
  

  

Abstract. In several on-orbit applications, such as de-
orbiting, continuous contact between a servicing robot (chaser) 
and a serviced satellite (target) is needed. The task includes 
chaser free-space motion and subsequent contact interaction 
with a floating target. To achieve this, usually grasping of the 
satellite is proposed. However, most of the existing satellites on 
orbit have no dedicated grapple fixtures. In this paper, a coor-
dinated impedance control law is proposed for the de-orbiting 
of a target via continuous contact and without grasping be-
tween the chaser end-effector and the target. Since both the 
manipulator’s end-effector and the spacecraft base are con-
trolled, the developed controller guarantees singularity avoid-
ance in addition to maintaining continuous contact between the 
two bodies. Also, this controller is adapted to be employed in 
the de-spinning of a rotating satellite with known angular ve-
locity via continuous contact. The developed control laws apply 
to spatial systems and are illustrated by planar examples. 

I. INTRODUCTION 
On-orbit servicing is becoming a very important issue due to 
the rapid increase in the number of aging satellites and of 
space debris. Capture and deorbiting of space debris is an 
already pressing challenge, as their collision with operation-
al satellites or structures in the same orbit can cause signifi-
cant damage. To address this problem, space robotic systems 
can be employed. On-orbit servicing applications, such as 
capture, de-spinning, and de-orbiting, require continuous 
contact between a servicing manipulator (chaser) and a ser-
viced satellite (target), see Fig. 1.  

During a de-orbiting task, the chaser approaches the target 
satellite, which is floating freely in space, and following con-
tact, directs the target for re-entry. As both the chaser and the 
target lack fixed bases, this task is very challenging. An im-
portant question that arises is whether a control strategy ex-
ists that will ensure that the two bodies will remain in contact 
throughout the task; if contact is lost, the target will move in 
an uncontrolled way, and de-orbiting may fail. Moreover, in 
impacts where high stiffness is involved, the target satellite 
may bounce away before the chaser has time to react, due to 
intrinsic time delays. In addition, many targets are spinning 
due to small residual angular momentum, increasing the dif-
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ficulty of capture. A target can be detumbled by applying 
appropriate external torques on it [1]. These tasks also require 
continuous contact between the chaser and the target; else the 
target may drift from its desired trajectory. Therefore, the 
interaction of a robotic manipulator with its environment is 
important in both target de-orbiting and de-spinning. 

 
Fig. 1. A satellite (target) deorbiting by a robotic chaser. 

To obtain a desired response and limit contact oscillations, 
an appropriate control method must be used. Impedance con-
trollers are natural candidates for such interactions, [1] – [5]. 
A de-tumbling strategy by defining a desired target decelerat-
ing force/torque and scaled according to force/torque limits 
has been proposed in [6]. To capture rapid tumbling targets, a 
general friction contact model for complex contact geome-
tries was developed [7]. To attenuate target rotation, a de-
tumbling multipoint contact strategy was proposed in [8]. 
Considering target’s parameter uncertainty, Wang et al., de-
signed an integrated control framework including detumbling 
strategy and target’s parameter identification [9]. A hybrid 
motion/force controller was developed to acquire desired 
contact forces and space robot configuration despite the float-
ing nature of the system in [10]. However, all these works 
assume presence of a grapple fixture on the target. 

The problem of continuous contact between two bodies 
lacking a rigid grasp and fixed bases has been studied in [11]. 
It was shown that continuous contact can be achieved by set-
ting an appropriate chaser velocity at contact, accompanied 
by an impedance controller. The same controller was applied 
in both phases without switching, avoiding loss of contact, 
and instabilities due to unavoidable transition delays and un-
known properties. However, although both thrusters and re-
action wheels were used, the position/ attitude of the space-
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craft (S/C) were not controlled; eventually leading to singu-
larities (i.e., manipulator outstretched) and contact loss. 

In this paper, a coordinated impedance control law is pro-
posed for the de-orbiting of a target via continuous contact 
and without grasping between the chaser end-effector and the 
target. Since both the manipulator’s end-effector and the 
spacecraft base are controlled, the developed controller guar-
antees singularity avoidance, in addition to maintaining con-
tinuous contact between the two bodies. Next, this control 
law is modified to be applicable to de-spinning operations, 
where the elimination of target rotation of known angular 
velocity is desired. The developed control laws apply to spa-
tial systems and are illustrated by planar examples. 

II. SYSTEM DYNAMICS  

A. Target Dynamics 
The target is floating freely in space. It is assumed that its 
motion state (e.g., angular velocity) and the mass properties 
(e.g., center of mass (CoM) position) of the target are 
known. During the contact phase, an external force  and 
a moment  with respect to the free-floating object (tar-
get) CoM act on it. The target equations of motion are 
  (1) 
and 
  (2) 
where  denotes the cross product matrix of vector , 

 and  is the target mass and moment of inertia matrix, 
respectively,  is the distance from the target CoM to the 
contact point, and , and  are the target angular velocity, 
and the position vector of its CoM with respect to the inertial 
frame, respectively. 

B. Chaser Dynamics 
An on-orbit space manipulator system (chaser) consists of a 
manipulator mounted on a S/C equipped with thrusters and 
momentum control devices, applying forces and moments on 
it. According to current practice in space, the chaser’s ma-
nipulator has revolute joints and an open chain kinematic 
configuration, so that, in a system with an  degree-of-
freedom (DoF) manipulator, there are  DoFs in total. 
The chaser operates in free-flying mode when the S/C con-
trol system is active. In this case, the equation of motion of 
the chaser is given by, [11] 
  (3) 
where  is the vector of the nonlinear Coriolis and centrifu-
gal terms and, 
  (4) 

where  is the position vector of the chaser’s S/C CoM 
with respect to an inertial frame,  is the column vector of 
a set of Euler angles describing the S/C attitude, and  is the 
column vector of the manipulator joint angles. 

The  matrix  is given by 
  (5) 
where  is the system inertia matrix, and 

  (6) 

where  is the  unity matrix,  is the  zero 
matrix, and  is a  matrix which relates the S/C 
angular velocity  to the Euler rates . 

The generalized forces  are functions of the actuator 
forces  and moments  applied to the S/C CoM, and tor-
ques  applied to the joints. The generalized forces  are 
functions of the external forces  and moments  ap-
plied on the end-effector. The ,  are given by, 

  (7) 

where  is a Jacobian matrix and 

  (8) 

where the Jacobian matrix  is, 

  (9) 

and the matrix  is given by, 

  (10) 

Since it is desired to control the pose (position/ orientation) 
of both the chaser’s end-effector and S/C, the equations of 
motion of the chaser are written with respect to the S/C and 
end-effector pose. 

The end-effector’s velocity is given by 
  (11) 

where  is the chaser’s end-effector position with respect to 
the inertial frame,  is a set of Euler angles describing the 
end-effector’s orientation and  is a Jacobian matrix. 

The S/C velocity is given by  
  (12) 

where  is a Jacobian matrix. 
To set up the coordinated control law developed in this 

work, the system generalized speeds are defined as 
  (13) 

where J is a Jacobian – type matrix given by, 

  (14) 

Differentiating (13), the acceleration is obtained as 
  (15) 

Considering that the acceleration  is given by (3), the 
chaser’s end-effector and S/C acceleration can be written as 
  (16) 

Although, in space applications, first a de-spinning task is 
carried out, followed by a de-orbiting one, here the control 
for the de-orbiting task is presented first, since it is less com-
plex than the one for de-spinning tasks. 

III. DE-ORBITING IMPEDANCE CONTROL 
The concept is illustrated in Fig. 2. First, the chaser’s end-
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effector is driven from its initial position to the target, Fig. 
2(a). The contact between the two bodies is modeled by a 
generalized spring of stiffness . The direction of the 
force is chosen such that it minimizes attitude disturbances. 
Fig. 2(b) shows the beginning of the contact when the inter-
action force/ moment  is still zero. In Fig. 2(c), contact 
has been achieved and the developed  causes target mo-
tion. Our interest is to develop an appropriate control algo-
rithm, select its parameters, and study the initial conditions 
needed to keep the two bodies in contact throughout the pro-
cess. 

 
Fig. 2. (a) The chaser free motion, (b) the beginning of the contact and (c) 

the contact phase. 

The controller sets an impedance behavior for both the 
end-effector and the S/C base. Additional important elements 
include the design of the desired applied forces on the target, 
and of the trajectories to achieve the task. To design the con-
trol law, the desired impedance performance for both the S/C 
and the end-effector are studied. Note that here, it is assumed 
that the target has been de-spined (see next section) and exe-
cutes a translational motion only before the de-orbiting task. 

A. Chaser’s End-effector Desired Performance 
Assuming point contact and negligible friction, only normal 
to the surface forces are developed, i.e., along the unit vector 
normal to the contact surface, , see Fig. 2(b). The desired 
impedance behavior written in frame {n} whose origin coin-
cides with the inertial frame’s origin, and whose x-axis coin-
cides with , is [11], 
  (17) 

where  denotes a vector/ matrix  expressed in frame 
{n}, and 
  (18) 

The vector  is the end-effector pose (i.e., position/ orien-
tation) trajectory error defined as, 
  (19) 
where the variable  corresponds to the desired value of 
the variable . 

The  impedance gain matrices , ,  are, 

  (20) 

It can be shown that the end-effector translational and atti-
tude dynamics of the closed-loop system are governed ac-
cording to the following impedance law written in inertial 
frame, [11] 
  (21) 
where 
  (22) 

where  and  is the rotation matrix be-
tween the inertial frame and frame {n}. 

The desired force/ moment  is introduced to obtain 
non-zero steady state forces during contact. This force must 
be zero in the free-space phase for zero tracking error, while 
during the contact phase it must be non-zero, to ensure con-
tact and non-zero steady state error. To avoid desired force 
switching, the desired force/ moment  is defined as, 

  (23) 

where  is a non-zero constant column vector setting the 
desired contact force, and  is an arbitrary parameter of 
small value compared to . During the free-space 
phase, the contact force/ moment  is zero, and therefore 

 is also zero. However, during contact and for small , 
 is about equal to the set value . The desired con-

stant force/ moment in {n} is chosen as 
  (24) 
where  is the desired force along contact direction . 

Also, to avoid controller switching, the desired trajectory 
 in (19) is defined as 

  (25) 

where  and  are the end-effector desired pose 
during the free space and contact phase, respectively, given 
in [11]. The parameters  and  are chosen large enough 
and small enough, respectively, so that  in 
free-space, i.e. when , and  during 
the contact phase, i.e. when when . 

The impedance gain matrices are selected considering a 
desired end-effector response either in the free space phase or 
in the contact phase. The requirement for the same controller 
(i.e., same controller gains) in both phases results in a de-
pendence between the response in the contact phase (modeled 
as a spring of stiffness ), described by  and , and 
the response in the free-space, given by , and , [11] 
  (26) 

Therefore, the selection of a desired critically damped 
(i.e., ) or underdamped (i.e., ) response in free 
space will result in an underdamped response during the con-
tact phase. It has been shown that continuous contact of the 
chaser end-effector with the target is achieved if the initial 
relative velocity of the chaser end-effector along the contact 
direction with respect to the target is given by [11], 

Ke
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  (27) 
where  is the chaser end-effector velocity at the beginning 
of the contact, and  is the target velocity, see Fig. 2 (b). 

The required end-effector velocity  at the be-
ginning of the contact phase is also the final end-effector ve-
locity in the free-space phase and can be achieved by proper 
design of the desired trajectory . 

B. Chaser’s S/C Desired Performance 
The desired impedance performance for the chaser S/C is 
given by, 
  (28) 
where , ,  are  impedance gain matrices, 
  (29) 

The error  is defined as, 
  (30) 

where the desired S/C trajectory  is defined as, 
  (31) 
where the vector  defines the desired distance between the 
end-effector and the S/C of the chaser expressed in the iner-
tial frame. 

The impedance gain matrices are selected such that (28) is 
stable. Then, the steady state error is zero, i.e., . 

Considering (30)-(31), at steady state, the following holds,  
  (32) 

C. Chaser’s Total Desired Performance 
Eqs. (21) and (28) can be written in a matrix form as 
  (33) 
where 
  (34) 
  (35) 
and the system impedance gain matrices are defined as, 

  (36) 

D. Controller Design 
Considering (33) - (35), the chaser end-effector and S/C ac-
celeration is given by 
  (37) 

The combination of (16) and (37) results in the following 
control law 

  (38) 

where all the feedback variables can be measured by appro-
priate sensors. 

Using (8), the actuator inputs are computed by 
  (39) 

IV. TARGET DE-SPINNING 
In this section, the de-spinning of a spinning satellite of 
known angular velocity by contact, and despite the lack of a 
rigid grasp, is studied. Next, we focus on cases where the 
target is not tumbling but is initially spinning around an axis 
of fixed direction. During de-spinning, the chaser approach-
es the target satellite, which is rotating freely in space, and 
after contact, stabilizes the target’s rotation by contact. The 
de-spinning task consists of the free space phase and the 
contact phase. Like in the de-orbiting task, in the free space 
phase the chaser’s end-effector achieves the appropriate ve-
locity required at the beginning of contact and the controller 
design is like the one developed in the de-orbiting operation. 
Here, we focus on the contact phase, see Fig. 3. 

 
Fig. 3. The contact phase during de-spinning of the target by the chaser. 

In the de-orbiting task,  in (17) was a non-zero con-
stant column vector setting the desired contact force. Next, a 
new form of  for the de-spinning task is defined. 

To stop target spinning without causing other undesirable 
rotations about other axes, the applied moment on the target 

 must have direction such that the target angular velocity 
, is reduced as specified, i.e., 

  (40) 

In this case, the required desired applied external force is, 
  (41) 

where  and the coefficients  are both limited by 
the system actuator capabilities. The first term is the contact 
force along the normal direction, i.e., 
  (42) 

and the second term corresponds to the static contact friction 
force along the tangential direction (no slip), i.e., 
  (43) 

For the magnitude of the force  the following holds,  
  (44) 

where  is the static friction coefficient. 
It can be shown that the desired normal contact force, ex-

pressed in frame {n}, is, 

  (45) 
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where  is the initial target angular velocity and  is 
the constant unit vector along the rotation axis. 

Thus, the chaser’s end-effector desired impedance behav-
ior written in frame {n} is given again by (17), where the 

 desired force/ moment  is given by (23) with, 
  (46) 

To avoid singular configurations and/ or end-effector slip, 
the chaser’s S/C must be controlled. The chaser’s S/C desired 
performance in inertial frame is given by (28); therefore, the 
system desired performance in inertial frame is governed by, 
  (47) 
where the external force/ moment  is given by (34), the 
gains , ,  by (36) while  is given by (36), (22) 
and (23) - (24), with the desired force  given by (45). 

Considering (47) and (35), the system accelerations are 
  (48) 

The combination of (16) and (48) results in the following 
coordinated control law 

 (49) 

and the actuator inputs computed using (39). 
During the contact phase, the application of the control law 

de-spines the target to a steady state, i.e., ; then, the 
end-effector can be detached from the target. The application 
of the developed control law (49), results in a desired end-
effector performance, designated by (47), and affects the tar-
get motion, described by (2).  

It is assumed that the contact force/ moment can be mod-
eled as a spring force/ moment given by (18), and (22). The 
combination of equations (2) and (47) results in a nonlinear 
system of the form, 
  (50) 
where 
  (51) 

 (52) 

For this system, the point 
  (53) 
is an equilibrium, since, 
  (54) 

Therefore, to achieve at the steady state  and 
, one must show that this equilibrium point is stable. 

Linearizing the non-linear system described by (50) around 
this equilibrium point, a linear system is obtained as, 
  (55) 
where the matrix  is given by, 
  (56) 

Stability of the equilibrium point  requires selection of 
appropriate impedance gain matrices , ,  and 

 so that  has left half plane eigenvalues. 

V. EXAMPLES 
To illustrate the proposed control laws, a planar chaser with 
a 3 DoF manipulator is employed, see Fig. 3. The chaser 
parameters are shown in Table I. 

Table I. Parameters of the planar chaser shown in Fig. 3. 
Body li (m) ri (m) mi (Kg) Ii(Kg m2) 

0 - 1.0 400 200 
1 1.0 1.0 50 16.67 
2 1.0 1.0 50 16.67 
3 0.5 0.25 20 4.17 

 
The target mass and moment of inertia are  

and , respectively. The contact between the two 
bodies is modeled by a spring of stiffness . 

Example 1 – Target de-orbiting: The target is initially at 
rest at . The chaser’s end-effector 
is driven to the target from an initial position 

 at . The initial position of the 
S/C CoM is . The control law (38) is 
applied on the chaser both during the free-space and the con-
tact phases. The desired distance between the end-effector 
and the chaser S/C is chosen as . The de-
sired response of the end-effector mass in the free-space 
phase is defined by a damping ratio  and a settling time 

. To avoid loss of contact, the initial end-effector 
velocity during the contact is computed by (27). 

The  diagonal matrices ,  and , and the 
 column vector  used in the control law (38) are 

  (57) 

The relative distance between the chaser’s end-effector and 
S/C and the contact force are shown in Fig. 4(a). As can be 
seen, the desired distance between the S/C and the end-
effector is achieved during the free space phase. The chaser 
does not lose contact with the target since the external force 
shown in Fig. 4(a) is always positive. The required forc-
es/moments applied on the chaser’s S/C by thrusters and re-
action wheels as well as the joint torques, computed using 
(39) and displayed in Fig. 4(b) and Fig. 4(c), respectively, are 
small and smooth, guaranteeing the feasibility of the task. 

 
Fig. 4. (a) The relative position between the chaser’s end-effector and S/C, 

and the contact force, (b) the applied force/ moment on the chaser 
S/C and (c) the applied joint torques during contact. 
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Example 2 – Target de-spinning: In the case of planar sys-
tems, (2) and (47) describing the de-spinning task, are linear 
and can be written directly in the form of (55). The system 
stability can be guaranteed by selecting the appropriate gains 

, ,  and . The characteristic polynomial of the 
system, in this case, is, 

  (58) 

where  is the target polar inertia and the contact is mod-
elled as a spring of constant . Therefore, the target de-
spinning is expressed by third order dynamics and one can 
select the desired characteristic polynomial as, 
  (59) 
where  and  a positive constant defines the desired 
location of the closed-loop system’s third pole. 

Then, the appropriate gains are selected as, 
  (60) 

  (61) 

  (62) 
Note, that it must be ; thus (61) yields, 

  (63) 
Therefore, to design the control law, first the gain  is 

selected according to (63), and then the gains  
are computed using (60) - (62). 

The continuous contact of the chaser end-effector with the 
target is guaranteed if  at the contact phase. Consid-
ering a desired critical damping response at the contact phase 
(i.e., ), the response of the error  is, 

    (64) 

where  is the initial relative velocity of the chaser’s end-
effector along the contact direction with respect to the target. 

It can be shown that  is satisfied in this case only 
if the relative velocity  of the end-effector with respect to 
the target at the beginning of the contact ranges in, 
  (65) 

The required end-effector velocity  at the 
beginning of the contact phase is also the final end-effector 
velocity in the free-space phase and can be achieved by prop-
er design of the desired trajectory . 

In summary, to de-spin the planar target in Fig. 3 with ini-
tial angular velocity  by applying the con-
trol law (49), one selects the control gains (60) - (63), consid-
ering the desired end-effector performance during contact 
(e.g. ,  and ). 

Fig. 5(a) shows the target angular velocity during contact. 
As can be seen, target de-spinning is achieved in the desired 
time; following target de-spinning the end-effector stops ex-
erting a contact force on the target, see Fig. 5(b). 

 
Fig. 5. (a) The target angular velocity during the contact phase and (b) the 

resulting contact force. 

VI. CONCLUSION 
In this paper, a coordinated impedance control law was de-
veloped to de-orbit a target via continuous contact between 
the chaser end-effector and the target. Since both the end-
effector and the S/C are controlled, the controller guarantees 
singularity avoidance in addition to continuous contact be-
tween the two bodies. Next, this controller was modified to 
be applied in the de-spinning of a rotating satellite of known 
angular velocity via continuous contact. The proposed con-
trol laws are developed for spatial systems and were illus-
trated by planar examples. 
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