
 

  

Abstract. During on-orbit tasks, when space manipulator 
systems (SMS) need to handle captured unknown objects 
accurately, robust control for compensation of uncertainties and 
disturbances is required. To avoid fuel consumption and/or 
sudden end-effector impacts with the object, the SMS is in free-
floating mode, i.e., the base is not actuated. In this work, a 
robust Cartesian-space controller is developed for a free-
floating SMS during object capture. The controller consists of a 
model-based part, which linearizes the dynamics globally and 
guarantees specific performance, and of a linear  part, that 
assists by adding robustness in the presence of parametric 
uncertainties and/or disturbances. It is shown that the developed 
controller minimizes tracking errors and attenuates sensor 
noise. The sensitivity of the developed controller to uncertainties 
is studied by Monte Carlo simulations; the resulting tracking 
errors are an order of magnitude smaller than those obtained 
without  compensation. The control method applies to 
spatial systems and is demonstrated by a planar example. 

I. INTRODUCTION 
In space applications, such as on-orbit assembly, 
maintenance, repair, refueling, and deorbiting of space 
debris, robustness in the control algorithms employed has 
been of significant concern [1]. In the coming years, on-orbit 
space manipulator systems (SMS) will play a significant role 
in a wide variety of space operations. A SMS includes a 
spacecraft (S/C) equipped with one or more robotic 
manipulators, see Fig. 1. The position and attitude of the S/C 
is controlled by the Attitude Determination and Control 
System (ADCS). The end-effector position and orientation 
are set by joint motors controlled by the manipulator control 
system [2]. For safety reasons, each of these control systems 
operates independently; however, due to dynamic coupling, 
the manipulator motion affects the motion of the S/C and 
vice versa. To avoid undesirable and perhaps sudden 
disturbances to the end-effector motion, it is preferable to 
have the ADCS turned-off. Then, the system operates in a 
free-floating mode, in which both thruster fuel and control 
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momentum device electrical power are not consumed, 
extending system life. 

To accomplish tasks accurately and avoid dangerous 
impacts, advanced model-based control strategies, which 
require accurate knowledge of system parameters, are 
necessary [3]. However, the dynamic properties of a SMS 
may change on orbit for several reasons, such as fuel 
consumption, deployment of payload, or capture of an 
unknown object. One way to tackle this issue is to design 
adaptive control laws whose parameters are adapted to obtain 
the desired system response despite the inaccurate knowledge 
of its parameters, [4]. However, even though adaptive control 
laws have been proposed for free-flying SMS (i.e., active 
ADCS), [5], there are strong limitations to their application 
on under-actuated free-floating SMS (FFSMS), [6]. 

Another approach to address uncertainties in the feedback 
system, is to employ robust controllers such as a Sliding 
Mode Control (SMC), [4] or the  control methodology 
[7]. The SMC can be applied to nonlinear systems such as the 
SMS. However chattering, and excessive control effort 
restrict its application, [8]. The  methodology has been 
applied to a variety of applications, such as the control of 
large space structures [9] or of satellites with large solar 
arrays or antennas [10]. However, these systems are 
approximately linear and are treated as such. The design of 
an  controller was proposed to tackle the nanosatellite 
rendezvous and docking problem, also considering the fuel 
sloshing effect [11]. 

 
Fig. 1. A space manipulator system (chaser) capturing space object (target). 

The problem of tracking control of guaranteed 
performance for FFSMS with plant uncertainties and external 
disturbances, was studied using an adaptive nonlinear  
controller via neural networks [12]. Recently, non-linear  
controllers have been proposed for a SMS operating in a 
controlled – floating mode where both the S/C attitude and 
manipulator joints are controlled, [13] – [15]. However, the 
design of a nonlinear  is more complex than the design of 
a linear one since the design variables are not directly related
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to system performance. This leads to high forces/ torques 
and a degradation of system performance. On the other hand, 
linear  controllers generally offer transparency and 
interpretability, essential requirements for space missions. 

Although in space applications,  controllers for locally 
linearized systems (e.g., satellites) have been studied 
thoroughly, for example see [9] - [11], these are not suitable 
for strongly non-linear and configuration dependent SMS. To 
accomplish tasks in joint space, the design of a linear  
controller has been tested on a dynamically equivalent dual-
arm manipulator [16]; however, the ability of the scheme to 
compensate for parametric uncertainties and sensor noise was 
not tested, while the full potential of the linear  
framework with respect to disturbances and control effort has 
not been exploited. Hence, the design of  controllers for 
SMS with parametric uncertainty, subject to disturbances, 
while performing tasks in Cartesian space, remains 
unaddressed. 

In this paper, the post-capture, Cartesian space motion 
control of an unknown object by a parametrically uncertain 
FFSMS is studied. The proposed methodology allows the 
control of an inherently non-linear system with parametric 
uncertainty and subject to unknown disturbances. The 
developed controller consists of two feedback loops. The first 
is a model-based algorithm, which linearizes the dynamics 
globally and guarantees specific performance. This is assisted 
by a linear  law, that adds robustness to the end-effector 
response. It is shown that the developed controller minimizes 
tracking errors and attenuates sensor noise. The sensitivity of 
the developed controller to uncertainties is studied by Monte 
Carlo simulations; it is found that the resulting tracking errors 
are an order of magnitude smaller than those obtained 
without  compensation. The control method applies to 
spatial systems and is demonstrated by a planar example. 

II. DYNAMICS OF FREE-FLOATING SPACE MANIPULATORS 
In this section, the dynamics of a spatial FFSMS with a N 
degree-of-freedom (dof) manipulator is briefly described. In 
the absence of external torques, the system angular momen-
tum is conserved. The design of the proposed controller is not 
affected by the existence of small amounts of non-zero angu-
lar momentum. Therefore, without loss of generality, it is 
assumed that the initial angular momentum of the system is 
zero. In this case, the conservation equation is, [3] 
  (1) 

where  is the S/C angular velocity expressed in the S/C 
frame, the  column vectors  represent manipulator 
relative joint angles and rates respectively, ,  
are inertia-type matrices of appropriate dimensions, see [3], 
and  is the  zero matrix.  is the rotation 
matrix between the S/C frame and the inertial frame 
expressed as a function of the S/C Euler parameters (unit 
quaternions) . 

The end-effector linear velocity  and angular velocity 
 are given by, [3] 

  (2) 

where 

  (3) 

and the  matrix  is the Generalized Jacobian 
Matrix expressed in the S/C frame. This matrix is a function 
of the manipulator configuration  and is given by: 

  (4) 

where the terms  are Jacobian-type 
matrices of appropriate dimensions. 

In case the end-effector attitude is expressed as a function 
of Euler angles , the following equation can be used 
  (5) 
where  is a  matrix. Then, the end-effector veloc-
ity is expressed as, 

   (6) 

where 

  (7) 

where  is the  unity matrix. 
With zero angular momentum and negligible gravitational 

forces and other external disturbances, the reduced equations 
of motion of the spatial FFSMS in the joint space are, [3] 
   (8) 
where  is the  column-vector of the manipulator joint 
torques. The reduced system inertia matrix  is given 
by, [3] 
   (9) 

The matrix  containing nonlinear Coriolis and 
centrifugal terms is given by, [3] 

   (10) 

where the matrix  is an inertia-type matrix, see [3]. 
The equations of motion in the joint space, given by (8), 

are transformed to the Cartesian space. Differentiating (6), 
the end-effector linear and angular acceleration are given by 
  (11) 

Assuming that the Jacobian matrix  is invertible, (11) 
can be solved for the joint accelerations: 
  (12) 

Note that, depending on the desired end-effector Cartesian 
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path, one can always find an appropriate FFSMS initial 
configuration to guarantee that the matrix  is always 
invertible during the end-effector motion, [17]. 

The substitution of (12) in (8), results in the equations of 
motion in the Cartesian space: 
  (13) 
where 
  (14) 

  (15) 

  (16) 
The FFSMS dynamics in Cartesian space are employed 

next in the design of the developed model-based control law. 

III. CONTROLLER DESIGN 

A. Controller Structure 
The developed controller linearizes and decouples the 
nonlinear and coupled dynamics of the FFSMS using a 
model-based controller; the uncertainty is compensated by a 
linear  control law. Therefore, the controller scheme 
consists of two feedback loops, one formed by the model-
based and the other formed by the . 

The controller structure is shown in Fig. 2. The control 
input is given by, 
  (17) 
where  denotes nominal value of , the  column 
vector  is the  law contribution to the controller and 
  (18) 
where  is the desired linear and angular end-effector 
acceleration and  is the tracking error defined by 

  (19) 

where  denotes the desired value of variable . 

 
Fig. 2. Controller structure. The H¥ controller contributes through u¥. 

The  gain matrices  and  are chosen as, 
  (20) 
where the damping ration ζ and the natural frequency  
correspond to the closed-loop system desired response. 

Considering (14), the required joint torques are, 
  (21) 

Combining (13) with (17) – (18) results in the following 
error dynamics of the closed – loop system, 

  (22) 
where, 
  (23) 

is a term due to the parametric uncertainty and acts as a dis-
turbance to the closed loop system formed by the model-
based controller. It is desired that the right-hand side of (22) 
is zero. This is feasible if  cancels  for all time. 

B. Design of the linear  control law 

To design a linear  control law, the term  is 
temporarily ignored and (22) is written as, 
  (24) 

In this case, the representation of (24) in state-space is, 
  (25) 
  (26) 
where 

  (27) 

and 

  (28) 

Note, that the  methodology is valid for rational and 
proper systems. By selecting appropriate gains , and  
in (24), these requirements are satisfied. 

Next, a Generalized Block Diagram (GBD) is created as 
shown in Fig. 3. The  transfer matrix  results 
from (25) – (26) and the  matrix  is the control 
law where  is the number of system inputs and  
is the number of system outputs. 

 
Fig. 3. Generalized Block Diagram. 

The signals that enter the dashed box of the GBD, see Fig. 
3, are the outside influences, and those exiting it are the 
regulated variables. The  column vectors of the 
outside influences and regulated variables, are defined 
respectively, as, 

  (29) 
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*Tu

!!ex +Kv !ex +Kpex = u∞ + dunc

dunc = Ĥx
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controller design variables, with their own objective.  
is used to reduce the control effort ,  is used to 
model the type of disturbances di expected at system input, 

 is used to shape system performance, and  is 
used to model the expected sensor noise n. Established 
guidelines indicate that these matrices may have the form [7] 

  (30) 

  (31) 

where  is the maximum of the Sensitivity 
Function ,  is the desired closed-loop bandwidth,  is 
the desired steady state error with respect to a step input, 

 is the maximum gain measured by ,  is the 
controller’s bandwidth,  is a small real number,  is a 
positive integer that determines the roll-off rate of the closed 
– loop system and  indicates the  norm of . 

Typically, the weighting functions  and  are 
diagonal matrices, with their diagonal elements represented 
by low-pass and high-pass filters respectively. 

To design an  law, the weighting functions must be 
selected carefully to yield the  that minimizes the effect 
of the outside influences to the regulated variables. 
Therefore, this is a minimization problem with cost function 

, where  is the lower Linear Fractional 
Transformation (LFT) of the Augmented Plant  and  
denoted by . The GBD can now be 
transformed into the LFT framework, see Fig. 4. 

 
Fig. 4. Controller scheme concept. 

From Fig. 4(a) one can observe that 

  (32) 

Considering the GBD in Fig. 3, the matrix in (32) is 

  (33) 

As mentioned above, the design of a linear  controller 
requires the selection of appropriate weighting functions. 
However, the selection of these functions is not trivial, since 
each has its own goal, and in many cases these goals are in 
conflict. Moreover, the design of these functions is done in 
the frequency domain, while in many cases the design 
requirements are given in the time domain (e.g., small 

tracking errors). The final selection of the appropriate 
weighting functions is achieved by a trade-off analysis. 

Considering the standard assumptions for matrix  
and performing an iterative algorithm which involves the 
solution of two Riccati equations [7], one can find the 
controller , which eventually leads to the feedback law 
  (34) 

The order of the law  is usually much larger than the 
system order, making the application of  impractical. To 
tackle this limitation, the order of  is reduced using the 
Hankel Singular Values [7]. 

The controller feedback includes the relative joint angles, 
and the S/C attitude and angular velocity, which can be 
measured using appropriate sensors such as encoders, on-
board star, and sun sensors, and IMUs. Other variables are 
computed based on them. 

C. Controller Design Evaluation 
The effectiveness of the linear  law design is evaluated 
by the value of the parameter , defined by, . 
Some guidelines suggest that . Obviously, this is not 
enough by itself; however, very large values of  indicate 
poor controller design. 

The stability and performance with respect to time domain 
specifications, such as disturbance and noise attenuation, and 
parametric uncertainty, determine a design’s success. The 
stability of the closed loop system can be studied by 
computing the  norm of the sensitivity function , 
which must be relatively small, and the system Gain Margin 
(GM) and Phase Margin (PM), using the following criteria 

  (35) 

Typical values for these margins are 
  (36) 

To evaluate closed-loop system performance, one should 
examine the singular values of the sensitivity function , 
the loop gain function  and the complementary sensitivity 
function , as they must have specific shapes. Additionally, 
the norms  and  must be small. 

Next, the control design is evaluated with an example.  

IV. EXAMPLE & RESULTS 
In this example, the developed controller is studied and 
validated via simulations on Simulink and ADAMS, see Fig. 
5(a), for tasks in which on-orbit assembly of large structures 
is performed using a FFSMS.  

Without loss of generality, the planar three link FFSMS 
(N=3) shown in Fig. 5(b) with nominal parameters presented 
in Table I, is studied. The nominal parameters of the target 
are shown in Table II. 

The FFSMS is required to move an uncertain target body 
accurately, therefore a robust controller is needed. To avoid 
undesirable collisions during the motion, the end-effector is 
commanded to follow a desired Cartesian trajectory. 
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Fig. 5. (a) The chaser and target models in ADAMS and (b) the definition 

of system parameters. 

TABLE I. NOMINAL PARAMETERS FOR THE FFSMS SHOWN IN FIG. 5. 

Body  (kg)  (m)  (m)  (kg m2) 

0 2000 1.5 - 2250 
1 50 1.0 1.0 16.66 
2 50 1.0 1.0 16.66 
3 20 0.5 0.5 1.66 

TABLE II. NOMINAL PARAMETERS OF THE TARGET SHOWN IN FIG. 5. 

Body  (kg)  (kg m2) 

t 200 25 

Due to the captured target, the third link total mass now is: 
  (37) 
Also, the third link’s center of mass (CoM), defined by the 
vectors  and , and its polar moment of inertia  
respectively have changed to 
  (38) 
  (39) 
  (40) 
Here, the uncertainty in the target mass is assumed to be, 
  (41) 

Also, the uncertainty on the SMS’s S/C mass due to fuel 
consumption during orbital maneuvers is considered. 
Assuming an uncertainty of  in fuel consumption, the 
uncertainty in S/C total mass is, 
  (42) 

To deal with both the target and S/C parametric 
uncertainties given by (41) - (42), the developed model-based 
plus  controller is employed. To achieve a critically 
damped performance of the closed-loop system with settling 
time , (i.e.,  and ), the model-based 
controller gains, are selected using (20) as, 

  (43) 
The weighting functions are selected by methodologies 
proposed in [18], as 

  (44) 

Using these weighting functions as inputs in Matlab function 
“hinfsyn” and function “reduce” to reduce the controller 
order from 24 to 6, the following are obtained, 
  (45) 

Note that the controller design does not depend on the 
selected end-effector desired trajectory. In capture operations, 
the end-effector desired trajectories are usually short and 
slow. Here, the end-effector is commanded to move from 
point (1.7, 1.2) to point (1.9, 1.2) on a straight line and in 40 
s, while the orientation to change from  to , see Fig. 6. 
External pulse disturbances in the order of magnitude of the 
maximum joint torques are applied also at the manipulator’s 
joints for 1s (20s-21s). 

 
Fig. 6. Motion animation for the desired task. 

Fig. 7 shows a comparison between the developed model-
based controller with  and a model-based controller 
without , with 2% and 25% uncertainties in S/C and 
target mass, respectively. Fig. 7(a) and 7(c) compare the end-
effector pose (i.e., ) tracking errors due to 
parametric uncertainties only, and to both parametric 
uncertainties and external pulse disturbance, respectively.  

It is evident that the model-based controller with  
results in smaller errors than the one without the  part, 
and yet it requires about the same control effort as shown by 
the applied joint torques in Fig. 7(b). Moreover, Fig. 7(d) 
shows that the  controller can attenuate Gaussian noise 
with zero mean and low standard deviation . However, at 
large values of , the benefit of the  compensation is 
reduced. Hence, accurate sensors are essential to yield a 
benefit from the addition of  compensation. 

To determine to what extent the uncertainties in target and 
S/C mass may affect system performance, Monte Carlo 
simulations were carried out. The uncertain parameters range 
is given by (41) - (42).  

The goal was to compute the maximum tracking errors 
allowing estimates of the sensitivity of the controller to 
parametric uncertainty. Fig. 8 shows the tracking errors 
produced by 1000 runs with the same tracking objective as 
above. It is evident, that in every scenario of the uncertain 
parameters, the developed controller results in tracking 
errors, in the order of  and  for the end-
effector position and orientation respectively, i.e., an order of 
magnitude smaller than those obtained without  
compensation. 
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Fig. 7. (a) End-effector tracking errors due to parametric uncertainties, (b) 

joint torques applied, (c) end-effector trajectory tracking errors due 
to both parametric uncertainties and external unit-pulse disturb-
ances and (d) noise attenuation properties. 

 
Fig. 8. End-effector tracking errors using (a) the developed controller and 

(b) a model-based controller without . 

V. CONCLUSION 
A robust controller for the post-capture handling of an 
unknown object in Cartesian space by an SMS in free-
floating mode was developed. The controller consists of two 
feedback loops. The first is a model-based algorithm, which 
linearizes the dynamics globally and guarantees specific 
performance. The second one, is a linear  law, that adds 
robustness to the end-effector tracking response. It was 
shown that the developed controller results in very small 
tracking errors in the presence of parametric uncertainties 
and exogenous disturbances, while it attenuates low standard 
deviation sensor noise. The sensitivity of the developed 

controller to parametric uncertainties was studied by Monte 
Carlo simulations and was found that the tracking errors 
were an order of magnitude smaller than those obtained 
without  compensation. The design method applies to 
spatial systems and was demonstrated by a planar example. 
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