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Abstract— The rapid increase in satellites and space debris 
mandates advanced capabilities for on-orbit operations. The 
hostile-to-human environment and the required high accuracy 
and robustness of on-orbit operations render Space 
Manipulator Systems (SMS) the appropriate choice. This work 
proposes an easily applicable, computationally inexpensive, 
nonlinear, and robust Cartesian control law for spatial Free-
Floating SMS (FFSMS). The controller consists of two 
fundamental parts. The first is a Model-Based (MB) controller, 
which linearizes the system and guarantees prescribed 
performance. The second is a Model Predictive Controller 
(MPC), which integrates the model and provides optimal 
performance with parametric uncertainty, noise, and 
disturbances compensation. Input and output constraints are 
integrated into the latter to improve its performance. 
Numerical simulations for a planar model using 
Matlab/Simulink and MSC Adams highlight the MB/MPC’s 
increased accuracy in comparison to a regular MB/PID 
controller, during a task that requires moving a captured 
object in the presence of parametric uncertainty, disturbances, 
and sensor noise. Monte-Carlo simulations substantiate the 
higher accuracy achieved by the MB/MPC. 

I. INTRODUCTION 
On-orbit operations like assembling, capturing, refueling, 
repairing, and re-orbiting of satellites will become 
indispensable in the future. To cope with these tasks, 
national agencies and private companies have started 
investing in Space Manipulator Systems (SMS) already. 
Notable examples of such systems are the ETS-7 [1] and 
EU/ESA’s under development EROSS+ [2] (see Figure 1). 

 
Figure 1. Picture of the EROSS+ vehicle and a target, [2]. 

An SMS consists of a satellite/base and one or more 
robotic manipulators. The base transfers and orients in space 
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using its Attitude Determination and Control System 
(ADCS), which controls the momentum control devices such 
as the reaction wheels and thrusters. However, the motion of 
a manipulator’s end-effector affects the base’s motion and 
vice versa due to their dynamic coupling. The ADCS can be 
used to counterbalance this effect. Nonetheless, when the 
SMS is close to its target, the ADCS is turned-off to avoid 
undesirable disturbances from reaction wheels and thrusters, 
also minimizing fuel consumption. During this mode, only 
manipulator control systems operate, and the system is called 
a Free-Floating SMS (FFSMS). 

In the past decades, many researchers have studied the 
dynamics and kinematics of an FFSMS [3], [4]. The concept 
of Dynamic Singularities (DS) that occur in an FFSMS due 
to the dependence of the end-effector’s velocity to the 
manipulator and base’s motion was introduced [5]. Umetani 
and Yoshida [6] presented the Generalized Jacobian Matrix 
for an FFSMS and a control method based on it.  

Recent research focuses on studying FFSMS in more 
realistic conditions. Nanos and Papadopoulos extended the 
study of the dynamics and control of FFSMS in the presence 
of non-zero angular momentum [7] and flexible joint space 
manipulators [8]. Parametric uncertainty, disturbances, and 
sensor noise are also considered in the study of FFSMS. 
Parametric uncertainty might be caused by the variance of the 
base’s mass due to fuel consumption or changes in the 
manipulator kinematics due to temperature variations. Robust 
control algorithms like an H∞ Control [9] or a Model 
Predictive Control (MPC) can overcome such problems. 

While MPC was initially used in slow systems such as 
chemical process industries [10], the evolution of 
computational hardware, as well as the MPC’s simplicity and 
effectiveness in handling multi-variable and multi-
constrained problems, permitted its application to faster 
systems. For example, Liao-McPherson et al. developed 
MPC laws for landing on an asteroid [11]. 

Notable studies have also been conducted in 
implementing MPC in SMS. Kayastha et al. presented a non-
linear MPC to control the spacecraft’s attitude and the end-
effector’s motion of a free-flying planar space manipulator 
with three links [12]. They compared their results with those 
from a Sliding Mode Control. Rybus et al. proposed a 
nonlinear MPC for FFSMS [13], [14]. They evaluated the 
controller by applying it to a planar FFSMS with a single two 
Degrees of Freedom (DoF) manipulator using a square 
reference end-effector trajectory and a capturing maneuver in 
the presence of disturbances and parametric uncertainty. 
MPC algorithms can be used in many space applications. 
However, the performance of a constrained MB/MPC in the 
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presence of parametric uncertainty, disturbances, and sensor 
noise in a positioning task in orbit has not been studied so far.  

In this paper, a Model-Based (MB) controller with an 
auxiliary MPC input is developed for spatial FFSMS; its 
performance is evaluated in the post-capture positioning of a 
satellite. This MPC is easier to apply than the controllers in 
[13] and [14]. The MB control law linearizes the system in an 
input-output sense to provide specific performance, while the 
MPC input integrates it and minimizes the errors from the 
desired trajectory, compensating for any disturbances. Input 
and output constraints are integrated into the design to 
improve the controller’s performance. Numerical simulations 
show that the developed controller yields significantly 
smaller tracking error than an MB/PID controller in the 
presence of parametric uncertainty, disturbances, and sensor 
noise. The developed controller is simple, and its 
computational needs are almost the same to those of an 
MB/PID controller since most of the calculations are 
performed offline. The controller is developed for spatial 
Cartesian motions and is evaluated here with an example of a 
planar FFSMS equipped with a single 3 DoF manipulator. 

II. DYNAMICS OF FFSMS 
The dynamics of a spatial FFSMS with a single manipulator 
of N DoF are described. Assuming a rigid manipulator, 
inactive base actuators, zero external forces and torques, and 
zero initial momentum, the conservation of angular 
momentum yields [7] 
   (1) 

where  is the rotation matrix between the base’s frame 
and the inertial frame, expressed as a function of base’s 
Euler parameters ε and n,  is the base’s angular velocity 
expressed in the base’s frame, 0D, 0Dq are inertia-type 
matrices given in [3], q and  are the joint angles, and 
angular velocities respectively and is the 3x1 zero 
vector. 

Solving (1) for  as a function of , and substituting 
in the end-effector differential kinematics [7]: 

   (2) 

where is called the Generalized Jacobian Matrix [6] which 
is a function of the joint angles q, and is 3x3 zero matrix. 

The end-effector’s attitude can be expressed using Euler 
angles θΕ 
   (3) 

where is a 3x3 matrix. 
Substituting (3) into (2) 

   (4) 

where xΕ is a 6x1 vector which contains the end-effector’s 
positions and angles and  is the Jacobian matrix, given by 

   (5) 

It is important to point out that  is also a function of 
dynamic properties such as masses and inertias. This 
characteristic results in the existence of dynamic singularities 
in addition to the kinematic ones [5]. Therefore, additional 
caution must be given during end-effector path planning. 

Considering the above, the reduced equations of motion 
of a spatial FFSMS in the joint space are [4] 
   (6) 

where  contains the manipulator joint torques (dimensions 
Nx1), since the base actuators are inactive. is the reduced 
system inertia matrix and  contains the nonlinear Coriolis 
and centrifugal terms, given by 

   (7) 

with 0Dqq being an inertia-type matrices and is given in [3]. 
Differentiating (4) yields 

   (8) 

Solving (4) for  and (8) for  and substituting them 
into (6) yields 
   (9) 

where 

   (10) 

Eq. (10) describes the equations of motion of a spatial 
FFSMS in Cartesian space and will be used for the 
implementation of the controller in the next section. 

III. MB/MPC DESIGN 

A. Controller Design 
The controller consists of two parts, see Figure 2. The first is 
an MB controller with PD action, which linearizes and 
decouples the FFSMS’ dynamics and guarantees specific 
performance. The second is an MPC, which integrates the 
model and provides optimal performance with parametric 
uncertainty and disturbances compensation. 

It is considered that the desired trajectories of end-
effector position and orientation xd(t), and their 1st and 2nd 
derivatives are defined, sensors are used for the joints’ angles 
q, angular velocities , and the base’s Euler parameters ε 
and n. The end-effector position and orientation xΕ, and their 
derivatives, are calculated too, and the matrices , and 

 are calculated using (5), (7) and (10) for each time step but 
with a bounded error due to the parametric uncertainty (the 
symbol “^” denotes an estimate of “·”). Then, the MB 
controller is given by 

  (11) 
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where KD and KP are NxN gain matrices, uMPC is the MPC 
input, which is discussed in detail in next subsection, and 
  (12) 

Substituting (11) into (9), the dynamics equations of the 
closed-loop system are 

  (13) 

where dunc is the vector generated by the parametric 
uncertainty of the FFSMS. Considering that the vector dunc is 
either zero or counterbalanced by the MPC action, (13) is a 
linearized and decoupled set of equations since the gain 
matrices KD and KP are diagonal. 

 

Figure 2. Block Diagram of the MB/MPC applied to a Spatial FFSMS in 
Cartesian Space 

B. MPC Input 
The term MPC can designate a plethora of advanced control 
methods which use a model for output prediction while 
minimizing an objective function and obtaining a control 
sequence. These also use a “receding horizon” according to 
which the final future time instant is consistently displaced 
forward and only the first instant’s control signal is applied. 
Figure 2 depicts the controller in block diagram form. 

The applied MPC algorithm is a state-space linear MPC 
[15]. By disregarding the disturbances for representation 
simplification and considering that after the application of the 
MB controller, the system is linearized and decoupled, the 
state-space model for each end-effector variable is 

  (14) 

with 

   (15) 

Orthonormal functions are used for the control signal’s 
representation in continuous time. A prerequisite is that its 
variable’s integral squared value must be bounded [16]. 
Therefore, the controller is designed using the derivative of 
the signal, and the system’s augmented model is used 

  (16) 

with 

  (17) 

The orthonormal functions chosen are the Laguerre 
functions defined as 

  (18) 

with 

 (19) 

where the parameter p is the time scaling factor and is a 
design requirement which determines the exponential decay 
rate of the set of functions. Using the above functions, the 
control signal is written as 

  (20) 

where Tp is the prediction horizon, NL is the number of the 
Laguerre functions employed, and η = [c1 c2 … cN]T is the 
vector of coefficients which is an optimization process result. 

The cost function used for the optimization is given by 

 (21) 

where the matrices Q≥0 and R≥0 are weighting factors and 
can be used to tune the performance index fittingly. 

It is shown that the cost function is minimized when [15] 
  (22) 
with 

  (23) 

where τ is a time instant within the prediction time window 
and RL is a block diagonal matrix given by 
  (24) 

where rk is the k diagonal element of R and INLxNL is the 
identity matrix of dimensions NLxNL. 

The vector φ results from the prediction of the plant 
response and it is calculated numerically by solving 
  (25) 

To satisfy the principle of the receding horizon control 
that only the control signal at τ=0 is to be considered, and 
that the prediction horizon “moves”, the control input of the 
augmented model is given by 

  (26) 
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Therefore, the control signal of the initial model is given by 
integrating the above equation, also proving the integral 
action of the MPC 

   (27) 

C. MPC Constraints 
The MPC has the advantage of easy introduction of input or 
output constraints, regardless of the time instant at which 
they occur, or the duration of the constraints. To insert the 
constraints into the design, they must be written in the form 
   (28) 

The vector η is then calculated using Hildreth’s quadratic 
programming procedure [17]. By setting an upper and lower 
limit for the control signal, the following inequalities apply 
   (29) 

Hence, the input constraints on the amplitude of the 
control signal are given by 

  (30) 

Similarly, the output constraints are given by 

  (31) 

IV. EXAMPLE & RESULTS 
In this section, an example is employed to illustrate the 
performance of the proposed controller. Without loss of 
generality, a planar FFSMS with a single 3 DoF manipulator 
is used for the post-capture motion of a satellite in Cartesian 
space. In the first simulation, the parameters of the 
manipulator and the captured object are not accurately 
known but estimated. Constant disturbances are inserted into 
the simulation. Figure 3 shows the kinematic structure and 
parameters of the FFSMS with the captured target, while 
Table I presents the nominal parameter values and the 
disturbances.  

The second simulation includes sensor noise in addition 
to all the above. For the last simulation, the parameters of the 
FFSMS vary between known bounds, and a Monte-Carlo 
simulation is performed. All the results are compared to the 
performance of an MB/PID controller. 

The captured object is regarded as part of the 3rd link. The 
mass of the composite 3rd link and captured object is 

  (32) 

while the inertia is given by 

  (33) 

where ms and Is are the mass and the inertia of the captured 
object respectively,  is the distance between the 3rd joint 
and the new CM, is the distance between the new CM and 
the CM of the captured object and they are given by 

  (34) 

where rs is the distance between the CM of the 3rd link and 
the CM of the captured object. 

  
Figure 3. Planar FFSMS with a Single Manipulator with 3 DoF. 

 

Table I. FFSMS & Captured Object’s Parameters 

Parameter Base 1st Link/ 
Joint 

2nd Link/ 
Joint 

3rd Link/ 
Joint 

Captured 
Object 

 (kg) 600 40 40 20 200 
 (kgm2) 500 20 20 15 100 

 (m) 1.4 1 + 1 1 + 1 0.25 + 
0.25 0.8 

Disturb. (Nm) - 12 6 4 - 
 

In both simulations, the end-effector is commanded to 
move from point (0.5556 m, 1.8542 m) with orientation  
to point (-0.25 m, 1.5 m) with orientation . No dynamic 
singularities are encountered. The duration of the simulation 
is 6 s. Figure 4 includes snapshots of the motion of the 
FFSMS in the ADAMS environment for three different time 
instants (with orange is the FFSMS). The white line depicts 
the trajectory of the end-effector. 

 
Figure 4. Snapshots of the Motion of the FFSMS in the ADAMS 

environment for three different time-points and two different views (a) 
Isometric View (t=0), (b) Isometric View (t=3s), (c) Isometric View (t=6s), 

(d) Top View (t=0), (e) Top View (t=3s), (c) Top View (t=6s). 
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To apply the MB/MPC controller, its gains and parameters 
must be determined. To reduce the risk for overshoots and 
impacts, the damping ratio is taken as ζ = 1. To keep the 
maximum applied torques reasonable, the natural frequency 
is chosen as ωn = 1 rad/s. Considering the above as the 
prescribed desired performance of the FFSMS, the controller 
gains are computed as 
   (35) 

The scaling factor of Laguerre functions is set equal to 
the dominant pole of the respective LQR problem [15] i.e., p 
= 5.0167 rad/s. Parameters NL and Tp are determined through 
several trials to achieve values above which the results of the 
simulations remain immutable. Consequently, NL = 10 and Tp 
= 6 s. Finally, matrix Q is set equal to the transpose of the 
matrix of the output, multiplied by the matrix of the output, 
and R is set adequately small since the goal of the controller 
is to lessen the error and not the input signal 

  (36) 

To be compared with the developed controller, an 
MB/PID controller is employed, given by 

  (37) 

Setting the ζ and ωn equal to the ones selected for the 
MB/MPC and using the characteristic equation 

   (38) 

the MB/PID controller’s gains are computed as 

  (39) 

Case 1: For the 1st simulation, the target and the base 
mass manifest a 10% parametric uncertainty, while all the 
other parameters have 5%. To achieve a partial convergence 
of the errors at the steady-state, constraints were integrated 
on the MB/MPC. In particular, the constraints were inserted 
after the time-step t=5s and until the end of the simulation. 
These output/error constraints are 

  (40) 

However, because the output constraints contain the risk 
of torque surge, input constraints on the MPC signal uMPC 
defined in (27) are also introduced. So, if the signal exceeds 
these values, they become active 

   (41) 

Figure 5(a) presents the errors of the x-coordinate, the y-
coordinate, and the orientation of the end-effector. Figure 
5(b) shows the torques τ of the manipulator given by (11), 
and (37). It is obvious that the MB/MPC has better results 
than the MB/PID controller in all three variables without 

requiring additional control effort. In particular, the 
MB/MPC achieves a 100% reduction of all the variables 
while the maximum torques exhibit a difference of 3% which 
can be considered negligible. 

Considering that the calculations are performed offline 
for non-active constraints and that when constraints are 
active, Hildreth’s Quadratic programming procedure is 
converged in 1-2 loops, the computational power that both 
controllers require is almost identical. For example, by 
performing ample simulations in Matlab/Simulink on the 
same computer, the duration was about 90 s for both designs. 

 
Figure 5. (a) Error of the Actual and the Desired Value of the Joints’ Angles (b) 

Torques of the Manipulator’s Joints. 

Case 2: The 2nd simulation does not include constraints, 
but noise is introduced in joint angles, base’s attitude, end-
effector’s variables, and all their derivatives. The noise is 
considered normally distributed with a zero mean and 
variance σ2 = 10-8 (where σ is the standard deviation). Figure 
6 displays the errors of the end-effector’s x-coordinate, y-
coordinate, and orientation. 

  
Figure 6. Error of the Actual and the Desired Value of the Joints’ Angles for 

normally distributed zero-mean noise with variance σ2 = 10-8. 

KD = diag(2,2,2),KP = diag(1,1,1)

6

0 0 0
0 0 0 , 10
0 0 1

T -

é ù
ê ú= = =ê ú
ê úë û

Q C C R
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It is concluded that the MB/MPC compensates for Gaussian 
noise with σ2 = 10-8 successfully. However, if the process 
variables contain higher variance noise, the compared 
controllers manifest similar behavior. 

Case 3: Finally, Monte-Carlo simulations were performed 
to validate the controller’s performance when parametric 
uncertainties and disturbances are present. The nominal 
values of the FFSMS and the target, as well as the 
disturbances are given in Table I. These parameters vary to 
cover a wide range of uncertainty. The variation is based on 
(Base:0, Links:1-3, Target:4) 

  (42) 

The results of the 200 simulations performed for both 
controllers are displayed in Figure 7. The errors of the 
position and orientation of the end-effector are shown. The 
MB/MPC significantly improves the results by reducing the 
error by two orders of magnitude, while, due to its design, it 
needs almost the same computational power. 

Figure 7. Tracking error using Monte-Carlo Simulation for the 200 Different Random 
Samples (a) MB/MPC, (b) MB/PID. 

V. CONCLUSION 
In this paper, an MB/MPC is developed for an FFSMS 
during on-orbit operations in 3D Cartesian space. The MB 
part linearizes the system and provides specific performance, 
while the MPC part minimizes the tracking errors and 
compensates for disturbances. Input and output constraints 

are integrated into the MPC for improved performance. A 
planar example of an FFSMS with a 3 DoF manipulator 
positioning a satellite, demonstrates that the MB/MPC yields 
significantly smaller tracking errors than an MB/PID 
controller in the presence of parametric uncertainty, 
disturbances, and sensor noise. The MB/MPC is simple, and 
its computational needs are almost the same to those of the 
MB/PID controller since most of the computations are 
performed offline. Three illustrative cases were presented to 
corroborate this position. In the future, further comparisons 
will be tried, especially with nonlinear robust controllers. 
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