department of Mechanical Engineering, McGill University, Montreal, Que., Canada H3A 2A7

Received 12 December 2003; received in revised form 28 March 2005; accepted 30 March 2005

Abstract

A planning methodology for nonholonomic mobile manipulators in the presence of obstacles is developed. The method
employs smooth and continuous functions, such as polynomials, and it is very fast, easy to use and computationally inexpensive.
The core of the method is based on mapping the nonholonomic constraint to a space where it can be satisfied trivially. In this paper,
the method is first extended to include polygonal obstacles of any kind, allowing for less conservative workspace representations.
The algebraic nature of the methodology and its advantages are retained. To improve the performance of the method in finding
collision-free paths with smaller length, two techniques are studied in detail. The first uses intermediate path points and the
second exploits the periodicity of the trigonometric functions involved. The proposed methodology is also extended to the case
of obstacles that are moving in the workspace with a priori known trajectories. This case is illustrated by an example of great
application interest, in which the end-point follows a desired Cartesian trajectory while the platform and the manipulator follow
valid and collision-free paths connecting given initial and final points. Additional illustrative examples demonstrate the planning
methodologies in a variety of obstructed spaces.
© 2005 Elsevier B.V. All rights reserved.
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exploration robot platforms are wheeled. Tasks that go a path, which was calculated by a geometric planner
beyond inspection require a manipulator on-board. In ignoring motion constraints, into a feasible one.

this paper, planning in the presence of obstacles formo- It is important to note here that most of the above
bile manipulators, i.e. mobile platforms equipped with methods are specific to wheeled platforms and can-
manipulators, is studied. not be applied to general classes of nonholonomic sys-

Research in the area of mobile manipulators typi-
cally concentrates on point-to-point motion planning
of the integrated system, mainly in obstacle-free en-
vironments, or deals with effects due to the coupling
between the manipulator and its mobile platform. On

tems, because the admissible paths are not known a
priori. To the best of our knowledge, the most gen-
eral result is due to Sekhavat and Laum§nld where

the authors show how the algorithm developedah

can be extended for a class of honholonomic systems

that are or can be transformed into chained form. Other
approaches to the obstacle avoidance problem for non-
holonomic platforms without manipulators include dy-
namic programming techniquf 9], progressive con-
straints[10] and least square approximations of paths
returned by a holonomic planner based on atrtificial

the other hand, work in obstacle avoidance and navi-
gation in cluttered environments typically deals with
wheeled platforms alone.

Complete algorithms for solving the path planning
problem for holonomic robots navigating in cluttered
environments are available in the literatuf2].
However, most of these algorithms are not directly force fields[11].
applicable to systems that exhibit nonholonomic Results in the area of mobile manipulators have con-
behavior, such as wheeled platforms. This is due to centrated on issues related to the coupling between
the fact that in nonholonomic systems, the number of the manipulator and the platform. Many of the ap-
degrees-of-freedom (d.f.) is less than the dimension of proaches proposed exploit the kinematic redundancy
the configuration space. Therefore, a path that lies com- of mobile manipulators using optimization techniques,
pletely in the admissible space may not be realizable by so that the system attains configurations that satisfy
the system. A comprehensive survey of developments constraints or minimize some criterion, e[§2,13]
in motion planning and control of nonholonomic Nevertheless, only limited results exist, in which obsta-
systems can be found if2], while a collection of cles, as environment-imposed constraints, are explic-
papers concerning the open-loop motion planning itly brought into play. Yamamoto and Yun proposed a
problem for nonholonomic systems can be found in method for obstacle avoidance in which they assumed
[3]. that only the manipulator and not the platform may

Most of the nonprobabilistic obstacle avoidance encounter the obstac|@4]. The developed controller
methods for nonholonomic wheeled mobile platforms allows the system to retain optimal or sub-optimal con-
can be roughly categorized into search-based methods figurations while the manipulator avoids obstacles us-
geometric approaches and artificial potential field ing potential functions. On the other hand, Ogren et al.
methods. Barraquand and Latombe used an exhaus{roposed a method assuming that only the platformand
tive search-based method that explores a system’snotthe manipulator may encounter an obstft. In
configuration space by propagating step motions their method, the end-point follows a given desired tra-
corresponding to some contrgfy. In most of the ge-  jectory in a proven stable way, while at the same time
ometric methods, the final path computed by a planner the base motions are generated so that it will not collide
is the concatenation of elementary paths computed by awith an obstacle. Perrier et al. represent the nonholon-
basic procedure. Jacobs and Canny present a complet@my of the vehicle as a constrained displacement and
algorithm for calculating approximate collision-free try to make the global feasible displacement of the sys-
trajectories with minimum turning radius and no rever- tem correspond to the desired oii&]. Tanner et al.
sals, using a set of canonical trajectories that satisfy the studied the problem of obstacle avoidance by the en-
constraints, such as straight-line segments followed by tire mobile manipulator system, and they proposed a
arc segmentfs]. Laumond et al. present a complete general nonholonomic motion planning methodology
and exact path planner for wheeled platforms with based on a discontinuous feedback law under the in-
lower bounded turning radiu®]. This planner uses fluence of a potential fielfil7]. The method was ap-
the same families of canonical trajectories to transform plied to the case of many mobile manipulators handling
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a deformable body. A computationally inexpensive, limits while requiring the end-point to follow some

polynomial-based planning methodology for mobile desired pre-specified trajectories. The paper also dis-

manipulators that also allows for obstacle avoidance cusses techniques that improve the performance of the

was first introduced ifil8,19] method, such asthe selection ofintermediate points and
This paper focuses on developing motion planning the exploitation of the periodicity of platform orien-

techniques for nonholonomic mobile manipulators tation. These techniques result in increased flexibility

operating in obstructed environments. The proposed and improve performance both by finding collision-

method employs polynomial functions, although any free paths in cases where the original method fails and

smooth function is an equally valid candidate, to by considerably decreasing the length of the calculated

construct collision-free paths that move the mobile paths. Finally, the method is successfully implemented

manipulator from any initial configuration to a final to a large variety of simulated motion planning

desired one. As was first shown 9], this can be problems involving cluttered environments, including

done by increasing the order of the polynomials that the parallel parking and crack-sealing problems.

are used in planning trajectories, and then selecting the

additional coefficients based on a systematic procedure

so that the integrated system is guaranteed to avoid2. System kinematics and nonholonomic

all the obstacles. In this paper, the obstacle avoidanceconstraint mapping

principle presented ifl9] is further studied and the

basic methodology is expanded in two ways. First, the  For simplicity, this paper focuses on a mobile

method is extended to include any kind of polygonal system, which consists of a two degree-of-freedom

obstacles with the immediate advantage of allow- manipulator mounted on a differentially driven

ing for more realistic representations of obstructed mobile platform, seé-ig. L However, the developed

workspaces, and thus for tighter maneuvers. The methodology can be applied to systems withd.f.

algebraic nature of the method is retained and the time manipulators, or to car-like mobile platforms.

to compute collision-free paths increases only linearly

with the number of obstacles and sides considered. 2.1. Manipulator subsystem

Second, the method is expanded to accommodate

nonstationary obstacles that move along known trajec-  The mobile system consists of two subsystems, the

tories in the system’s workspace. This situation also holonomic manipulator and its nonholonomic base.

arises implicitly by incorporating manipulator joint The Cartesian coordinates of joint H and end-point E

(xe, yi) E
[, = 0.20m Manipulator
ly = 0.25m
lip = 0.25m
b = 0.40m
F = 0.10m
vy I
X
p __—%

Mobile Platform  Wheel

Fig. 1. Mobile manipulator system with a differentially driven platform.
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with respect to the world frame, séég. 1, are given w(xg, yE, ) = ¢ @)
by,
Egs. (5)—(7) constitute a transformationxd, yr,
XH = XF + 11 COS + ¥U1) 1) ¢) — (u, v, w), which is defined at every point of the
Yo = Vg + I1Sin(p + 1) configuration space. This transformation greatly facil-
itates path planning. Indeed, if we choose functibns
XE = Xg + 11COSfp + 91) + [2 cOSfp + 91 + U2) and g as follows
= ye+118in(p + 91) + 2 sin(p + 9 + 0
YE = YF 1Sin(p 1) 2 (@ 2) w= f(t) (8)
where &r, Yr) is the position of the mounting point F of — o(w) )
the mobile platformg the platform orientation}; and “=gw
¥, represent the manipulator joint angles, anénd du ,
I> denote the manipulator link lengths. E¢E) and(2) U= Taw -8 (w) (10)

show that the end-point position depends on the posi- _ o

tion of the mounting point and on the orientation of the then Eq(4)is satisfied identically. Therefore, the plan-
platform. If the configuration of the mobile platformis ~ Ning problem reduces to the selection of functibasd
known, one can plan manipulator trajectories accord- gsuchthatthey satisfy the initial and final configuration
ing to well-established methods. Therefore, solving the conditions. Such functions can be polynomials, splines,

platform planning problem facilitates greatly the plan- Or any other continuous and smooth time functions. For
ning of manipulator trajectories. example, one possibility is to choose functibas a

fifth-order polynomial, so that the platform initial and
final angle, velocity and acceleration can be specified,
and functiorng as a third-order polynomial, so that ini-
- . o tial and final platform positions can be specified. Once
As shown inFig. 1, the mobile platform is driven by u, v andw have been found, the platform coordinates

two independent wheels. We assume that the speed, a%’re computed by inverting Eg)~(7). The complete

Wh'Ch the system moves 1S IO.W’ and thgreforg the two methodology has beenillustrated in detail in a previous
driven wheels do not slip. This constraint, written for paper[19]

the manipulator mounting point F, is described by

2.2. Mobile platform subsystem

XFSiNg — yrCcosp + ¢l =0 ) _
3. Mapping to the u—v—w space

wherel is the distance between points G and F, see
Fig. 1L This constraint can be used for other platform In this section, we study how obstacles and points
points too. However, writing the constraint for F fa- on the platform and the manipulator in the Cartesian
cilitates the analysis because this point appears in thespace are mapped through the transformation given
manipulator kinematic equations, Eg). by Egs.(5)—(7) The mapping from a two- to a three-

It has been proven that the nonholonomic constraint dimensional space adds one-dimension, which in this
of the differentially driven mobile platform given by  case, corresponds to the orientation of the platform.

Eq. (3) can be written afl9], Therefore, an obstacle is mapped to a family of obsta-
cles whose members are identified by the value of the
du +vdw =0 4) orientation angle of the platform.

whereu, v, w are properly selected functions of the )
platform position and orientation, yr ande. Oneset ~ 3-1. Obstacle mapping

of functions that can be used is given [i], ) . .
It is assumed that the location of obstacles in the

u(xg, yg, 9) = xg Sing — yp COSp (5) system workspace is known and fixed. However, it will
. be shown later that the methodology can be easily ex-
v(xF, yF, @) = | — xpCOSp — yFSing (6) panded to include the avoidance of moving obstacles,
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YA we study how a point on the platform or on the manip-
ulator is mapped through the transformation for point

T F given by Eqs(5)—(7).

\ To this end, we consider point R on the platform,

/ with coordinatesgr, nr) expressed in the coordinate

frame g, n) parallel to the platform coordinate frame
(X, Y) with origin at point F, seéig. L Its Cartesian
coordinates relative to the world frame are given by,

;
( xR = xp(§r COSp — R SINY) (12a)
™

__ 1— 2 3 4 .): xR = xr(&R Sinp — nRr COSY) (12b)

Substituting Eq(12) into Egs.(5)—(7) for both points

Fig. 2. Obstacles in the Cartesizry space. F and R and after simple manipulations we conclude

provided that their trajectories are known or can be es- that:
timated. _ _ ur(w) = u(w) — R (13a)
The nature of the transformation given by Egs.
(5)—(7) can be understood better by decomposing it vr(w) = v(w) — ér (13b)
using homogeneous transformations as
u 1 0 0 O cosfr/2) —sin(r/2—¢) 0 O XE
0 -1 0 0] |sin(m/2— cosr/2 — 0 -
v _ /2 —¢) @/2—¢) | Lue 1T x (11)
w 0 0 10 0 0 1 10
1 0 0 01 0 0 0 1 1

One can observe that matrig corresponds to a re-
flection, while matrixT» to a rotation byz/2 — ¢ and a Eqg. (13) can be used to take into consideration addi-
translation by—I|. Therefore, this transformation con- tional points of interest when planning a collision-free
stitutes a global diffeomorphism in the configuration path, e.g. corners of the vehicle.
space that preserves both the length and the shape of In a similar way, using point F transformation co-
an obstacle. For exampl€jg. 2 depicts an elliptic, ~ ordinates and Eq¢l) and(2), the manipulator arm is
a circular and a rectangular obstacle in the Cartesian mapped in therv space, according to the following
x—yspace. Using the transformation described by Egs. equations
(5)—(7), these are transformed to the obstacles depicted ,
in Fig. 3 It can be seen that for some=g, the obsta-  #H(w) = ur(w) — l1sinvy (14)
clesin ther—v—w space are stillan ellipse, acircleanda  vH(w) = vr(w) — [1 COS%
rectangle, while the centers of all families of obstacles
lie on helicoids. ug(w) = up(w) — Iy SiNdy — I sin@1 + 92)

ve(w) = vp(w) — 11 cos — I cosf1 + B¥2)

(15)

3.2. Platform and manipulator mapping

The transformation developed above refers to the 4. Obstacle avoidance
manipulator mounting point F of the platform. How-
ever, when it comes to obstacle avoidance, itis obvious  As was seen in Sectid) the motion planning prob-
that other points of the platform and of the manipulator lem reduces to choosing two continuous and smooth
must be taken into account to ensure obstacle avoid- functionsf andg which satisfy the initial and final con-
ance for the whole system. Therefore, in this section figuration conditions.
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5

Fig. 3. The obstacles iRig. 2transformed in the—v—w space.

This results to a path in the-v—w, which satisfies The six coefficients fof = ¢ allow for setting any plat-
the initial and final conditions of the system. This path form initial and final orientation, velocity and accel-
can then be transformed to the Cartesian space by in-eration. As mentioned eatrlier, to satisfy the initial and
verting the transformation given by Eq%)—(7). This final conditions for the platform position and veloc-
inverse always exists and yields the Cartesian path thatity, only four coefficients are needed gfw), namely
the system will follow to reach the target configuration. bg—bs. The additional coefficienbs allows for path
Using point F as a reference point for motion planning shaping so that obstacles are avoided. If desired, one

one has may add ing(w) additional coefficients for additional

. path flexibility. Hence, the problem of avoiding Carte-
xp(u, v, w) = u sinw + (I — v) cosw (162) sian obstacles is reduced to the problem of finding an
xe(u, v, w) = u cosw + (I — v) sinw (16b) admissible region for the additional coefficidmtand

selecting an appropriate value for it according to some
o(u, v, w) = w. (16¢) criterion.

Here, for the sake of clarity, elliptic and polygonal
obstacles are considered. The case of finding admissi-
ble values for the additional coefficiebt in the pres-
ence of an elliptic obstacle, centered =, (yp) with
principal axisR; andRy, and rotated by an anglg, is
addressed first. Circular obstacles constitute a special
() = ast® + aat* + azt® + apt® + art +ag  (17) case of elliptic obstacles witRy = R, =R andy, any.

The principle of the method for ellipses lies on the
g(w) = baw* + bgw® + byw? + byw + bo (18) factthat collision is avoided when certain critical points

If obstacles exist in the system workspace, the path
must be flexible enough to satisfy the boundary condi-
tions and avoid the obstacles. In this case, functfons
andg in Egs.(8)—(10)are selected to be of fifth- and
fourth-order polynomials, respectively
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of the robot lie outside the ellipse. Making use of the
fact that an elliptic obstacle is mapped in thev—w

7

is the number of polygon linear segments. Obstacle
avoidance is guaranteed when a mobile manipulator

space onto an ellipse with the same principal axes, thenpoint under consideration, with transformed coordi-

for eachw = ¢ the following inequality must hold,
R3[(u(w) — uo) cosy’ — (v(w) — vo) siny]?
+ RZ [(u(w) — uo) siny’ + (v(w) — vo) cosy']”
~RZR2>0 (19)

whereup(w), vo(w) are the coordinates of the trans-
formed center of the ellipseyw), v(w) are the coor-
dinates of the point of interest, and are all functions of
w as expected, anfl’ = — ¢ is the transformed angle
of the ellipse.

For a given set of system boundary conditions, and
due to Egs(9) and(10), u(w) andv(w) are linear func-
tions of the coefficienbs. Then, following some alge-
braic manipulations, Eq19)yields,

ab3 + Bbs+y >0 (20)

The coefficients, 8 andy are known functions ab
and of the boundary conditiong,, vin, win, Ufin, Vfin,
wiin computed via the transformation given by Egs.
(5)—(7) and the boundary conditions in the Cartesian
space. Eq(20)is a very practical representation of the
criterion for obstacle avoidance. If this inequality holds
for all w = ¢, then the planned path of the system point
of interest will never collide with the obstacle. If ad-
ditional system points must be considered, then addi-
tional inequalities ifb4 result, possibly further limiting
the range of admissible.

Notice that since E((20) is essentially a distance
criterion and since(w) andv(w) are linear functions of
b4, the left side of the resulting inequality will always
be a second-order polynomial . This fact simpli-
fies the problem of finding appropriate valuebgfor
which Eq.(20)is satisfied. Indeed, it can be shown that
coefficientais always a positive number, and therefore
satisfaction of Eq(20) requires thaby lies outside of
the second-order polynomial rootg(w) andbj(w).

natesur(w) and vg(w), does not belong to any of
these linear segments. Therefore, using @), the
following must hold true for all segments

1) COsw — Sinw
c1() Sinw + cosw

€2() 20
c1G) Sinw + cosw

Yw € [win, Win]
Y(ur(w) sinw + (1 — vr(w)) cosw) € [x1(), x2)]

ur(w) + (I = vr(w))

(21)

Again bearing in mind thatir(w), vr(w) are linear
functions ofbs, Eq.(21) results in

ba # p()(w)

where the quantitiejs;)(w) are again known functions
of w and of the boundary conditions.

To ensure obstacle avoidance of the multi-body
structure, we need to consider the points on the plat-
form and the manipulator, whose obstacle avoidance
guarantees the obstacle avoidance of the mobile ma-
nipulator as a whole. More specifically, we first check
whether the vertices of the platform as well as its edges
collide with the obstacles, according to all the possible
collision scenarios. This is repeated for the arm links
and joints.

(22)

4.1. Platform obstacle avoidance

Fig. 4 depicts possible collision cases for the plat-
form. These have been classified as cases (a—f). Note
that the case of a linear segment being in parallel con-
tact with the platform falls either under case (c), if at
least one of the end-points of the segment is outside of
the platform bounds, or under case (f), if none of the
segment end-points is outside of the platform bounds.
To illustrate the method, we describe the analysis for
the cases of circular and polygonal obstacles in detail.

Next, polygonal obstacles are considered. These Similar results hold for elliptic obstacles, but are not
can be described in the Cartesian space by a closed sepresented here due to their lengthy equations.

guence of linear segments of the foygy = cy )X + C2),

X € [X1), X2()], wherecyy andcyj) are constant co-
efficients representing the slope and position of each
distinct linear segment, respectively ), Xz are
the end-points of each distinct linear segment and

To ensure obstacle avoidance, platform vertices
must be mapped in the-v space and the admissible
range obs must be determined. The platform-mapping
problem has been described in SecBofhus, making
use of the results presented in that section, we conclude
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(e) (H)

Fig. 4. Collision cases between an elliptic, a circular and a line segment object.

that for a vertex, e.g. point B iRig. 4(a), located ata  vag(w) = v(w) +/ (24b)
certain distance from point F, the range of admissible ] ) )
ba, is calculated by the following inequality: Thus, the inequality that must hold true in order to
) ensure obstacle avoidance is:
b
(100) = 5 — o))+ )+ 1 vl > R ) = s = o)+ (o) +1 = wofu)? > B2
b b
Vw € [win, win] (23) Ywe[win, winl. A8 € {_2’ 2]

whereup(w) andvg(w) are the transformed coordinates (25)
of the center of the obstacle for some platform orienta- after some algebraic manipulation, the above inequal-

tion w = ¢, Rthe radius of the circular object, ahdnd ity is written as:
b are the dimensions of the platform. The transformed
coordinates of point Fy(w) andv(w), are linear func-  anig + frag +y > 0 (26)

tions of the coefficienb,, which implies that Eq(23)

can be algebraically manipulated to take the form of
a second-order polynomial iby, such as the one in
Eq. (20). Finding a path that prevents collision with
vertex B requires a selection bj outside the roots of
this polynomial. Clearly, the same procedure has to be
repeated for all vertices of the platform.

As far as the platform edges are concerned, we check b b
when the linear segment, which represents a platform £~ — 4ay = 0fornag € [_2’ 2}
edge, becomes tangent to the circular obstacle. For ex-
ample, let us assume that we want to find collision-free The above equation is actually a second-order poly-
paths for the edge AB of the platform, as depicted in nomial inbs whose coefficients are known functions
Fig. 4(d). According to the analysis in Secti@ the of w and of the boundary conditions. Thus, its roots,
edge’s transformation in the-v space is given by if calculated for everyw, yield by for which the side

of the platform becomes tangent to the circular obsta-
upg(w) = u(w) — nag Ynag € {_b, b] (24a) cle. Selectind, outside this range ensures a collision-
22 free path. It must be mentioned here that the procedure

where the coefficients, g andy are known functions

of by, w and of the boundary conditions. Sinee 0,

Eq. (26) will hold for all nag € [—b/2, b/2] if it does

not have any real roots. In the limit, the platform side
AB becomes tangent to the circular obstacle when the
following condition holds,

(27)



DTD 5

E. Papadopoulos et al. / Robotics and Autonomous Systems xxx (2005) XXX—XXX 9

described above has to be repeated for every side of
the platform; however, the computational burden rises
only linearly with the number of edges. The case of 1.8
elliptic obstacles is similar to that of the circular obsta-
cles described above and, therefore it is not presented
here. 14
Finally, for polygonal obstacles, we observe thata E
collision occurs either when one of the vertices of the
platform collides with one of the linear segments of 1
the polygonal obstacle, or when one of the edges of
the platform collides with one of the end-points of the o8
linear segment, sek€ig. 4(c and f). The former case
can be tackled by the use of E§2) for every platform
vertex. The latter case is similar; specifically, each end-
point of the polygon'’s linear segments is mapped onto
theu—v—w space and each platform edge is parameter-
ized as in Eq(24). For everyw € [win, wfin], Obstacle

avoidance is achieved when the mapped end-points dogyample 1. To illustrate the obstacle avoidance

not belong to the parameterized platform edges. method described above, we consider the system
depicted in Fig. 1 navigating in the workspace
depicted inFig. 5 where a circular, an elliptic and

) ) ) a triangular obstacle exist. For the simulation, the
During system motion, the manipulator may be fo)10ing values were chosen: total motion time
movmg_wnh respectto |t§ base. The relative mampulg- 6s, initial configuration )(llg]’y;:n’(pin’ﬂgl’ﬁlzn _
tor motion (path and trajectory) can be planned easily (—0.2m, 0.5m, —90°, —40°, —50°) and final de-
usingn boundary conditions, e.g. end-pointinitial and  gjreq configuration Accin’ ygn’ ofin, ﬁgn’ ﬂgn) _
final position and velocity. A simple solution to this (1m,2m, 120°, 40°, —130°). Note that choosing a

problem is to use polynomials of order—1. Then, iterent total time will make the system move faster

then polynomial coefficients, and thus the joint path, o gjower, but will have no effect on the Cartesian path
are calculated by solving a system mlinear equa- of the platform.

tions, resulting from the@ boundary conditions. In the
case where obstacles are present, we employ the redun- A fifth-order polynomial is used to parameterize
dancy offered by the base and modify its path so that function f, i.e. the orientation of the platforrv as
the entire system will not collide with the obstacles.  a function of time and a fourth-order polynomial for
To this end, we map the moving manipulator into functiong, as given by Eq17) and(18). Two fifth-
the u—v space, as was shown in Secti®dnNote that order polynomials are used for the trajectories of the
according to Eqg14)and(15), the mobile manipulator ~ manipulator joint angles. Having made these calcula-
changes its configuration during motion. However, the tions, the algorithm is ready to calculate the roots of
method calculates the coefficients of the second-orderthe polynomials, which yield the range of admissible
polynomials and their roots for each time step. This values forb.
procedure results in an admissible rangesdhat holds More specifically, for the circular obstacle, the roots
for all times, and allows the selection of the value to of 12 second-order polynomials are calculated, 8 cor-
be used. In conclusion, the methodology guaranteesresponding to the platform (4 vertices and 4 edges),
obstacle avoidance of the entire mobile system while 2 to the first manipulator link (point H and link FH)
the required computational time increases linearly with and another 2 to the second link (point E and link HE).
the number of manipulator vertices that are checked. Similarly, for the elliptic obstacle, a set of 12 poly-
This important property of the method will be clarified nomials is calculated as well. Finally, for the triangle,
in the following example. 36 linear equations are solved, 12 corresponding to the

ym

06 04 02 0 02 04 06 08 1 1.2
x(m)

Fig. 5. Obstacles in the Cartesian Space.

4.2. Manipulator arm obstacle avoidance
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04} 1

0.3+ Set of curves corresponding

to the circular obstacle
0.2+ 1
Set of curves corresponding to

0.1 the: elliptic obstacle q
<t
o

Set of curves corresponding to
the triangular obstacle
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Fig. 6. Admissible range ob, for avoiding collisions between
platform-manipulator and obstacles showrig. 5.

collision of the 4 platform edges with the 3 triangle ver-
tices, another 12 corresponding to the collision of the
4 platform vertices with the 3 triangle edges, another 6
corresponding to the manipulator points, E and H, with
the triangle edges and another 6 corresponding to the
manipulator links with the triangle vertices.

Having completed this taskiig. 6 is plotted.

It shows that the admissible values fdx, are
bs € (—0.107,—0.095)J (—0.009,00).

As expected, admissible paths through the narrow
passageway actually exist. Focusing on this figure, the
upper isolated set of curves corresponds to constraints
on b4 induced by the circular object. In more detalil,
one may identify six ellipse-like curves corresponding
to the polynomials of the four platform vertices and of
manipulator points H and.B hese ellipse-like curves
are connected to each other with 12 curves that corre-
spond to the polynomials of the 4 platform edges and
2 manipulator links (2 roots for each polynomial). The
other set of curves iffrig. 6 correspond to the ellip-
tical and triangular obstacles Fig. 5, and are made
of curves that are produced in a similar manner as ex-
plained with respect to the circular obstacle.

Fig. 7depicts a number of point F paths for admissi-
ble values ob, that just miss the obstacles. Notice that

E. Papadopoulos et al. / Robotics and Autonomous Systems xxx (2005) XXX—XXX

-

y(m)

0.5+

-0.5 1 2

Fig. 7. Front point paths for some critic} values corresponding
to Fig. 6results.

there is basically no problem to reach the final configu-
ration when all three obstacles are bypassed by moving
initially forward and below the circular obstacle.

Fig. 8 depicts snapshots of the motion of the plat-
form, which corresponds to the choibg=—0.1. The
mobile system goes through the passageway without
colliding with the obstacles and successfully reaches
its destination. Choosint, at the boundaries of the
admissible region would have resulted to a near hit
motion of the mobile manipulator.

the range of paths that pass between the triangular and

the circular object s limited because both the triangular
and the elliptical objects limit the range of backwards
maneuvers available to the mobile system. However,

2.2[- :
2L
1.8
1.6}
E 1.4F ‘
= 1.2r 7 -
| ERTTh
0.8] > Efl‘ﬂ e
0.6- |
05 0 0.5 1 15
x (m)

Fig. 8. Motion animation for a differentially driven mobile manipu-
lator.
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Fig. 9. Input velocities for the path shownHiig. 8

The resulting rotational velocities of the wheels and with | vertices, requires the solution gf+(kl)(8 + 2N)
the manipulator joint speeds are depictedig. 9. As equations.
expected, the use of polynomials results in continuous  Finally, depending on the number of obstacles, the
velocity profiles with smooth starts and stops and no complexity of the platform geometry and the on-board
excessive input velocities. computational power, the final selection laf from

It should be noted at this point that since the method the admissible range can be part of an optimization
calculates the roots of the polynomiabipat each time loop. For example, provided that sufficient computa-
step, the method can account for not only stationary, but tional power is available, the algorithm can calculate
also moving obstacles, provided that we have an esti- the admissible region diy values, compute the system
mate of their future positions. Such an estimate can be trajectory for each admissible valuelnf, and choose
calculated through machine vision and Kalman-filter- the one that will satisfy a criterion, such as minimum
based algorithms. The details of this kind of detection acceleration or travelled distance.
system exceed the scope of this paper, however, an ap-
plication of the method on moving obstacles is pre-
sented in Sectiod. 5. Implementation issues

Itis also worth noting that more complex mobile ma-
nipulators require the solution of more equations. More  The methodology developed above guarantees that
specifically, a simple extension of the methodology re- if a solution can be found within the class of the poly-
veals that, given a rectangular platform with a planar nomial functions used, then the integrated system of
N-d.f. manipulator armin a cluttered environmentwith  the platform and manipulator will avoid any obstacles
j elliptical/circular obstacles arldpolygonal obstacles  present in its workspace. However, in some cases the
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path planner might yield collision-free paths that are

long or it might not be able to find an admissible path '8 |

at all. More specifically, the order of the polynomials 1‘

used is closely related to the complexity of the path re- o |
141 e

turned by the planner, i.e. the number of back and forth
maneuvers. The higher the order of the polynomials 12}
is, the more complex and flexible the paths become,
at the expense of added computations. For example, ~ o8-

H /
the use of fifth-order polynomials results in a pair of 0.6 \

y (m)

\ J
selectable parameters; and bs, that directly affect 04l
the shape of the admissible paths. The best pair with
respect to some path qualities can be an interesting

optimization problem exceeding the scope of this : : :

0.5 0 05 1 15 2
paper.

Another issue that one must have in mind is related x(m}
tothe use of polynomials for functianindeed, thecal- gy 10 initial and final platform configuration in an obstructed
culation of the coefficients afis impossible whenthe  workspace.
initial orientation is equal to the final one, i@ = ¢fin.
Also, if these two values are very close, the method  The region of admissiblby is shown inFig. 11 It
yields solutions in which the resulting path is long. can be seen that a collision-free path is ensured when
Despite these issues, the application of the methodol- b, e (—oo, —89.88)U (—50.86, —41.8l). The first re-
ogy can be extended to these cases, as well, with somegion of admissiblé, corresponds to long paths, which

0.2t

simple additional modifications. guide the platform above the obstacles, while the sec-
_ _ _ ond corresponds to long paths through the narrow pas-
5.1. Intermediate point technique (IPT) sageway. For instance, selectmg= —90, yields a path

whose length i$; =33.35m, seéig. 12 It is evident

One way to tackle the above issues is to intro- that for this workspace anbly selection, the method
duce one or more intermediate configurations, through leads to a very long path. Similar results are obtained
which the platform must pass during its motion to- for by € (—50.86,—41.81).
wards the final configuration. This technique is also Next, an intermediate point is introduced. The
useful when one wants to ensure that the system will total move time is now 12s and the intermediate
pass through a specific point. The user can select an in-
termediate configuration according to some additional 100 g
task-specific requirements. Note also that a major ad-
vantage of this technique is that introducing interme-
diate points leaves all calculations unchanged with the ©° [{§
tradeoff of having the system stop momentarily at the 40
intermediate point. PR\

g0

Circular obstacle

Region of admissible b4

Example 2. Here, we assume the workspace depicted ~ ©f
in Fig. 10 where there is a circular and an elliptic ob-  -2o¢t
stacle, forming a narrow passageway. For clarity and ..

simplicity reasons we consider the platform only. The j

addition of the manipulator arm will not affect the re- gor
sults. For the simulation, the total move time is cho-  -80 Elliptic Obstacle
sen equal to 6, the initial configuration is chosen as -1q0
(P, i, ¢'") = (—0.2m, 0.5m, 0°) and the final one 0
as @, yin, 4"y = (2m, 0.5m, 45°).

5 10 15 20 25 30 35 40 45

Fig. 11. Region of admissible for the workspace shown ffig. 10
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x(m)
Fig. 12. Calculated path fdx = —90.

configuration is described by xff, y¥, o) =

(0.5m, —0.5m, 45°). The admissible region of
by for each sub-path isbs e (—10.18, o0) and
bs € (—0.89, 00). Selectingb, =0 for both sub-paths
yields the path shown iRig. 13

It is clear that the length of the path is now much
shorter (=3.87m). The wheels speed profiles are
shown inFig. 14 Indeed, these remain smooth while
the platform stops momentarily &t 6.

Example 3. The intermediate point technique can be
employed to enhance the control over the path of the
system. Such a capability is also important in parking

=
| \
15} L S
1) /
= 05| \ /
(o8
05| -
1 0.5 0 05 1 15 2
X (m)

Fig. 13. Calculated path using the IPT technique.

13

Angular Velocity of the Left Wheel

omega left (rad/s)

~0 2 4 3 8 10 12

t(s)
Angular Velocity of the Right Wheel

omega right(rad/s)

7 0 2 4 6 8
t(s)
Fig. 14. Input velocities with the IPT for the path showrFig. 13

or unparking problems. Let us consider the unparking
problem and assume the workspace depict&agnls

For the simulation, the total move time is cho-
sen equal to 12s, while the initial configuration
is (", yI1, ¢'") = (0.75m 0.2m, 0°). The final de-
sired configuration of the systemf', yin ofin) =
(1.5m, 0.8 m, 0°). Notice that the initial and final
base orientations are equal. Therefore, an intermedi-
ate point must be used. Introducing an intermediate
configuration such as the one given bff (¥, ") =
(0.8 m, 0.6 m, 45°), the problem is easily solved. The

0.8}

0.6+

> 04

0.2

N\

15
x (m)

Fig. 15. Obstructed workspace simulating the unparking problem.
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Fig. 16. Unparking using the IPT technique. Fig. 17. Calculated path using the OPT and a single additional turn.

Selectindos =0.01 results in the path shownfiig. 17,
where the platform performs a full rotation in the be-
ginning and continues until it reaches its destination.
The length of the constructed patH i$3.86 m.

admissible regions o, are bs € (—1.20, 0.91) and
bs € (—o0, 5.5) for each sub-path. Selectihg=0 for
both sub-paths results in the successful unparking path
depicted inFig. 16
Fig. 18 depicts the resulting wheel speed profiles,
5.2. Orientation periodicity technique (OPT) which as before are smooth. Compared to the IPT,
this technique offers the benefit that the algorithm
An alternative way to expapd the implementation needs to be run only once, avoiding the process of
of the method to complex environments and to cases ye_rynning the algorithm when intermediate points are
where the initial and final orientations of the platform present. As for the length of the path, this remains

are the same is to take advantage of the periodicity of sma|| in both cases. Depending on the topology of the
the trigonometric functionsinvolved. Indeed, by adding

full turn (360°) multiples, either to the initial or to

3 ) - - e Angular Velocity of the Left Wheel
the final vehicle orientatiop the boundary conditions ‘ ‘ ‘

oy
o

w
are still respected while the algorithm yields solutions “@
in one run (no intermediate points needed). Next, we £ 1
present an example in which this technique is illus- é 0
trated and compared with results obtained using the g
intermediate point technique. s

0 2 4 6 8 10 12
Example 4. The workspace in this example is the
one used irExample 2and depicted irFig. 10 The
initial and final configuration are the same to the ones
used inExample 2 but now the final orientation re-
guested from the planner is 45360° =405. This

full turn addition does not violate the desired bound-
ary conditions, while it allows more flexibility for the
platform in moving through the obstacles and avoid-
ing long paths. Going through the methodology as be- t(s)

fore, yields the admissible range fox which is now

bs e (—oo, —5.86x 1073)U(2.62x 1073, 0.0178). Fig. 18. Wheel velocities for the OPT path showrFig. 17.

omega right(rad/s)
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workspace and the task requirements, one of these tech{or all timet,

niques may present an advantage compared to the other,
However, in both techniques, the salient advantage of (o =

fast algebraic computations that scale linearly with

the number of obstacles or sides taken into account is

retained.

6. Moving obstacles and end-point trajectory
planning

In this section, we first turn our attention to the
problem of avoiding obstacles that move in the robot’s
workspace with known trajectories. Such information
may be available, for example, by a mapping method
or an off-line trajectory planner. Under these circum-

15
xded? + (VF — yded? < (l1 + [2)? (29a)
(xF — Xded? + (VF — yded? > (11 — I2)? (29b)

Eqg. (29) imply that the manipulator mounting point F
hasto be inside a moving circle with radilis€ I2) cen-
tered at the end-point locatiorgts Yge9 and outside a
co-centered circle with radiuk + 15|, at all times. The
core of the technique lies on the fact that we can treat
these two circles as moving obstacles and employ the
obstacle avoidance methodology described previously,
focusing on point F. In other words, the manipulator
reach constraints described by E29) can be treated

as “virtual” obstacles for point F. Next, the method-
ology for exact end-point following is outlined in

stances, the position of all obstacle vertices and sidesdetail.

are known functions of time. Therefore, all distance
inequalities still have the form of E€R0), i.e. they re-
sult in quadratic forms with respect ba. In this case

Given the initial and final positions and velocities
of the platform, we use the methodology described in
Section4 to map all obstacles in they—w space. The

though, the a priori known obstacle coordinates as a same methodology is employed to map the manipulator

function of time are used. As is the case with stationary

obstacles, moving obstacles restrict the range of feasi-

ble b coefficients, by producing constraint curves in
thebs—w space.

The methodology for dealing with moving obsta-
cles can be employed in a host of situations. Among
them, an important one is the planning of end-point
trajectories when the manipulator is mounted on a non-
holonomic platform. This particular situation arises
in many practical robotic applications such as in
the robotic crack-sealing, where the manipulator end-
point must follow a certain crack on the pavement,
see, e.g[20]. In more detail, this problem involves
constructing a path and a trajectory for the plat-
form, so that (a) the manipulator avoids singularities
at its workspace limits, (b) its end-point follows a
given Cartesian trajectory and (c) the entire mobile
manipulator system does not collide with proximal
obstacles.

To study this problem, the end-point desired trajec-
tory is parameterized by the following functions

(28a)
(28b)

Xdes = Xded?)
Ydes = Y(Xded = Y(xded?))-

To keep the end-point within the manipulator
workspace limits, the following equations must hold

reach constraints, i.e. the “virtual” obstacles, described
by Eg. (29). Indeed, after some algebraic manipula-
tions, the constraints given by E@9)take the form of
the standard second order inequality given by(28).

As expected, this process further restricts the region of
admissiblebs, which results in obstacle avoidance for
the platform and keeps the end-point within its manip-
ulator workspace. Selection of an appropriaigields

a specific platform path. Knowing the trajectory of the
end-point and that of the platform — and thus of the
mounting point F — the manipulator joint trajectories
are calculated using trivial inverse kinematics.

Since up to this point the manipulator itself has not
been checked against collisions, the remaining task is
to ensure that the computed joint trajectories and the
links themselves do not interfere with the obstacles.
However, this step is very simple and involves calcu-
lating the trajectory of point H using E¢l) and then
checking if the linear segments (FH) and (HE) collide
with any of the obstacles at every time step. If the ma-
nipulator motion results in collisions with obstacles,
then the algorithm is repeated with a néw which
yields a new admissible trajectory for the platform and
new manipulator joint motions. The technique iterates
until a solution, which results in no collision with the
obstacles, is found. The method is illustrated in the fol-
lowing example.
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Fig. 19. Crack-sealing problem. Fig. 20. Admissiblebs for the crack-sealing problem shown in
Fig. 19

Example 5. In this example, the platform must reach

a desired position and orientation while the end-point by 18C. Indeed, in the absence of the obstacle, this
should follow a given Cartesian trajectory (e.g. repre- range would still be thinp, € (0.045, 0.060).

senting a crack on a pavement), and collision with the ~ Choosingbs = 0.055 and using inverse kinematics,
circular obstacle is avoided. The desired trajectory is the joint trajectories are calculated and possible col-

given by lisions of the manipulator links are checked. In this
3 5 case, no collisions occur. However, if collisions did
xded?) = —0.0135” 4 0.1215° — 0.622 (30a)  occur, we would have to select anottmrand check

again. Having ensured a collision-free path, the trajec-
tory for both the platform and the end-point results.
The desired starting and stopping configuration for Fig. 21depicts snapshots of motion of the mobile ma-
the platform and the end-point path are depicted in hipulator system, whilé-ig. 22depicts system wheel
Fig. 19 For the simulation, the total move time is

Ydes= —0.80x3os+ 1.55xges + 1.61 (30b)

chosen equal to 6 s, the initial configuratiori ( I, T - ———
o, 9N, 9 = (-0.4m, 0.5m, —90°, —20°, —50°) 22
and the final configuration iscf', y£', ¢, 97", 95') = 2t
(-0.8m,2.1m, —270°, —40°, —70°). 48
1.6}

The first step is to calculate the roots of the polyno- _ gl /
mials concerning the circular obstacle by using the ob- E™ [ >
stacle avoidance method described in Secfiofhen, T2 K
we calculate the roots of the polynomials describing 1t
the collisions with the *“virtual” obstacles that corre- 0.8l
spond to the manipulator reach constraints. All roots il |
are plotted for each € [win, wiin] in Fig. 20 Itis clear ) :
that the admissible values fbg areb, € (0.05, 0.06). 0"‘"1 . = :

This relatively thin region is mainly due to manipula-
tor reach constraints, to its configuration with respectto
the nonholonomic platform, and to the fact that during Frig. 21. Motion animation for the mobile manipulator for the crack-
the sealing task, the latter has to change its orientation sealing problem.

x(m)
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Fig. 22. Input velocities for the path shownFhig. 21

velocities. Itis evident that the manipulator succeeds in
following the specified trajectory. In addition, the plat-
form moves without violating the nonholonomic con-
straint, without colliding with the obstacle and with-
out driving the manipulator to its workspace limits.
As is always the case with this methodology, wheel
speeds shown iifrig. 22 are smooth, and therefore
realizable.

A significant advantage of this method is that it
requires very little additional time since it only has
to calculate the roots of two polynomials for each
of the two reach restrictions of the manipulator. It
also provides the opportunity for multiple solutions
by changing the value df, or even by implement-
ing one of the techniques proposed in Secttorin
general, the method provides a quick way of deriv-
ing admissible trajectories in complex cases like the
crack-sealing problemillustrated here. Although in this
paper a planar manipulator was assumed, in princi-

can be tolerated. However, this is an issue of current
research.

7. Conclusions

Inthis paper, a methodology for planning the motion
of nhonholonomic mobile manipulators in the presence
of obstacles and its application to various situations
was presented in detail. The method uses smooth and
continuous functions such as polynomials, and takes
into account the details of the geometry of the inte-
grated platform-manipulator system to return collision
free paths or trajectories. The method was applied to
a differentially driven platform equipped with a two-
link manipulator; however, it can be easily extended to
more complex mobile manipulators.

The concept of using appropriately shaped polyno-
mial functions for obstacle avoidance in nonholonomic

ple the method can be extended to spatial systems,systems, initially proposed if18], was further elabo-

taking into account the degree of conservatism that

rated and extended here, and importantimplementation
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issues were discussed. The method was extended toin-  obstacles, in: Proceedings of the IEEE International Conference
clude polygonal obstacles of any kind. The algebraic on Robotics and Automation, April, 1991, pp. 2328-2335.
nature of the methodology is retained. and the time [5] P.Jacobs, J. Canny, Planning smooth paths for mobile robots, in:

taken to compute valid paths increases linearly with the Proceedings of the IEEE International Conference on Robotics
P P y and Automation, April, 1989, pp. 2-7.

number of obstacles and sides considered. This paper [g] j.-p. Laumond, J. Jacobs, M. Taix, R.M. Murray, A Motion
also discusses ways to resolve implementation issues  planner for nonholonomic mobile robots, IEEE Tr. Rob. Autom.
inherent in[18], which sometimes resulted in unac- 10 (5) (1994) 577-593.

ceptably Iong paths orin singularities depending on [7] S. Sekhavat, J.-P. Laumond, Topological property for collision-

.. . free nonholonomic motion planning: the case of sinusoidal in-
the boundary conditions and the location of the obsta- puts for chained form systems, IEEE Tr. Rob. Autom. 14 (5)

cles. Two efficient techniques have been exemplified (1998) 671-680.

to remedy these problems. In the first, intermediate [8] A. Divelbiss, J. Wen, A path space approach to nonholonomic
points are employed, and in the second, the periodicity motion planning in the presence of obstacles, IEEE Tr. Rob.
of the platform’s orientation is exploited. Illustrative Autom. 13 (3) (1997) 443-451.

xamples demonstrated th fth techni ir1[9] M. Yamamoto, M. lwamura, A. Mohri, Quasi-time-optimal mo-
examples demonstrate € use or these techniques tion planning of mobile platform in the presence of obstacles, in:

various WorKSPaces \_’Vith obstacles e_nC|05€d in simple Proceedings of the IEEE International Conference on Robotics
geometrical forms. Finally, the planning methodology and Automation, April, 1999, pp. 2958-2963.

was extended to include the case of obstacles moving in[10] P. Fgrbach, A methgd of progressive constraints for nonholo-
the workspace along known trajectories. This situation ~ N°mic motion planning, IEEE Tr. Rob. Autom. 14 (1) (1995)

also arises when the manipulator end-point is required 1727179, , .
[11] A. Bemporad, A. De Luca, G. Oriolo, Local incremental plan-

to follow a_deSired Cartesian trajectory, such as in the ning for a car-like robot navigating among obstacles, in: Pro-

crack-sealing problem. ceedings of the IEEE International Conference on Robotics and
The techniques presented in this paper addressed  Automation, April, 1996, pp. 1205-1211.

initial limitations without increasing the computational  [12] E- Papadopoulos, Y. Gonthier, A framework for large-force task

: lanning of mobile redundant manipulators, J. Rob. Syst. 16 (3
effort. As a result the proposed methodology yields a ?gg;nfsolﬂgz'ere undant manipulators, J. Rob. Syst. 16 (3)

fast planner, a significant advantage especially in cases|13] H. seraji, A unified approach to motion control of mobile ma-

where the system’s computing resources are limited or nipulators, Int. J. Rob. Res. 17 (2) (1998) 107-118.

the mission time is critical. [14] Y. Yamamoto, X. Yun, Coordinated obstacle avoidance of a
mobile manipulator, in: Proceedings of the IEEE International
Conference on Robotics and Automation, Nagoya, Japan, May,
1995, pp. 2255-2260.
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