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Abstract— New quadrotor UAV control algorithms are devel-
oped, based on nonlinear surfaces composed of tracking errors
that evolve directly on the nonlinear configuration manifold,
thus inherently including in the control design the nonlinear
characteristics of the SE(3) configuration space. In particular,
geometric surface-based controllers are developed and are
shown, through rigorous stability proofs, to have desirable al-
most global closed loop properties. For the first time in regards
to the geometric literature, a region of attraction independent
of the position error is identified and its effects are analyzed.
The effectiveness of the proposed ‘surface based’ controllers
are illustrated by simulations of aggressive maneuvers in the
presence of disturbances and motor saturation.

I. INTRODUCTION

Quadrotor unmanned aerial vehicles are characterized by
a simple mechanical structure comprised of two pairs of
counter rotating outrunner motors where each one is driving
a dedicated propeller, resulting in a platform with high
thrust-to-weight ratio, able to achieve vertical takeoff and
landing (VTOL) maneuvers and operate in a broad spectrum
of flight scenarios. Quadrotors have good flight endurance
characteristics and acceptable payload transporting potential
for a plethora of applications. Although the quadrotor UAV
has six degrees of freedom, it is underactuated since it has
only four inputs and can only track four commands or less.

A plethora of theoretical and experimental works regarding
quadrotors exist including results demonstrating aerobatic
maneuvers [1], decentralized collision avoidance for multiple
quadrotors [2], safe passage schemes satisfying constraints
on velocities, accelerations, and inputs [3], backsteping [4],
and hybrid global/robust controllers [5], [6], [7].

Here geometric nonlinear control system (GNCS) for a
quadrotor UAV is developed directly on the special Eu-
clidean group, thus inherently entailing in the control design
the characteristics of the nonlinear configuration manifold,
and avoiding singularities and ambiguities associated with
minimal attitude representations. The key contributions of
this work are: (a) An attitude and a position controller is
developed based on nonlinear surfaces composed by tracking
errors that evolve directly on the nonlinear configuration
manifold. These controllers allow for precision pose tracking
by tuning three gains per controller. (b) In contrast to other
GNCSs such as [1], [8] - [12], rigorous stability proofs are
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developed and regions of attraction both with and without
restrictions on the initial position/velocity error are identified
thus introducing simplicity in trajectory design. The pro-
posed strategies are validated in simulation in the presence
of motor saturation and wind disturbances.

II. QUADROTOR KINETICS MODEL

The quadrotor studied is comprised by two pairs of counter
rotating out-runner motors. Each motor drives a dedicated
propeller and generates thrust and torque normal to the plane
produced by the centers of mass (CM) of the four rotors. An
inertial reference frame IR

{
E1,E2,E3

}
and a body-fixed

frame Ib
{
e1, e2, e3

}
are employed with the origin of the

latter to be located at the quadrotor CM, which belongs to
the four rotor CM plane. Vectors e1 and e2 are co-linear with
the two quadrotor legs. The following apply throughout the
paper. The actual control input is the thrust of each propeller,
which is co-linear with e3. The first and third propellers
generate positive thrust when rotating clockwise, while the
second and fourth propellers generate positive thrust when
rotating counterclockwise. The collective thrust is denoted
by f =

∑4
i=1 fi ∈ R, where fi and other system variables

are described in Table I.
TABLE I: Definitions of variables.

x ∈ R3 Quadrotor CM position wrt. IR in IR
v ∈ R3 Quadrotor CM velocity wrt. IR in IR
bω ∈ R3 Quadrotor angular velocity wrt IR in Ib
R ∈ SO (3) Rotation matrix from Ib to IR frame
bu ∈ R3 Controller generated torque bu=[bu1; bu2; bu3] in Ib
fi ∈ R Force produced by the i-th propeller along e3
bT ∈ R+ Torque coefficient
g ∈ R Gravity constant
d ∈ R+ Distance between system CM and each motor axis
J ∈ R3×3 Inertial matrix (IM) of the quadrotor in Ib
m ∈ R Quadrotor total mass
λmin,max(.) Minimum, maximum eigenvalue of (.) respectively

The motor torques, τ i, corresponding to each propeller
are assumed to be proportional to thrust,

τ i = (−1)ibT fie3, i = 1, .., 4 (1)

where the (−1)i term connects each propeller with the
correct rotation direction. The control inputs include the
collective thrust, f , and torque, bu, given by,

[
f
bu

]
=


1 1 1 1
0 d 0 −d
−d 0 d 0
−bT bT −bT bT

F, F =


f1
f2
f3
f4

 (2)

with F ∈ R4 the thrust vector, and the 4× 4 matrix to be of
full rank for d, bT ∈ R+ and thus always invertible.



The spatial configuration of the quadrotor UAV is de-
scribed by the quadrotor attitude and the location of its
center of mass, both with respect to IR. The configuration
manifold is SE(3)=R3×SO(3), the special Euclidean group.
The equations of motion of the quadrotor are given by,

ẋ = v

mv̇ = −mgE3 + Rfe3 + δx (3)
Jbω̇ = bu− bω × Jbω + δR (4)

Ṙ = RS(bω) (5)

where δx, δR are disturbance terms and S(.) : R3 → so(3)
is the cross product map given by,
S(r)=[0,−r3, r2; r3, 0,−r1;−r2, r1, 0], S−1(S(r))=r(6)

III. QUADROTOR TRACKING CONTROLS

Given the underactuated nature of quadrotors, in this paper
two flight modes are considered:

• Attitude Control Mode: The controller achieves tracking
for the attitude of the quadrotor UAV.

• Position Control Mode: The controller achieves tracking
for the quadrotor CM position and a pointing attitude
associated with the quadrotor yaw.

Using these flight modes in suitable successions, a quadro-
tor can perform a complex flight maneuver. Moreover it will
be shown that each mode has stability properties that allow
the safe switching between flight modes (end of Section III).

A. Attitude Control Mode (ACM)

A controller to track a sufficiently smooth attitude Rd(t)
is developed, under the assumption that δR=03×1.

1) Attitude tracking errors: For a given tracking com-
mand (Rd,

bωd) and current state (R, bω), two sets of track-
ing errors are considered. Each set consists of an attitude
error function Ψ:SO(3)×SO(3)→R, and an attitude error
vector eR ∈ R3, defined as follows. The first set is, [9]:

Ψ(R,Rd) =
1

2
tr[I−RT

d R] ≥ 0 (7)

eR(R,Rd) =
1

2
S−1(RT

d R−RTRd) (8)

with tr[.] the trace function. The second according to [13]:

Ψ(R,Rd)=2−
√

1 + tr[RT
d R] ≥ 0 (9)

eR(R,Rd)=
1

2
S−1(RT

d R−RTRd)(1+tr[RT
d R])−

1
2(10)

Both (7), (9) yield the angular velocity error vector, eω∈R3,

eω(R, bω,Rd,
bωd) = bω −RTRd

bωd (11)

For the ACM, the controller is designed to be compatible
with both sets of eR. This is because the first set given
by {(7), (8)} bestows excellent tracking properties to the
controller if the orientation tracking error remains less than
90o wrt. an axis-angle rotation; however for larger orientation
errors, the magnitude of the attitude error vector, (8), is not
proportional to the orientation error and results to deteri-
orating performance as the state approaches the antipodal
equilibrium (see [13] for more details). In contrast to this, the

second set {(9), (10)} does not suffer from this problem but
is marginally outperformed by the first set if the attitude error
is less than 90o. Thus depending on the flight conditions, the
user can choose which set of attitude tracking errors to use.

The maximum attitude error, that of 180o wrt. an axis-
angle rotation between R and Rd, happens when the rotation
matrices are antipodal; then (7) or (9) yield Ψ(R,Rd)=2, i.e.
100% error. If R, Rd, express the same attitude i.e., R=Rd,
then Ψ(R,Rd)=0, i.e. 0% error. Properties about (7)-(11),
and their assosiated error dynamics are given in [9], [13].

2) Attitude tracking controller: A controller is developed
stabilizing eR, eω , to zero exponentially, almost globally
under the assumption that δR = 03×1.

Proposition 3. For η, kR, kω ∈ R+, with,

η > kR/kω
2 (12)

and initial conditions satisfying,

Ψ(R(0),Rd(0)) < 2 (13)
‖eω(0)‖2 < 2ηkR (2−Ψ(R(0),Rd(0))) (14)

and for a desired arbitrary smooth attitude Rd(t)∈SO(3) in,

L2 = {(R,Rd) ∈ SO(3)× SO(3)|Ψ(R,Rd) < 2} (15)

then, under the assumption of perfect parameter knowledge,
we propose the following nonlinear surface-based controller,

bu = bω × Jbω − J

(
kR
kω

ėR + ad + ηsR

)
(16a)

ad = S(bω)RTRd
bωd −RTRd

bω̇d (16b)
sR = kReR + kωeω (16c)

where ėR, if the {(7), (8)} set is used, it is given by

ėR =
1

2
{tr[RTRd]I−RTRd}eω (17)

and if the {(9), (10)} set is used, ėR is given by,

ėR =
{tr[RTRd]I−RTRd + 2eReTR}

2
√

1 + tr[RT
d R]

eω (18)

Then, the zero equilibrium of the quadrotor closed loop
attitude tracking error (eR, eω) = (0,0) is almost globally
exponentially stable; moreover ∃µ, τ > 0 such that

Ψ(R,Rd) < min{2, µe−τt} (19)

Proof. Due to space limitations see [14], Appendix B.
The convergence properties introduced by the surface sR

are analyzed at the end of Section III. The initial angular
velocity can be arbitrarily large by using sufficiently large
gains. The region of attraction given by (13)-(14) ensures
that Rd is not antipodal to R, because the topology of SO(3)
prohibits the design of a smooth global controller, [15]. Thus
exponential stability is guaranteed almost globally.

Because (16a) is developed directly on SO(3), it avoids
singularities associated with minimum attitude representa-
tions and it can control the attitude dynamics of any rigid
body and not only quadrotor systems. Attitude tracking does



not depend on f , the ACM is more suited to short durations
of time. The thrust magnitude can be selected to achieve
any additional objective compatible with the attitude tracking
task. An example is tracking a desired altitude [1]. Despite
developing (16a) under the assumption that δR=03×1, its
robustness properties will be tested in simulation considering
motor saturation and wind disturbances.

B. Position Control Mode (PCM)

Under the assumption that δx=03×1, a controller is devel-
oped for the position dynamics of the quadrotor, stabilizing
the tracking errors to zero asymptotically, almost globally.

1) Position tracking errors: For an arbitrary smooth po-
sition tracking instruction xd∈R3, the tracking errors are,

ex = x− xd, ev = v − ẋd (20)

For kx, kv∈R+ the position surface is defined as,
sx = kxex + kvev (21)

In the PCM, the attitude dynamics must be compatible
with the desired position tracking. This results in the defini-
tion of a position-induced attitude matrix, Rx(t)∈SO(3), for
use as an attitude command. To define this matrix, first the
desired thrust direction of the quadrotor, e3x , is computed,

e3x=
mgE3 −mkx

kv
ev − asx +mẍd

‖mgE3 −mkx
kv

ev − asx +mẍd‖
∈ S2, a∈R+(22)

where it is assumed that by selecting xd, ẋd, ẍd hereafter,

‖mgE3 −m
kx
kv

ev − asx +mẍd‖ > 0

i.e. the set of admissible trajectories result to a physical thrust
direction. Secondly, a desired yaw direction e1d∈S2 of the e1

body-fixed axis of the quadrotor is defined, so that e1d∦e3x .
This is used to find the position-induced heading, e1h , [8],

e1h = ((e3x × e1d)× e3x)/‖(e3x × e1d)× e3x‖

The position related attitude Rx(t)∈SO(3), bωx(t)∈R3×1 is,

Rx=

[
e1h ,

e3x × e1h

‖e3x × e1h‖
, e3x

]
, bωx=S−1(RT

x Ṙx) (23)

The attitude dynamics are guided to follow Rx(t), bωx(t).
2) Position tracking controller: Assuming that δx=03×1,

a control system is developed, for the position dynamics of
the quadrotor, achieving almost global asymptotic stabiliza-
tion of (ex,ev ,eR,eω) to zero through the action/effect of the
soon to be introduced Propositions 4 and 5.

For a sufficiently smooth yaw pointing direction e1d(t) ∈
S2, and a sufficiently smooth position tracking instruction
xd(t) ∈ R3 the following position controller is defined,

f(xd, ẋd, ẍd)=(mgE3−m
kx
kv

ev−asx+mẍd)
TRe3(24a)

bu(Rx,
bωx)=bω×Jbω−J

(
kR
kω

ėRx+adx+ηsRx

)
(24b)

where adx , sRx
, ėRx

, are given by (16b)-(18) and the desired
attitude matrix that is utilized in (24) is given by (23).

The use of nonlinear surfaces resulted to the thrust feed-
back expression, (24a), which includes three gains; yet Eq.
(24a) can be scaled to a PD form as in [1]. However, since

(24a) is paired with the newly developed attitude controller
(24b), it forms a new PCM controller of improved closed
loop response wrt. [1] and allows finer tuning, see Sect. IV.

The closed loop system defined by (3)-(5) under the action
of (24a)-(24b) is shown to achieve almost global asymptotic
stabilization of (ex,ev ,eR,eω) to the zero equilibrium by the
combined action of Propositions 4 and 5. Specifically (24b)
drives R(t) to asymptotically track Rx(t) and combined
with (24a), asymptotic position tracking is achieved. The
first result of exponential stability for a sub-domain of the
quadrotor closed loop position dynamics is presented next.

Proposition 4. Considering the controllers in (24a), (24b)
and for initial conditions in the domain,

Dx = {(ex, ev, eR, eω) ∈ R3 × R3 × R3 × R3|
Ψ(R(0),Rx(0)) < ψp < 1} (25)

and for ẍd ∈ R3×1, B ∈ R+ such that the following holds,

‖mgE3 +mẍd‖ ≤ B (26)

We define Π1,Π2 ∈ R2×2 as,

Π1=

[
ak2x(1−θ) −akxkvθ−mk

2
xθ

2kv

−akxkvθ−mk
2
xθ

2kv
ak2v−θ(mkx+ak2v)

]
,

Π2 =

[
Bkx 0
Bkv 0

]
(27)

where θ < θmax ∈ R+ and θmax is given by,

θmax = min{ ak2v
ak2v+mkx

, δ1 + δ2}, (28)

δ1 = 2
k2v
√

4k4xk
4
va

4 + 4k5xk
2
va

3m+ 2k6xm
2a2

k4xm
2

δ2 = −4
a2k4v
m2k2x

−2
ak2v
mkx

If {(7), (8)} is used, the attitude error bound, ψp, satisfies,

θmax =
√
ψp(2− ψp)

while if the set {(9), (10)} is used, ψp satisfies,

θmax =

√
ψp(1−

ψp
4

)

In conjunction with suitable gains η, kR, kω ∈ R+, such that,

λmin(W3) >
‖Π2‖2

4ηλmin(Π1)
,W3 =

[
k2R 0
0 k2ω

]
(29)

then the zero equilibrium of the closed loop errors
(ex, ev, eR, eω) is exponentially stable in the domain given
by (25). A region of attraction is identified by (25), (28), and

‖eω(0)‖2 < 2ηkR (ψp −Ψ(R(0),Rx(0))) (30)

Proof. Due to space limitations see [14], Appendix C.
Proposition 4 requires that the norm of the initial attitude

error is less than θmax to achieve exponential stability (the
upper bound of θ, (28), depends solely on the control gains
and the quadrotor mass) which corresponds to a reduced
region of attraction in comparison to the regions in [1],
[8] - [12]. This is because no restriction on the initial
position/velocity error is applied during the stability proof.



This approach is new, wrt. the geometric literature, offering
the advantage of simplifying trajectory design. The region of
attraction in other geometric treatments includes bounds on
the initial position or velocity (see [1], [8] - [12]) meaning
that the trajectory should comply to the position/velocity
bounds and also to the attitude bound, a more involved task.

If a user prefers a larger basin of exponential stability,
this can be achieved by introducing bounds on the initial
position/velocity (due to space see [14], Appendix C, Sec-
tion (f)). Then two new regions of attraction are produced
involving larger initial attitude errors, given by (30) and,

Ψ(R(0),Rx(0)) < ψp < 1, ‖ex/v(0)‖ < ex/vmax
(31)

θ < θmax = min{ ak2v
ak2v+mkx

} (32)

where the second inequality in (31) denotes either a bound
on the initial position error, exmax

, or a bound on the
initial velocity error, evmax

, but not on both (due to space
see [14], Appendix C, Section (f) for more details and
expressions regarding Π1, Π2, that comply with (29)). De-
pending on user preference, the trajectory design procedure
can be realized using either one of the three regions of
attraction ({(25), (28), (30)}, {(30), (31), (32)} using exmax

and {(30), (31), (32)} using evmax
) guiding us to favorable

conditions for switching between flight modes. For complete-
ness, all three regions of exp. stability were derived; however
this work focuses on the region given by {(25), (28), (30)}.

Finally, the next proposition shows that the PCM closed-
loop system is almost globaly exponentialy attractive. This
compensates for the reduced position/velocity free region
of attraction and introduces greater freedom to the user in
regards to control objectives, since the region of attraction
does not depend explicitly on the initial position/velocity
error. If the quadrotor initial states are outside of (25), with
respect to the initial attitude, Prop. 3 still applies due to the
action of (24b). Thus the attitude state enters (25) in finite
time t∗ and the results of Prop. 4 take effect. The result
regarding the PCM is stated next.

Proposition 5. For initial conditions satisfying (14), and
ψp ≤ Ψ(R(0),Rx(0)) < 2 (33)

and a uniformly bounded desired acceleration (26), the
control (24), renders the zero equilibrium of (ex, ev, eR, eω)
almost globally exponentially attractive.

Proof of Proposition 5. See Prop. 4 in [8] but apply (24a).
Prop. 5 shows that during the finite time that it takes

for the attitude states to enter the region of attraction for
exponential stability (25), (30), the position errors remain
bounded. The region of exponential attractiveness given by
(33) ensures that Rx(t) is not antipodal to R(t). Thus the
zero equilibrium is almost globally exponentially attractive.

For both control modes Section III-A (III-B), through the
utilization of the nonlinear surfaces sR, (sx), the dynamics
of the system are altered, by influencing the convergence to
the zero equilibrium via three gains per surface. Using the
gains η, (a), the reaching time to the surface is affected,
by penalizing the combined surface error, while the gains

kR, kω, (kx, kv), affect the convergence time when on/near
the surface by penalizing independently the attitude, angu-
lar velocity, (position, translational velocity), errors. This
is showcased in Fig. 1, showing responses of an attitude
maneuver, Fig. 1a, and a position maneuver, Fig. 1b. In
both cases, the simulations are repeated using larger gains
η, (a), resulting in faster reaching times, see black solid
lines in Fig. 1a,1b. In Fig. 1a, by doubling η, the reaching
time from tsR=0.169 improves to tsR=0.099 and in Fig. 1b,
by increasing a by four, the reaching time from tsx=1.999
improves to tsx=0.569. Thus, the strict algebraic relation to
the gains imposed by the proposed controller design, intro-
duces ”sliding like” closed loop dynamics, see description
in Fig. 1, and allows for finer control on the convergence
rate to the zero equilibrium by using the insights gained by
the Lyapunov analysis. Also the sliding behavior is achieved
without the signum function; thus chattering is avoided.
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Fig. 1: Sliding behavior produced by, (16a), ((24a), (24b)) using {(9), (10)}.
(1a) Convergence to sR for a step of 179.9999o. (1b) Convergence to sx
for a position step to xd=[1; 1; 1]cm. The black and dashed green lines
indicate the reaching phase to sR,x followed by sliding behavior indicated
by blue lines. The black lines indicate usage of higher sliding gains η, a.
The reaching times, tsR,x , are colored accordingly.

Due to the combined action of (24a) with (24b) it was
possible to identify, for the first time wrt. the geometric
literature, a region of attraction independent of the initial
position/velocity error. This is a new development in regards
to the geometric literature. Also the developed expression,
(24a), with the third gain allows for more intuitive tuning
thus offering further refinement of the closed loop response.

Concluding, by the combined action of Prop. 4 and 5,
asymptotic almost global stabilization of (ex,ev ,eR,eω) to
zero is achieved. Since both flight modes are almost global,
the closed loop system is robust to switching between flight
modes. The only consideration in respect to trajectory plan-
ning is that the desired trajectory must agree with (13)-(14).
Despite developing (24) under the assumption that δx=03×1,
its robustness properties will be tested in simulation in the
presence of motor saturation and wind disturbances.

IV. RESULTS

The effectiveness of the developed GNCS is verified
through simulations. First by a comparison with [1], to verify
the claims of Section III-B.2 in regards to the collective thrust
(24a), followed by an aggressive recovery/trajectory tracking
maneuver in the presence of motor saturations and noise to
test the effectiveness and robustness of the developed GNCS.

To analyze GNCSs of different structure, a criterion is
needed for a commensurate comparison. Thus the Root-



Mean-Square (RMS) of the thrusts is used as a criterion,

fRMS(t) =

√√√√1

t

∫ t

0

4∑
1

[fi(t)]2dτ (34)

Using (34) we calculate the RMS control effort difference,
∆f

RMS
(t) = f

developed

RMS
(t)− f

benchmark

RMS
(t) (35)

and tune our developed GNCS such that (35) is negative at
all times so that the benchmark controller has equal or larger
control authority. By comparing the controller performance,
if the developed GNCS produces the least error with less
control effort it is deemed superior. The system parameters
were obtained from the quadrotor described in [16]:

J = [0.0181, 0, 0; 0, 0.0196, 0; 0, 0, 0.0273] kgm2

m = 1.225 kg, d = 0.23 m, bT = 0.0121 m

and the motor thrust limitations, see [16], are given by:
fi,min = 0[N], fi,max = 6.9939[N]

The wind profile shown in Fig. 3d is used in conjunction with
the drag equation, [17]. The drag coefficient and reference
area matrices of the quadrotor are be given by,
CD=diag(0.2,0.22,0.5), AD=diag(0.0907,0.0907,0.4004)m2

The torque due to wind is found by assuming that the dis-
turbance force is applied at 0.04e3. All the simulations were
conducted using fixed-step integration with dt=1·10−3s.

A. Geometric-NCS comparison

For this comparison, the GNCS in [1] was selected as a
benchmark since it is the first quadrotor GNCSs developed
directly on SE(3), it demonstrates remarkable results in
aggressive maneuvers, and to validate the claims of Sect. III-
B.2. The controllers utilize the first set of error vectors given
by {(7), (8)}, and no saturation/disturbances are included,
to conclude controller competence. The gains were tuned
using (35) as follows. First the attitude gains were tuned
for a desired pitch command of 90o followed by tuning
the position gains for a desired xd=[1; 1; 1][cm]. Tuning the
attitude controller first, ensures that during the PCM, the
attitude controller embedded in the position control loop will
produce homogeneous control effort. Also the gains must be
compliant to (12), (29). The developed controller gains are:

kω=150, kR=5625, η=0.8

kv=59.82, kx=894.62, a=0.5071

The benchmark controller [1] parameters used are:
kω=diag(2.1720, 2.3520, 3.2760)

kR=diag(65.16, 70.56, 98.28), kv=38.71, kx=375.61

The initial conditions (IC’s) are: x(0) = v(0) = bω(0) =
03×1,R(0) = I. The results are presented in Fig. 2.

Examining Fig. 2b, the effectiveness of (16a) (solid black
line: 1) with respect to the benchmark controller (dashed
blue line: 2) in performing attitude maneuvers is visible as
Ψ converges to zero faster and with less control effort, see
Fig. 2a inner plot. The position response for a command
to xd=[1; 1; 1][cm] is shown in Fig (2c,2d). It is clear that
the developed position controller (24) performs equally well
with the benchmark controller, see Fig. (2d). However the
attitude error during the position maneuver is negotiated

better by the developed position controller as Ψ converges
to zero faster and with a smaller overall error, Ψ<0.078,
vs Ψ<0.1198, an important prevalence. In Fig. 2a the value
of, (35), is displayed for both the attitude (inner plot), and
position (outer plot), maneuvers. The benchmark controller
underperforms despite using more control effort, see Fig. 2a.
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Fig. 2: Quadrotor controller comparison. (2a) RMS control effort by (35).
(2b) Response for a step command of 90o. (2c,2d) Response for a position
command to xd=[1; 1; 1][cm]. (2c) Attitude error given by (7). (2d)
Position error, ‖ex‖. Solid lines: Developed, Dashed lines: Benchmark.

The reason that (35) exhibits large values in Fig. 2a, is
due to the high gains used to achieve precise trajectory
tracking. As a result because the controllers are fed with step
commands, extremely large control efforts are observed.

In view of the above, the ability of the developed PCM
in achieving the position command coequally to [1] but with
less control effort while simultaneously negotiate the attitude
error more efficiently again with less control effort makes it
more effective and validates the claims of Sect. III-B.2.

B. Aggressive recovery/trajectory tracking maneuver

A complex flight maneuver is conducted, in the presence
of motor saturation and noise due to wind, involving transi-
tions between flight modes. In this simulation, the developed
controllers utilize the second set of error vectors given by,
{(9), (10)}. This maneuver was selected to showcase both
the trajectory tracking for position and attitude, and the
recovery capabilities of the developed GNCS. The IC’s are:
x(0) = [0; 0; 5],v(0) = bω(0) = 03×1,R(0) = I. Since
this simulation contains portions characterized by large error
vectors, softer gains are needed to ensure smooth behavior
and minimize motor saturation. The gains used are:

kω=40, kR=400, η=1.002

kv=7.06, kx=12.46, a=0.5081
The flight scenario, to be achieved through the concatenation
of the two flight modes, is described next:
(a) (t < 4): PCM: Translation from the IC’s to xd =

[0; 1; 10],vd = [0; 0; 7], e1d = [1; 0; 0] using smooth
polynomials of eighth degree (SP8th).



(b) (4 ≤ t < 4.4): ACM: The quadrotor performs a 180o

pitch maneuver, i.e. goes inverted. Rd(t) was designed
by defining the pitch angle using SP8th.

(c) (4.4 ≤ t < 4.9): ACM: The quadrotor recovers from its
inverted state to Rd(t) = I, i.e. point to point command.

(d) (4.9 ≤ t ≤ 10): PCM: Translation to xd =
[−1; 1.5; 10], e1d = [1; 0; 0] using SP8th with IC’s equal
to the states of the quadrotor at the end of the ACM.

The results of the maneuver are illustrated in Fig. 3 where
the duration that the attitude mode is utilized is illustrated by
the magenta colored intervals. The percentage attitude error
using (9) is shown in Fig. 3a. Up to t = 4.4, i.e. the beginning
of the quadrotor recovery from the inverted position, the
atttitude error is maintained below 5% (below 9o wrt. an axis-
angle rotation). During the recovery interval (4.4 < t < 4.9),
despite the large attitude error of 77.64% introduced by
the attitude step command, the quadrotor converges to the
desired orientation undeterred by the disturbances due to
wind and motor saturations, see Fig. 3c, 3d. The position
response is shown in Fig. 3b. During the position mode, i.e.
t<4 and t>4.9, the states track the reference trajectories
effectively, see Fig. 3b. At the PCM interval, ‖ex‖ (not
shown here due to space) increases above 0.06m, to 0.5m,
only between 3<t<4 where the wind increases rapidly, see
Fig. 3d for the wind profile. The effect of the wind at the
same interval is evident also by the noisy motor thrusts, see
Fig. 3c at 3<t<4. A simulation conducted in the absence of
wind, not shown due to space, showed that the noisy behavior
in Fig. 3c is eradicated and ‖ex‖<0.06 throughout the
PCM interval. Concluding, the effectiveness of the proposed
GNCSs in performing precise trajectory tracking maneuvers
(attitude/position) and recovery maneuvers in the presence
of motor saturations and disturbances was shown. The safe
switching between flight modes, stated at the end of Section
III-B, was also demonstrated.
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Fig. 3: Complex trajectory tracking. (3a) Attitude error given by (9). (3b)
Position state x(t) (solid black line) and reference xd(t) (blue dashed line).
(3c) Thrusts (Developed). (3d) Wind profile.

V. CONCLUSION AND FUTURE WORK

New controllers for a quadrotor UAV were developed,
based on nonlinear surfaces and employing tracking errors
that evolve directly on the nonlinear configuration manifold.
Through rigorous stability proofs, the developed GNCS were
shown to have closed-loop properties that are almost global.
A region of attraction, independent of the position error, was
produced and analyzed for the first time, wrt. the geometric
literature. The effectiveness of the developed GNCS was
validated by simulations of aggressive maneuvers, in the
presence of motor saturations and disturbances due to wind.

Our future work will include experimental trials and an
investigation of the developed GNCS robustness properties.
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