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Abstract— Automating the process of collecting samples (e.g.,
images) from a vineyard can help to monitor the condition of
the grapes with precision and prevent the spreading of diseases.
A critical part of this task is the development of a robust
localization algorithm so that (a) a robot is able to carry out
the inspection process and (b) the vine-grower knows exactly
which part of the vineyard has been inspected. In this paper,
we propose a novel approach for enhancing the robustness
of VSLAM by utilizing multiple stereo cameras and a novel
method for detecting loops in homogeneous environments based
on AprilTags, where state-of-the-art approaches may find it
difficult to detect them. We test the accuracy of our method
using a wheeled Robotic Platform (RP) in simulation and in a
synthetic vineyard developed at CSL, NTUA [1]. The developed
method achieves high accuracy in the localization of the RP in
the vineyard and robustness even when a featureless object
covers a large part of the Field of View of one camera. The
developed software is available for testing at the CSL’s bitbucket
repository [2].

I. INTRODUCTION

Recently, robots started making their first steps towards
real-world applications in agriculture and, more specifically,
in vineyards [3]. Grapes have to be visually inspected so
that their condition is accurately assessed. To automate this
task, cm-level position accuracy and the ability to maneuver
in tight spaces are required. While solutions such as RTK
GPS promise to provide such accuracy levels, vineyards
are usually located in remote, GPS-denied, and challenging
areas; therefore, an alternative localization method must
be utilized. Visual Simultaneous Localization and Mapping
(vSLAM) uses camera feedback to determine the robot’s
position within a map it creates. As a result, it can be used
in situations where the sky is obstructed by environmental
factors, e.g. high crops, trees, etc. Additionally, it is a less
expensive alternative to RTK GPS, as it requires only visual
feedback from the cameras mounted on the robot.

In recent years, many vSLAM approaches have been pro-
posed using the indirect or feature method, requiring either
monocular [4] - [8], or stereo [8] - [13] feedback. PTAM [5]
was the first algorithm to introduce the use of keyframes for
mapping. Many monocular vSLAM algorithms build upon
PTAM, i.e.: ORB-SLAM [6] and VINS [7]. These algorithms
operate in real time, and use a constant velocity model
to track features in consecutive images and estimate the
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Fig. 1: Drone view of the CSL rover in the synthetic vineyard
developed in the lab.

camera’s trajectory over time. To mitigate any accumulative
error and to detect loop closure, the real-time Bundle Ad-
justment (BA) is used [14]. The BA simultaneously refines
the position of the 3D landmarks and the pose of the key-
frames. ORBSLAM, VINS and Kimera [8] use DBoW?2 [15]
for loop detecting, which converts images into a bag-of-word
representation for loop closure detection.

In vineyards, the crop is organized in parallel rows. There,
the bag-of-word approach could result in incorrect loop
detection due to the high similarity between images. As a
result, such vSLAM approaches are prone to false positive
loop detection in homogeneous environments. To resolve
these issues, we propose a multicamera vSLAM approach
that utilizes two cameras for trajectory estimation and one
for AprilTag [16] & loop closure detection. The synthetic
vineyard and the developed platform used in the experiments
are presented in Fig. 1.

Our approach achieves robust localization in feature-poor
environments since the Field of View (FoV) is doubled,
resulting in more features available to track, and in situa-
tions in which one of the cameras is obscured by the sun
or leaves. In addition, to address the challenge of image
similarity, loop closure is performed when the robot detects a
registered AprilTag. This technique enables the algorithm to
re-localize the camera within the created map without having
to necessarily revisit a previous location since the pose of the
AprilTag is pre-known. The performance of the developed



framework is compared to ORB-SLAM3 [12], a state-of-
the-art vSLAM algorithm. Multicam systems have also been
proposed, but they are either not open source or use other
lens types (fisheye) [17] [19] [20]. In our approach, with the
use of AprilTags the algorithm has the maximum confidence
that the same point in the vineyard was visited in the past
and uses this information for accurate loop detection.

This paper is organized as follows: In Sect. II the ex-
perimental setup is presented, while in Sect. III the devel-
oped VSLAM approach is introduced, focusing on feature
selection, AprilTag, and loop closure detection. In Sect. IV
experimental results are discussed, and the developed ap-
proach is compared with a SOTA method and the respective
ground truth. Last, in Sect. V we conclude and propose future
research directions.

II. EXPERIMENTAL SETUP
A. Realistic Grapevine Canopy

To perform experiments easily with varying and controlled
light conditions, a vineyard with artificial grapes and leaves
was built at CSL (Fig. 1). Each row consists of multiple
plants on a trellis system so that the canopy form resembles
a natural canopy. The basic vineyard row parameters, such
as the distance between plants (~1m) and grapes’ minimum
height (0.60m), are based on common viticulture practices
in Greece. The artificial grapes’ grid features varying density
and grape size, creating different visibility conditions since
some grapes are partly covered with leaves, whereas others
lie on the front plane. The vineyard consists of three 4-meter-
long rows on even terrain (Fig. 1).

B. CSL’s rover

A wheeled robotic platform (RP) was used to validate the
concept (Fig, 2). The RP is designed and constructed for
research purposes, comprising custom-built in-house parts
as well as off-the-shelf parts (e.g., aluminum profiles, bear-
ing units, etc.). Its motion system features four mecanum
wheels, providing the robot with omnidirectional motion
capabilities [21]. The wheels are powered by four Maxon
DC motors (RE 35) combined with planetary gearboxes (GP
42) and incremental encoders (HEDL 5540), providing 5
Nm of continuous torque per wheel. GT2 timing belts and
pulleys are used to protect actuator shafts from increased
robot payloads and to transmit power to the wheels. Two
RoboClaw 2x30A motor controllers are used to drive the
actuators since each controller can drive two DC brushed
motors [22]. The encoders attached to the motors are read
by the controllers, which run local PID control schemes that
can follow precisely speed commands for all wheels. The
two motor controllers are connected via USB to the system’s
master computer, which is a Raspberry Pi 2 model B (RPi)
running the Raspbian OS. The operator can connect to the
RPi using WiFi and Secure Shell (SSH) Network Protocol to
run a Python program that establishes two serial connections
with the motor controllers and sends the desired motion
commands. The system is powered by two LiPo batteries
for the RoboClaw controllers and a powerbank for the master

computer. A Jetson Orin AGX Developer Kit is utilized for
the execution of the VO software module and the recording
of the experiments [23]. Two ZED2i cameras, one in the
front and one in the back of the rover, are connected via
USB 3.0 to the carrier board, and one ZEDX mini is on the
side for the AprilTag detection part [26]. The third camera
is connected via a GMSL2 port to the Jetson. This system
is powered by a XP-1 Micro-Start lithium battery [32] and
runs JetPack 5.1.1 [24].
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Fig. 2: The robotic platform with the developed vision
system. (A) The ZEDX mini used for AprilTag detection, (B)
the Jetson Orin AGX, (C) & (D) the two ZED?2i cameras, (E)
the XP-1 lithium battery that powers the Jetson Orin AGX.

C. Gazebo Environments

To test the performance of the vSLAM algorithm under
controlled conditions, a simulation setup was implemented
using Gazebo, which includes an accurate model of the RP
as well as sensor plugins to simulate multiple stereo cameras
and STL CAD descriptions of grapevines acquired from [25].
In addition, ROS was used since it allows replaying the
experiments that were recorded in rosbags. As a result, we
could assess the performance of our approach against state-
of-the-art vSLAM algorithms. One AprilTag was added at
the beginning of the first row as illustrated in Fig. 3. Two
simulated environments were created; the first accurately
resembles the synthetic vineyard at CSL, while the second
resembles a typical vineyard with many rows of grapevines.
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Fig. 3: Gazebo environment that resembles the CSL synthetic
vineyard setup.

III. VSLAM APPROACH

This section presents our approach in detail. Firstly, the
map is initialized by extracting features from both stereo



cameras (back and front ZED2i cameras) and by creating 3D
landmarks using stereo matching. Features are extracted from
each new camera frame and matched with the 3D landmarks.
In turn, the camera pose is estimated by minimizing the
reprojection error of the matches using the Ceres Solver
[27]. Local BA is applied to achieve local consistency of the
camera poses and refine the estimation of the 3D landmark
positions. Lastly, AprilTag detection aids in identifying the
loops, and if one is detected, global BA is performed.

A. Background

Feature extraction for vSLAM applications is a crucial step
in providing accurate and robust localization and mapping. In
this work, ORB Features were selected, due to (a) their scale
and rotation invariance properties, and (b) the fact that their
extraction requires low processing power and as a result they
are suitable for real-time SLAM applications [28]. The ORB
feature extraction algorithm was implemented from scratch
to maintain full control over the process. Specifically, in our
implementation, for a homogeneous distribution of features
across the entire camera frame, each one was separated into
grids, and ORB features were extracted on each grid sepa-
rately. Additionally, to extract features even on less-textured
image grids, adaptive fast threshold was also implemented
on the feature extraction algorithm. Lastly, suppression via
Square Covering (SSC) [29] ensured the selection of the
strongest features, while maintaining homogeneity. Each ex-
tracted feature is assigned to a grid for accelerated matching.

During the initialization of the system, features are ex-
tracted from both stereo camera frames. The left camera
frame features are matched with their stereo correspondence
on the right frame, respecting the epipolar constraint. The
depth value of a stereo match is considered valid, if its
estimation is less than 40 times the stereo baseline [30],
otherwise it is considered not accurate and is not used in the
calculations. In turn, the map is initialized by creating 3D
landmarks from the stereo matches. With every new camera
frame, matches are searched between the projection of the 3D
landmarks and the newly extracted features whose assigned
grid is within a predefined radius around it. The system
follows a constant velocity model, predicting the position
of its 3D landmark on the new frame as if the camera
maintained the same velocity (and orientation). If the number
of the matches found is insufficient (the minimum number of
matches was empirically chosen as 60) the radius is increased
and the matching process restarts.

Another critical step for VSLAM applications is the
keyframe selection. Keyframes are selected based on the
current number of tracked features. If the number falls below
a certain threshold or if there is a substantial reduction of
tracked features from the previous keyframe, a new one is
inserted. To maintain a clear map, only 3D landmarks that
are matched with at least 3 keyframes are included.

For computational efficiency, the front-left camera pose
is estimated without refining the world coordinates of the
3D landmarks. This is achieved by solving a non-linear
optimization problem that minimizes the reprojection error,

i.e.. Motion-Only BA. 3D landmarks that were observed
from the front-right or back (left/right) lenses, require a
transformation to the front-left lens to be factored in the
calculations related to the estimation of the camera pose.
The equations used for Motion-Only BA are :
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where C' denotes the front or rear camera observing the
3D landmark, and V' denotes the left or right lens. R,t
denotes the rotation matrix and translation displacement
of the front-left lens, Rcv,tcy is the rotation matrix
and translation displacement representing the transformation
from the camera observing the 3D landmark, to the front-
left lens and K¢ is the intrinsics matrix for either the front
or the rear camera. The p denotes the robust Huber [31]
loss function, and w; is a weight based on the scale of
each observation. M represents the total number of the 3D
landmarks to be optimized, X; is the world coordinates of
the current 3D landmark, x; is the matched feature on the
image plane, and d(x, y) is the Euclidean distance between
vectors x and y.

Local BA is performed each time a new keyframe is added.
This process refines the poses of the keyframes that share
3D landmarks with the newly inserted keyframe, and the
locations of the 3D landmarks. The Local BA equations are
presented in (4) and (5), where k denotes the keyframe and
K denotes the total number of keyframes. Together with (3)
form the Local BA optimization problem.
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Global BA is a particular case of Local BA where all
the keyframes and 3D locations are refined. This process is
performed when a loop closure is detected; in our case when
a registered AprilTag is detected.

B. Aprillag detection

AprilTags (Fig. 3) are detected using the apriltag_ros
package and the ZEDX mini on the side of the RP (Fig.
2) [34]. The apriltag_ros package outputs the transformation
from the camera frame to the detected AprilTag frame.
The world pose of the AprilTag is considered known and
registered in the Jetson Orin AGX. When it is detected during
an experiment, the current camera pose can be accurately
calculated using a transformation between the AprilTag pose
and the ZEDX mini frame. With an accurate estimate of
the current camera pose, the loop closure thread initiates
global BA to refine all the previously estimated poses and
3D landmarks.
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Fig. 4: The vSLAM Pipeline.

C. VSLAM Pipeline

The system is separated into four different processes:
tracking, local mapping, loop closing, and AprilTag de-
tection. Initialization is performed once during the system
startup. Next, the tracking thread tracks the 3D landmarks in
consecutive frames, performs Motion-Only BA, and inserts
keyframes if needed. When a keyframe is inserted, the local
mapping thread searches for new 3D landmarks between
the newly added keyframe and its connected keyframes, and
launches the process of the local BA. The loop closing thread
performs a global BA when an AprilTag is detected for the
second time. Lastly, the AprilTag detection thread detects
AprilTags for loop closing. The flowchart of the developed
vSLAM pipeline is presented in Fig. 4.

IV. RESULTS

To evaluate the performance of the proposed VSLAM
algorithm, experiments were conducted in the simulated
vineyard in Gazebo and in the synthetic one at CSL. The
results were compared against ORB-SLAM3 and the ground
truth trajectory followed by the RP. The motion of the RP
was captured using the PhaseSpace camera system [33].

A. Simulation

The RP used in the Gazebo simulation is a model of
the RP described in Sect. II-B. Like the physical RP, it is
equipped with two stereo cameras, one in the front and one
in the back, that are used for camera pose estimation in
the vSLAM algorithm, operating at 752x480 resolution, and
one mini camera located at the right side of the rover used
for AprilTag detection, operating at 1920x1080 resolution.
The HD resolution for the mini camera was selected to
increase accuracy in the AprilTag detection process. The two
stereo cameras have 12c¢m baseline (identical to the ZED2i
stereo camera) and operate at 15 fps. Two environments were
created; one simulates the realistic environment built at CSL,

and the second simulates a typical vineyard with many rows
of grapevines.

Two experiments were performed on the first simulation
environment. The first consisted of the rover inspecting the
vineyard, where, on purpose, we have added a plain brown
carton box close to the path that the RP should follow (see
Fig. 5). The box has very few features available to track
since its surface is homogeneous and monochromatic. The
goal was to evaluate the algorithms when a featureless object
covers a large part of the FoV of the front camera. ORB-
SLAMS3 failed to estimate the trajectory of the camera in this
environment, and ultimately, the tracking process did reset
(Fig. 5). In contrast, the developed algorithm outperformed
ORB-SLAM3 & displayed robustness. It continued the cam-
era pose estimation thanks to the features available through
the rear camera. Eventually, it performed loop closure opti-
mization when the AprilTag was detected at the end of the
inspection process. Loop closure detection further improved
the estimation of all previous poses since, at this point, the
algorithm had the maximum confidence that the same point
in the vineyard was visited in the past (see Fig. 5).

Simulation Trajectories
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Fig. 5: The first simulation experiment. Dual Cam LC de-
notes our approach with loop closure, while Dual Cam NLC
denotes our approach without loop closure. ORB-SLAM3
resets since there are very few features available to track.
Our approach continues thanks to the features available from
the rear camera.

To test the error accumulation over time and its effect
on the overall accuracy of the proposed algorithm, during
the second experiment, the RP was instructed to follow a
longer path, map the entire vineyard and arrive at its starting
point. Our framework achieved cm-level accuracy in this
scenario by detecting the AptilTag at the end of the path
and performing loop closure optimization, as presented in
Fig. 6.

The second simulation environment was created to test
the loop detection accuracy of the bag-of-words approach,
on images with high similarity. The robot had to follow a
long path in the vineyard as presented in Fig. 7 & return back
to its home position. Intentionally, we avoided loops except



while returning to the home position. In this experiment
ORB-SLAM3 detected 3 loop closures, two of them being
incorrect, due to the similarities in the environment, resulting
in highly inaccurate pose tracking. In contrast, the proposed
algorithm tracked the path with an impressive cm-level
accuracy and detected correctly the loop closure at the end of
the path, where the AprilTag is located, ultimately resulting
in excellent path tracking. The results are presented in Fig.
8.

Simulation Trajectories
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Fig. 6: The second simulation experiment. Our approach
achieves cm-level accuracy.

Fig. 7: Followed Path through the simulated Vineyard.

The results of the translation rms error (RMSE) in meters
in the simulated environments are presented in Table I. It
is evident that the developed algorithm achieves cm-level
accuracy even in homogeneous environments where features
may be harder to track.

B. Synthetic Vineyard Experiments

Additional experiments were conducted on the developed
synthetic vineyard at CSL. The RP presented in Section II-
B was utilized for this set of experiments. The two ZED2i
cameras (front and rear) were operating at 640x360@15 fps
resolution while the ZEDX mini was operating at 1920x1080
resolution. To acquire the ground truth position of the rover,
the PhaseSpace motion capturing system was used (red LEDs

Experiment Trajectories
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Fig. 8: ORB-SLAM3 incorrectly detects two loop closures,

resulting in inaccurate pose tracking, while our approach

tracks the path accurately and performs loop closure opti-

mization only when the registered AprilTag is detected at

the end of the trajectory.

in Fig. 2). In Fig. 9, the trajectory estimation of our approach
and ORB-SLAM3’s are presented compared with the ground
truth. Our approach outperforms ORB-SLAM3 as evident
by the Fig. 9 and by the RMSE results presented in Table I.
Lastly, in Fig. 10, the case where a featureless carton box was
placed in the middle of the row is presented. As expected,
ORB-SLAMS3 resets as there were very few features available
to track while our approach demonstrated robustness.

TABLE I: Results of Translation RMSE (m) of all experi-
ments in Gazebo (yellow) and CSL (gray).

RMSE (m)
Experiment Dual Cam LC ORB-SLAM3
Gazebo 1 0.006930 resets
Gazebo 2 0.015403 resets
Gazebo 3 (typical vineyard) 0.053063 detects wrong LC
CSL 1 0.160043 0.273532
CSL 2 0.123967 0.189264
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Fig. 9: Experiment at the synthetic vineyard at CSL. Our
approach outperforms ORB-SLAM3 since there are more
features to track using the rear camera. Furthermore, Apriltag
loop closure significantly enhances trajectory accuracy.

V. CONCLUSIONS

In this research work, we propose a novel approach for
enhancing the robustness of VSLAM by utilizing multiple



(a) Left lenses (front and rear), our approach

(b) Left lens, ORB-SLAM3

Fig. 10: Feature tracking, (a) When the front camera is
covered by a featureless object the algorithm continues
tracking the available features from the second camera, (b)
ORB-SLAMS3 resets when a featureless object covers most
of the camera’s FoV.

stereo cameras and a new, novel method for detecting loop
closures in environments where the bag-of-word loop closure
detection methods are highly prone to fail. We display high
accuracy in the localization of an RP in a vineyard and
robustness even when a featureless object covers a large part
of the FoV of one camera. The AptilTag approach for loop
detection allows us to accurately detect loop closures when a
state-of-the-art vSLAM algorithm fails. Future work includes
finding the optimal number of AprilTags to be distributed in
the vineyard so that cm-level accuracy can be achieved in
even longer paths without the need to return the RP to its
home position to perform loop closure.
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