
Dynamic Analysis and Speed Control of a 
Novel Micro-platform Driven by Vibrating Motors 

 
Panagiotis Vartholomeos and Evangelos Papadopoulos 

Department of Mechanical Engineering, National Technical University of Athens 
15780 Athens, Greece 

{barthol, egpapado}@central.ntua.gr
 

 
ABSTRACT 
This paper presents the dynamic analysis and speed 
control of a novel micro-robotic platform that is able to 
move with sub-micrometer positioning accuracy at 
velocities up to 1.5 mm/s. The platform actuation system 
employs vibration micro-motors. The motion principle is 
discussed. The dynamic model of the platform and of its 
actuation system is developed and its operating 
constraints are analytically expressed. Emphasis is given 
on the periodic orbits that the platform may exhibit under 
specific driving conditions. Closed-loop speed control of 
the vibrating actuators is implemented. The micro-robot 
design is simple, compact, of low cost and allows for 
untethered power supply using simple means such as 
single cell batteries.  
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1.  Introduction 
In the last decade, micro-robotics has become an 
increasingly important field of research. Domains of 
application such as micro fabrication, biotechnology, 
microscopy and opto-electronics, demand miniaturized or 
micro-robotic platforms that provide ultra high precision, 
flexibility and a wide mobility range. To this aim, 
extensive research has been carried out in the design and 
realization of micro-manipulators and of micro-robots. 
Motion principles and actuation mechanisms that combine 
sub-micrometer motion of high resolution and the speed 
virtues of coarse positioning have been the subject of 
intensive studies. 
Several micro-actuation techniques have been devised and 
are usually based on smart materials such as piezo-electric 
actuators, shape memory alloys, etc. The most popular 
micro-positioning motion mechanism is the stick-slip 
principle, which is implemented using piezoelectric 
actuators. This principle is employed by the 3DOF micro-
robotic platform presented in [1], by the MINIMAN 
micro-robot presented in [2-3] and by the MiCRoN robot 
presented in [4]. These platforms are capable of 
positioning accuracy of less than 200nm and provide 
velocities of up to a few mm/s. The impact drive principle 
is employed by the 3DOF micro-robotic platform Avalon 
which provides step size of about 3.0 µm and speeds up to 
1 mm/s, and is presented in [5-6]. A different motion 
mechanism based on piezo-tubes is utilized by the Nano 
Walker micro-robot presented in [7].  

Although piezoelectric actuators seem to be the favored 
smart material for micro-positioning and do provide the 
required positioning resolution and actuation response, 
they usually suffer from complex power units that are 
expensive and cumbersome and which do not easily allow 
for untethered operation. Furthermore, piezoelectric 
actuators are complex systems that exhibit non-linear 
behavior and as a result they lack an accurate 
mathematical model that can provide a reliable prediction 
of the system’s behavior.  
This paper presents a novel, simple and compact micro-
robotic platform [8] that is able to perform translational 
and rotational sliding with sub-micrometer positioning 
accuracy and velocities up to 1.5mm/s. All the 
components of the mechanism including its driving units 
are of low cost and readily available. The motion 
mechanism is based on the interaction of centripetal 
forces due to vibrating micro-motors and friction forces at 
the base supports. The concept was inspired by observing 
the motion of devices that vibrate, such as cellular phones 
or unbalanced washing machines, [9, 10]. First, analysis 
of the motion principle physics is provided. Then, rigid 
and deformable body dynamic models of the platform are 
developed. Also the dynamics of the actuators are 
presented. The modes of operation of the platform are 
defined, and simulation is performed to demonstrate 
periodic orbits that the platform may exhibit under 
specific operating conditions. Finally, closed loop speed 
control using feedback linearization is implemented to 
control and improve the speed response of the platform 
and to compensate for modeling errors. 
 
2.  Motion Principle 
The motion principle is first demonstrated using a 
simplified single degree-of-freedom (DOF) mobile 
platform of mass M. The motion mechanism employs an 
eccentric mass m rotated by a motor O mounted on the 
platform as shown in Fig. 1. 

 
Fig. 1 Simplified 1DOF platform with rotating mass m. 
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It is assumed that the mass m rotates on a vertical plane at 
constant angular speed ω , about point O and that the 
platform is constrained to move along the y-axis only. 
One cycle of operation is completed when the mass has 
described an angle of  . Gravitational and centripetal 
forces exerted on the rotating mass are resolved along the 
y-z axis to yield: 

360o

  (1) 
foy = mrω 2 sinθ

foz = −mg − mrω 2 cosθ
where g is the acceleration of gravity and r  the length of 
the link between m and O. These forces are also applied to 
the platform at point O, while the moment due to the 
small eccentric mass is neglected. When the angular speed 
ω  is low, the platform does not move because the 
horizontal actuation force  is cancelled by frictional 
forces at the platform support points A and B. However, if 
the angular speed 

foy

ω  exceeds a critical value, then  
overcomes the Coulomb friction forces applied at the two 
support points, and as a result, the platform begins to 
slide. 

foy

Using a simplified static-kinetic friction model, [11], the 
equations of motion along the y and z axes during motion 
of the platform are given by the following equations: 
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where all forces are defined in Fig. 1, M is the mass of the 
platform, frf  is friction and  is the Coulomb level. Cf
The platform response is obtained by means of a 
numerical simulation of eqs. (2) and the results are 
displayed in Fig. 2.  

 

 
Fig. 2. Forces applied to 1DOF platform and resulting motion 

variables 

Fig. 2a depicts the time response of the sum of the vertical 
forces exerted on the platform, i.e. the actuation force 
component  plus the gravitational force . This sum 
is equal in magnitude to the support reaction forces and is 
time-periodic since it includes a sinusoidal and a DC 
component. The same applies to the Coulomb friction 
level, , which is shown in Fig. 2b. This figure also 
shows the horizontal forces that act upon the platform, 
namely the horizontal actuation force  and the friction 

force . Fig. 2c depicts the acceleration of the platform 

 , while Fig. 2d depicts its velocity, and Fig. 2e its 
displacement. From Figs. 2b and 2d, it is clear that motion 
is induced when the horizontal actuation force overcomes 
the static friction limit . Quite interestingly as shown in 
Fig. 2e, for a counterclockwise rotation of the motor, the 
platform exhibits a net displacement along the positive y-
axis. This motion stems from the cyclic behavior of the 
actuation and friction forces and is explained next.  
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When the eccentric mass is at the lower points of its 
trajectory, the normal forces and therefore the frictional 
forces are high, whereas when the eccentric mass is at its 
highest points, the normal and frictional forces are low. 
Accordingly, for anticlockwise rotation of mass m 
initiated at  , the platform tends not to move when m 
is at a low position and to move to the right when the 
mass is at high one. When m passes the highest point 

, the platform already has a non-zero velocity. As 
m moves past this point, friction forces together with 
actuation forces tend to decelerate the platform and even 
change its direction. As friction still increases eventually 
brings the platform to a stop. The actuation forces are now 
pointing to the left and as a result reverse platform motion 
is induced. Since the platform velocity became zero past 
the  18  point, there is less time for it to accelerate in the 
opposite direction and finally return back to its initial 
position before stopping again. Therefore, once a cycle is 
completed, the platform exhibits a net displacement as 
shown in Fig. 2e. Reversal of the direction of 

θ = 0o

180θ = D

0o

ω  will lead 
to a reversal of the direction of motion. 
 
3  3DOF Platform 
The motion principle presented previously is employed in 
this section for the design of a 3 degree-of freedom (dof) 
mobile mini robot. The design of the mini robot must 
meet the following design objectives: The platform should 
be capable of performing x, y,θ  motion. It should be able 
to reach positioning resolution of the order of sub-
microns. The platform should also be able to travel long 
distances, i.e. it should be able to scan a workspace whose 
area is five to ten times the dimensions of the platform. It 
should develop speeds of the order of several mm / s . Its 
size should be less than 5  so that multi-robot 
cooperation within a workspace of limited area would be 
feasible. Finally the cost of constructing and powering the 
platform should be as small as possible. To this aim the 
following design was favored [8]: 

cm2



The geometry of the base of the micro-robot is an 
equilateral triangle of length l . Three small rigid supports 
A, B, and C located at each vertex of the triangle provide 
the contact points between the platform and the ground, 
see Fig. 3. The actuation of the platform employs 
miniature-vibrating motors. Three identical vibrating 
motors D, E and F, are symmetrically mounted on top of 
the platform as shown in Fig. 3.  

 
Fig. 3. Actuation and reaction forces applied on the platform 

If actuators D and F spin at an opposite sense of rotation 
while E is inactive, then the platform slides along the 
positive x-axis, if their sense of rotation is reversed then 
sliding occurs along the negative x-axis. Similarly when 
motors D and E or E and F spin at the same speed and 
opposite sense of rotation, pure translational motion is 
induced at an angle of   or   with respect to the x-
axis respectively. When D, E, and F motor spin at the 
same speed and at the same sense of rotation, then pure 
rotation about the platform CM is performed. 
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4  Dynamics 
The description of the dynamics of the micro-robotic 
platform requires the use of three dynamic models:  
a) Rigid body platform dynamics.  
b) Deformable platform dynamics.  
c) Actuator dynamics  
Platform dynamics The assumptions on which the 
platform dynamic model is based are: (i) The imbalance 
load can be modeled as a point mass , rotating at a 
distance 

m
r  from the motor axis. (ii) All actuators are 

identical. (iii) Every rotating mass  rotates at a constant 
angular speed 

m
ω  and the plane of rotation is normal to the 

plane of the base. (iv) All rotating masses are in phase. (v) 
For reasons of simplicity it is assumed that the contact 
points of the platform experience Coulomb friction with a 
constant friction coefficient µ . 
The platform analysis involves the body-fixed frame  

and the inertial frame  , see Fig. 3. The adopted 

notation is i  where the superscript  is the frame index 
and subscript  is the component 

Bxy

OXY

f j i
j x, y, z  index. The b 

superscript denotes frame B. Frame O uses no superscript. 

The position vectors of the contact points A, B, and C are 
denoted by  and the position vectors of the 
motor axis points D, E and F on which the imbalance 
forces are applied are denoted by . Forces 

 include the normal and frictional contact 
forces at contact points A, B, and C, respectively. The 
angle 

b ra , b rb , b rc

b rd , b re ,
b rf

b fa , b fb , b fc

θ , is the eccentric load angle (motor angle) with 
respect to the vertical axis, see Fig. 1. Due to the rotating 
eccentricities, forces b , are applied at points D, 

E, and F of the platform, and moments  are 
applied along its motor axes, see Fig. 3. Their body-fixed 
components are given by, 

fd , b fe ,
b f f

b nd , b ne ,
b n f

  (3) 

b fix = −mrω 2 sinφi sinθ
b fiy = mrω 2 cosφi sinθ
b fiz = −mg − mrω 2 cosθ       
bnix = −mgr cosφi sinθ
bniy = −mgr sinφi sinθ
bniz = 0

⎫
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    i = {d,e, f }  

where ω θ= �  is motor angular velocity, r  is the 
eccentricity of the imbalance mass  and 

 are the angles of position vectors 
. Then, the Newton-Euler equations of the 

platform are written as, [12]: 

m

 φi = {60o, 180o, −60o}
b rd , b re ,

b rf
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where R  is the rotation matrix, between frames B and O, 
ω p is the platform angular velocity, is the platform 

inertia matrix, and 

b I

[ , , ]Tx y z=v � � �  is the platform CM 
position in the inertial frame. 
Deformable body dynamics While the platform is static 
and the actuation forces gradually increase, the forces 
distributed to the platform legs reach the Coulomb level 
and motion is impending. It is required to have knowledge 
of the force distribution on each of the three supports A, 
B, and C of the triangular platform during static 
conditions. These six unknowns can be determined by 
considering small deformations along the base of the 
platform. For this purpose, the platform is modeled as a 
lumped system, consisting of three point masses 
connected via stiff springs, see Fig. 4. The lumped masses 
M1 = M 2 = M 3 , whose aggregate equals the mass M  of 
the base, are located at the tips of an equilateral triangle 
and the springs have constants . The produced 
deformations are adequately small so that the change in 
the angle of the springs is considered negligible. Forces 

 with 

k1 = k2 = k3

fai , f fi , fsi i = {1,2, 3} , are the actuation, friction and 
spring forces exerted at mass . i



 
Fig. 4. Forces applied to the mass-spring model 

The dynamic equations of the spring-mass system are:  

  (6) 
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where  is the mass matrix, A  is a matrix containing 
spring constants, and  represents 
the x-y displacement of the three masses. When the 
masses are in a static state, the unknowns of the system 
are the six friction forces, which are determined by 
solving the six static equilibrium equations. In the case 
where some or all of the masses are in motion, then the 
magnitude of the corresponding friction forces is 
determined by the Coulomb friction limit, whereas the 
direction of the friction forces is determined by the 
velocity of the corresponding mass. 

M
x = [x1, x2 , x3, y1, y2 , y3 ]T

Actuator dynamics The actuator is modeled as a system 
comprising a DC permanent magnet motor and an 
imbalanced load , see Fig. 5.  m

 
Fig. 5. Lump parameter model of the actuators 

The input to the actuator is the voltage . If the 
inductance of the windings of the motor is considered 
negligible, then the dynamics of the actuator are 
expressed through the following equation, 

Vs
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where  is motor’s torque constant, R is its ohmic 
resistance, J is the inertia of the eccentric load, and the 

term 

kT

( ( )c sign )b
J J

θ θ+� �  is the Coulomb and viscous 

friction. 

 
5  Modes of operation 
In this section, pure rotation and pure translation motion 
capabilities of the micro-robotic platform are examined. If 
at least one of the actuators is spinning, then the platform 
is said to be in operation. The feasible driving speeds ω  
define three modes of operation according to the type of 
motion that is induced to the platform. These are: 
a) Static mode of operation 
b) Closed orbit mode of operation 
c) Locomotion mode of operation 
 
Static mode of operation. As stated in Section II, if ω  is 
below a critical value ω sl  i.e. 0 <ω ≤ω sl , then the 
actuation forces are not large enough to induce motion. 
The analytical expressions of ω sl  for the translational and 
rotational cases are derived as described in [8] and are 
given by eqs (8) and (9) respectively. 
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Closed orbit mode of operation. If speed ω  is greater 
than ω sl , then the actuation forces are large enough to 
counteract the friction forces, and consequently, to induce 
motion. It can be shown that for a small range of angular 
speeds ω sl <ω ≤ω c , the forward and reverse 
displacements per cycle are equal. Hence the platform 
performs forced oscillations about a fixed point and the 
net displacement over time is zero. The analytical 
expression of cω  is derived by integrating the equations 
of motion over a cycle and by setting the forward 
displacement per cycle, equal to the reverse one. The 
translational case is given by (10). 
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For the rotational case, cω  can be determined only 
numerically. 
Locomotion mode of operation. For values of cω ω≥ , 
the platform begins to exhibit net displacement per cycle. 
If ω  is very large i.e., if it exceeds the critical value ω tip , 
then tipping occurs and platform stability is lost. The 
range of the driving speeds  is defined as 
the locomotion range of the platform. Actuator angular 
speed 

ω ∈ ω c ,ω tip⎡⎣ ⎤⎦

ω tip  is derived as shown in [8] and is given by 



equations (11) and (12) for the cases of translational and 
rotational motion respectively. 
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From a design point of view, the objective is to choose 
platform parameter values such that the displacement per 
cycle is maximized. A set of design guidelines has been 
derived in [8] that leads first, to the selection of the 
coreless vibration micro-motor 4TH9-3006A 
manufactured by Jinlong Machinery & Electronics Co 
whose electromechanical parameters are listed on Table I 
and second, to a platform design whose basic design 
parameters are listed on Table II. 
 

Table I 
Vibrating motor SE-S4E specifications 

Parameter Value Parameter Value 

Operating Voltage 0.9 V~1.6 V Motor Weight  0.95 g 

Starting Voltage 0.8 V Motor diam. 4 mm 

Starting Current 110 mA Motor length 14.4 mm 

Armature Resistance 10  Ω Nominal speed  10000 rpm 

 
Table II 

Design parameters 
Parameter Value Parameter Value 

r 0.00177 m l  0.05 m 

m 0.00021 kg 
oh  

0.004 m 

M 0.12 kg µ  0.5 

 
6  Closed orbit mode example 
A number of simulation examples were presented in [8] 
that verify analytical results and demonstrate the platform 
motion capabilities. In this paper, a simulation example 
exemplifies the closed orbit operation and the platform 
deformation model. The platform parameters are those 
presented in Table II. According to Eq. (10), the upper 
bound of the closed orbit mode is 9685.6c rpmω = , 
while according to Eq. (8) the lower bound is 

8519.4sl rpmω = . The motors speeds are set to 
ωd = −9400rpm  and ω f = 9400rmp , eω  is zero. Fig. 6a 
depicts the accelerations of the platform. The spikes that 
are observed in the acceleration graph are due to 
switching from the deformable object model to the rigid 
body model. Fig. 6b presents the velocity of the platform 
and Fig. 6c its displacement. Clearly the platform operates 
in the closed orbit mode and exhibits zero net 
displacement.  

 
Fig. 6. Closed orbit simulation 

Fig. 7 depicts the friction forces developed during the first 
cycle of operation. Initially, the platform is static, and the 
simulation uses the deformable object model. Friction is 
exerted only on legs A and C. Gradually the actuation 
forces and the friction forces on legs A and C increase. At 
some point friction forces reach the Coulomb level, then 
the platform starts to deform and forces are transmitted to 
leg C. When friction at all three legs has reached the 
Coulomb level, the platform accelerates, forward motion 
along the x-axis is induced, and simulation switches to the 
rigid body model. In a similar manner, dynamics alternate 
between deformable and rigid body models during the rest 
of the simulation. 

 
Fig. 7. Friction forces applied on legs A, B and C. 

 
7  Closed loop speed control 
Taking into account rotating mass accelerations, and 
neglecting the torque due to the rotating mass, Eqs. (3) 
become: 

  (13) 

 

b fix = −(−mrα cosθ + mrω 2 sinθ )sinφi
b fiy = (−mrα cosθ + mrω 2 sinθ )cosφi

b fiz = −mg − mrα sinθ − mrω 2 cosθ

i = {d,e, f },φi = {60o,180o,−60o}

where α ω θ= = ��� . The acceleration   is generated by the 
micro-motor that is governed by Eq. (7). Initially the 
platform moves at a speed of 0.7mm/s. It is desired to 
decelerate the platform to 0.4mm/s. For the open loop 
control case, this is achieved by solving numerically the 
platform inverse dynamics, and then calculating the 
required actuators speeds. The reference velocities are 

��θ

1047 /d rad sω = − and 1047 .f rad sω =  The solid line in 
Fig. 8 first plot, depicts the step response of the platform’s 



velocity. The platform displacement is defined as the 
position difference between two successive static phases 
(flat regions in Fig.2e and Fig.6c). Consequently, the 
platform velocity is measured once per actuation cycle, 
and the output is formed by applying a zero order hold 
operation. The peaks that appear in the platform velocity 
response are due to numerical errors and not due to 
fluctuations of the output. The solid line in Fig. 8, second 
plot, depicts the step response of the actuators angular 
velocity. It can be seen that during open loop operation, 
the transient period of the platform’s response is 
approximately the same as that of the actuators velocity. 
This means that the platform almost rapidly acquires the 
velocity imposed by the actuators. Hence, it arises that an 
improvement of actuator’s angular velocity response will 
result to an analogous improvement to the platform’s 
velocity response.  

 
Fig 8. Transient response 

To this aim, inverse dynamics plus a 2nd order stabilizing 
control law  given by eqs (14) are employed to first 
linearize eq (7) and then to control the response of the 
actuators. The controller is schematically presented in Fig. 
9. A disturbance has been added in the inverse dynamics 
to model uncertainties. 

u

 
Fig. 9. Actuator  closed-loop control 
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The controlled response of the platform and of the 
actuators is presented with dashed line in the first and 
second plots of Figs. 8 respectively. It is evident that the 
system time constant has reduced by a factor of ten. Figs. 
8 third and fourth plot depict the voltages and currents of 
the actuators during the controlled response. Both values 
are within the permissible range of values specified by the 
micro-motor manufacturer in Table I.  

8  Conclusions 
The paper presented the analysis and design of a novel 
micro-robotic platform that is able to perform 
translational and rotational sliding with sub-micrometer 
positioning accuracy and develop velocities up to 1.5 
mm/s. Dynamic models of the platform and of the 
actuators were provided. The modes of operation were 
defined. The transient response of the actuators was 
studied and their effect on the response of the platform 
was discussed. It is concluded that the platform 
translational response is analogous to that of the actuators. 
Hence by driving appropriately the actuators, the speed 
response of the platform can be controlled. The actuator 
speed control was achieved by employing model based 
controller and resulted in drastic improvement in speed 
control response.  
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