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Abstract—In this paper, we present the idea that very simple 

control schemes can lead to complex running gaits. To show 

this, a novel control framework is proposed for dynamic quad-

ruped trotting, consisting of a toe trajectory planning part and 

an active compliance part driving each leg. While keeping the 

controller’s structure simple, the notion of the system virtual 

stiffness is introduced as a single control parameter tuned to 

drive a quadruped through a complete dynamic trotting sce-

nario, with acceleration from stance, constant speed locomo-

tion, and deceleration. The method can serve as a tool for gen-

erating robust running locomotion at a wide range of speeds, or 

as a basis for other high level controllers. The presented ideas 

are evaluated through simulation experiments with a 2d dy-

namic model of four three-segment legs. 

I. INTRODUCTION 

Recently, the robotics community in both academia and 

industry presented impressive results in theory and experi-

ments concerning legged locomotion. Quadruped robots 

with different actuation systems, such as the MIT Cheetah 2, 

[1], the HyQ, [2], and the Boston Dynamics Spot, [3], 

stepped out of the labs and performed complex gaits, high 

jumps, difficult turns and other challenging tasks. However, 

despite these major steps forward, there is still a long way 

until legged robots can successfully perform tasks in real life 

and replace wheeled, flying or other robots in tasks such as 

planet exploration, where their superiority is evident in theo-

ry. To this end, important issues must be tackled in design, 

control, and technology, which will ensure stability, robust-

ness and efficiency for legged machines. 

Throughout the years, several control methodologies have 

been proposed and tested in simulated models and in real 

robots. The first controllers addressed the problem of dy-

namic legged locomotion by suitably positioning the legs in 

the aerial phase, and by controlling the hip and knee torques 

in the stance phase, while passive compliance elements were 

employed to store energy and to smoothen the interaction 

with the ground, [4]. Next, controllers that included direct 

force control schemes together with foot-end trajectory 

planning algorithms were proposed for robots equipped with 

force sensors, [5]. Another important contribution to legged 

systems theory came from the Central Pattern Generators 

(CPGs) approach, with a series of works presenting neural 
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circuits able to produce easily rhythmic patterns generating 

trajectories, [6]. However, tuning these control parameters is 

not straightforward; so far they have been mostly applied in 

statically stable gaits, [7]. Furthermore, in an effort to 

achieve energy efficient locomotion, the stability of the pas-

sive dynamics of running robots was examined, [8]. 

Most of the aforementioned approaches, used passive 

compliance elements, e.g. spring-damper systems, in order 

to perform dynamic gaits, in the absence of which, they only 

managed to perform statically stable gaits. It is thus evident 

that compliant interaction with the ground is a key parameter 

in dynamic locomotion, and a control scheme is character-

ized by how it tackles this issue. However, adding only fixed 

compliance into the robot’s structure is not the best solution, 

making it hard for it to cope with an adequate range of tasks. 

The robotics community addressed this problem using 

two approaches. The first, and more intuitive one, tried to 

include adjustable stiffness mechanisms into the robot’s 

structure, [9]. However, despite their advantages, such as the 

ability to store energy only by using common elements like 

springs and motors, they resulted in heavy and sophisticated 

mechanisms that still had difficulty in presenting a reasona-

ble stiffness range. On the other hand, a second and promis-

ing approach recently came to surface, with interesting 

works on active compliance control, presenting the first ro-

bots capable of running without passive compliance ele-

ments, [2], [10]. Experiments with the MIT Cheetah 2 

proved that passive compliance is not necessary for dynami-

cally stable locomotion, while experiments with IIT’s HyQ 

showed that virtual electrical spring-damper systems can 

replace the mechanical ones, if some conditions are met. 

Both robots used hierarchical controllers that performed 

position control in each leg’s swing phase and impedance 

control in its stance phase, using preprogrammed foot-end 

trajectories for each phase. These works have clearly stated 

that active compliance will play a major role in legged ro-

bots of the future. However, many questions remain unan-

swered, and thus, much research has to be done on technical 

and theoretical issues regarding these types of controllers. 

In this paper, a control scheme for dynamic quadruped 

trotting is proposed, characterized by great simplicity com-

pared to most controllers proposed so far. We claim that 

there is no need to detect stance to aerial phase transition for 

each leg, or to switch to a special controller for each phase, 

and on this basis, we devise a unified controller consisting 

of a toe trajectory planning part and an active compliance 

part driving each leg. A relationship is found between the 

robot’s forward velocity and a control parameter that we call 
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system virtual stiffness, corresponding to the virtual stiffness 

of all actuated joints. In this way, a simple method is provid-

ed to generate stable and accelerating trotting at a wide 

range of forward velocities by properly adjusting this single 

parameter during the gait. Finally, the proposed framework 

is evaluated through simulation experiments with a 2d quad-

ruped model performing running trotting at various speeds. 

II. ROBOT MODEL AND SYSTEM DYNAMICS 

A. Robot Model 

We introduce a planar model of a quadruped robot with 

structure inspired from biology, and mostly by the Cheetah, 

the fastest and one of the most agile animals on earth. As 

shown in Fig. 1, the model consists of a body of mass bm , 

and moment of inertia (MoI) 
bI  about its center of mass 

(CoM), and four three-segment legs, with each segment be-

ing of mass ,leg im , MoI ,leg iI  about its CoM, and length ,leg il  

where { , , , }leg FR HR FL HL and {1,2,3}i , with F  stand-

ing for fore, H  for hind, R  for right, and L  for left. The 

segments of a leg are numbered starting from the ones 

hinged to the body using the subscript i . Each segment’s 

CoM is located in the middle of its length. The hip to hip 

distance is denoted by 2d . The hip and knee joints are driv-

en by actuators modeled as ideal torque sources ,leg j , with 

the subscript leg  same as defined above and {1,2}j . Fi-

nally, a torsional spring of stiffness ak  is located at each 

ankle joint. The damping coefficients related with each joint 

are denoted by 
,leg ib , with subscripts same as defined above. 

 

 

Figure 1.  The dynamic model of a biomimetic quadruped robot. 

B. Ground Forces Modeling 

We assume a point contact each time a toe impacts the 

ground. To avoid the unrealistic assumptions of the discrete 

contact models usually used in legged systems analysis, we 

use a continuous compliant Hunt-Crossley model, as de-

scribed in [11]. The normal contact force is thus given by: 

 n n

n g y g y yF k b      (1) 

where y  and y  are the local indentation and its rate re-

spectively, 1.5n   in the case of Hertzian non-adhesive 

contact, gk  is the stiffness coefficient depending on the ma-

terials coming in contact, and 
gb  is the damping coefficient 

calculated as a function of stiffness, [12], given by: 

 1.5g a gb c k   (2) 

Here, 
ac  is considered equal to 0.2 without affecting the 

generality of the conclusions. 

Friction is also added to the ground model in order for the 

results to be more realistic. A common exponential model 

that was first introduced in [13] is used to describe the fric-

tion-velocity curve when slippage occurs, and a proportional 

to velocity model to describe the static friction. Finally, a 

velocity threshold eu  is used as a criterion for the transition 

between stiction and slippage. An advantage of this ap-

proach is the separation of the rigid body dynamics from the 

contact dynamics, since the ground forces can be computed 

only from position and velocity variables. In this way, the 

frictional forces can be computed simply as: 
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where 
c  is the kinetic friction coefficient, 

s  is the static 

friction coefficient, 
ftx  is the tangential velocity of the foot, 

su  is the Stribeck velocity, and 
nF  the normal force as de-

fined above. With this model, 
tF  is constrained to lie in the 

friction cone, and if there is a force in this range that can 

prevent slippage, then this is the value of 
tF ; otherwise, 

tF  

lies on the nearest range boundary, and slippage occurs. 

C. Equations of Motion 

We parameterize the space of generalized coordinates by 

the absolute pitch angle of the body 1Sb  , the position 

vector of the body CoM 2Rb p  w.r.t. the inertial reference 

frame GO , and the relative angles of the legs’ links ,leg i , as 

shown in Fig. 1. Using the Lagrangian formalism, the equa-

tions of motion (EoM) are written as: 

 ( ) ( , ) T     M q q C q q B τ J F   (4) 

where q  is the vector containing the generalized coordi-

nates, M  the mass matrix, C  the matrix containing gravity, 

centrifugal and Coriolis terms, B  the input matrix, and J  

the Jacobian that maps the external forces from the ground 

F  into the generalized coordinate space q . We use these 

EoM for analysis and in our dynamics simulator. 

III. CONTROLLER DESIGN 

In this section, we propose an active compliance control 

framework for dynamic trotting. Trotting is a two-beat gait, 

in which diagonal legs move together and hit the ground at 

the same time. It is widely used in animals and is one of the 

first gaits a quadruped robot should be able to perform suc-

cessfully. A significant metric here, the duty factor 

(0,1]D  of a leg, is defined as the ratio between the stance 

duration and the stride period. If all the legs have a duty 

factor of less than 0.5, then there is certainly an aerial phase 

during the stride, during which no leg touches the ground; 

this is called a flying or a running trot. 
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The control framework presented herein consists of a 

higher and a lower level controller. The high-level part is 

responsible for tuning the parameters of the low-level con-

troller, which is responsible for driving the legs along ellip-

tical trajectories, using an active compliance control scheme. 

The major differences between this work and related ap-

proaches, [10], [14], lie primarily on the simplicity of the 

reference trajectories and the active compliance scheme, and 

secondarily on the use of the virtual stiffness of the actuated 

joints – or system virtual stiffness – as a single control pa-

rameter tuned to drive a quadruped through stable trotting 

gaits, spanning a wide range of forward velocities. 

A. Low-level Controller 

The low-level controller consists of three parts: (a) a tra-

jectory planning part employing elliptical primitives in each 

leg’s workspace, (b) an inverse kinematics part to calculate 

the desired joint angles, and (c) a joint-level active compli-

ance part driving each leg, while at the same time handling 

the interaction with the ground. 

Trajectory planning 

The idea here is that each toe should move along a nearly 

elliptical trajectory in order for the robot to move forward. 

To this end, this first part of the controller generates a se-

quence of points along an elliptical primitive in the work-

space of each leg, which will be used as a reference input to 

the leg motion controller. This elliptical path is given w.r.t. a 

frame fixed to each leg’s hip and parallel to the inertial ref-

erence frame 
GO , as in [14]. The primitive is next used as a 

virtual trajectory in an active compliance control scheme 

that drives each leg, while at the same time interacting com-

pliantly with the ground. We borrow the term virtual from 

impedance control, since this path is not to be followed in a 

strict manner, but it is only the reference input to the motion 

controller that will be presented next. 

Although similar trajectory planning methods have been 

presented already, employing Bezier curves, [10], and semi-

elliptical trajectories [14], we claim that the simpler primi-

tives presented herein are sufficient to achieve dynamic lo-

comotion of similar complexity. In this section, we will 

avoid using subscripts for each leg’s variables, aiming at a 

better presentation of the equations. The parametric equa-

tions of an elliptical trajectory w.r.t. the hip-fixed frame HO , 

with the ellipse center position given by the vector 

[ , ]T

c c cx yp , and the ellipse semi-axes denoted by the pa-

rameters a  and b , as shown in Fig. 2, are: 
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where [ , ]T

tr tr trx yp is the vector containing the coordinates 

of the elliptical path w.r.t. the frame HO , tr  is the angular 

velocity of the motion along the elliptical path, and   is a 

phase variable used for the synchronization of the legs. For a 

trotting gait, we set 0   for the FR and the HL leg, and 

   for the FL and the HR leg. See Fig. 2 for a better 

understanding of the notation. 

Inverse Kinematics 

Since the control action is finally implemented in the joint 

space, an inverse kinematics algorithm is used to reconstruct 

the time sequence of the joint angles corresponding to the 

previously described sequence in the leg’s workspace. This 

part of the controller takes as input the desired motion in 

terms of toe position vectors w.r.t. the corresponding hip-

fixed frame, and, gives the desired joint angles as output. To 

this end, we derive the inverse kinematics of a virtual two-

segment leg shown in Fig. 2; the second and the third seg-

ment, which are connected with a spring, compose a virtual 

segment to simplify the three-segment inverse kinematics. 

The toe coordinates are the ones given by the inverse kin-

ematics only when the ankle spring is in its equilibrium, or 

when the ankle spring is very stiff. However, this issue does 

not affect the functionality of the controller, since the pre-

cise tracking of the elliptic trajectory is not a strict goal. Re-

ferring to Fig. 2, while still avoiding adding notation for 

different legs, the joint angles for each leg are given by:  
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where 
1,des  and 2,des  are the relative hip angle and the rela-

tive knee angle respectively, and 
,1inv , 

,2inv  the angles 

computed from the two-segment leg inverse kinematics as: 

 
,1 2 2 v1 v2 2

,2 2 2

tan2( , ) tan2( , )

tan2( , )

inv toe toe v

inv

a y x a l s l l c

a s c

 

 





  


 (7) 

with: 
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In (7) and (8), toex , toey  are the toe coordinates w.r.t. the 

hip-fixed frame, which are assigned with the values of trx , 

try  resulting from the trajectory planning part, while 1vl , 2vl  

are the lengths of the virtual two-segment leg. The signs in 

(8) correspond to different knee configurations. 

Active Compliance Joint Control 

This is the key part of the low-level controller, whose 

main role is to ensure the desired compliant behavior during 

interaction with the ground in a controllable manner via 

software. The desired joint angles are passed to this active 

compliance controller, with which the whole motion derives 

from virtual spring-damper systems acting between the cur-

rent joint angles and the desired ones, as shown in Fig. 2, 

using control torques computed as: 

 1 1 1, 1( )p des vk k        (9) 

 2 2 2, 2( )p des vk k        (10) 

where pk , vk  are tunable gains that actually correspond to 

the stiffness and damping coefficients of two virtual springs 

located at the hip and knee joints. This is the simplest indi-

rect force control scheme that could be applied to the joints, 

and it has a decentralized character – interaction and cou-
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pling effects between the joints are considered as disturb-

ances. In this way, any joint stiffness can be selected on the 

fly, adapting to a wide range of situations, if the actuation 

system permits it. Examples of related schemes that have 

appeared in literature are: active compliance control, [15], 

and threshold control [16]. As a result, the elliptical path is 

not followed strictly, and this is why we call it virtual. Note 

that the passive compliance located at each ankle also con-

tributes in this deviation from the reference elliptical trajec-

tory. Also, the only variables we need to measure or esti-

mate in the control loop, are the body pitch angle, and the 

motor angles and their rates. 

 

 

Figure 2.  Left: The virtual two-segment leg (blue), used in the inverse 

kinematics algorithm, and the virtual toe-trajectory (elliptical primitive) 

used for trajectory planning, Right: The actuators act as virtual spring-

damper systems that drive the leg through a sequence of desired 

configurations (orange); the ellipse is not followed in a strict manner. 

B. High-Level Controller 

The role of the high-level controller is to properly tune 

the various control parameters that are used by the low-level 

controller in order to achieve stable gaits, see Fig. 3. The 

way that animals move can help in designing a biomimetic 

controller that achieves stable running following a desired 

speed profile. It has been measured that the cheetah increas-

es both stride frequency and stride length in order to reach 

higher forward velocities, while the greyhound only increas-

es its stride length maintaining a constant stride frequency, 

[18]. Although these are data for galloping, we assume data 

for trotting cannot be much different. This indicates that a 

quadruped can control its forward velocity in various ways, 

and it finally chooses the method that better suits its design, 

including its bone structure and its actuation system. 

While the low-level controller already presented can be 

used with multiple strategies and with many combinations of 

the control parameters, here, one of the simplest strategies is 

proposed, which can generate dynamically stable locomo-

tion through the adjustment of a single control parameter 

during the whole gait. The main idea is to regulate the ro-

bot’s forward velocity by adjusting the current leg step size, 

i.e. how close this is to a large fixed leg step, while doing 

this in a compliant way. We show that a controller of this 

type can achieve stable trotting, by only regulating the virtu-

al stiffness of all actuated joints, i.e. the control gain pk  of 

the active compliance controller, while maintaining the vir-

tual toe trajectories and the stride frequency fixed at their 

maximum values. We call the gain 
pk  the system virtual 

stiffness, since it indicates how compliant the actuated joints 

are to the commanded behavior. The gain 
vk  contributes to 

the stability of the whole motion and is considered a func-

tion of 
pk .The higher the system virtual stiffness is, the clos-

er to the “max step” trajectories the actual toe trajectories 

get, and the stiffer the legs’ motion become against ground 

forces, thus increasing the stride length of the gait. This 

strategy, which mimics the way a greyhound controls its 

forward velocity, [18], can generate walking and running 

gaits, presenting stable fixed points at various forward ve-

locities. Although this scheme requires tuning of several 

control parameters, this is a rather easy task with many solu-

tions due to the inherent stability and robustness characteriz-

ing the low-level controller. Results from simulations that 

were conducted to prove these claims will be presented next. 

 

 

Figure 3.  Block diagram of the controller for a single leg. 

IV. SIMULATION EXPERIMENTS 

In this section, we study the controller stability using 

Poincaré maps, and show the robot response as a function of 

the system virtual stiffness. 

A. Simulation Environment 

The EoM derived in Section II were solved numerically in 

our simulation environment built in Matlab, in which we 

used the ODE15s solver, with absolute tolerance 510 , rela-

tive tolerance 410 , and maximum step 410 . 

B. Model Parameters 

The model parameters were selected in order for the re-

sults to be applicable in most legged robots developed in 

academia and industry. Taking inspiration from the cat bone 

structure, [17], we used a biomimetic configuration, in 

which the fore and the hind knees point inwards, see Fig. 1. 

Although cats have longer hind than fore legs, equal lengths 

were used, since most robots use the same actuators and 

designs for all legs. Being again close to biological data and 

without loss of generality, we chose equal lengths of 0.25m  
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for the upper two segments of each leg, and a slightly small-

er length of 0.15m  for the third segment. The lengths and 

the last segment’s orientation were selected such that the 

points of ground contact and the two hips almost form a 

square in the sagittal plane when the robot stands in a resting 

position, as biology suggests, [17]. 

A realistic body mass of 20kgbm   was considered, with 

a body length of 0.6mbl  . The masses of the three leg 

segments were 1 0.4kgm  , 
2 0.3kgm  , and 

3 0.15kgm  . 

The MoI of each body was calculated considering the main 

body a rectangle, and the leg segments simple rods, yielding 
21.3kgmbI  , 3 2

1 2 10 kgmI  , 3 2

2 15 10 kgmI   and 
3 2

3 2.8 1 k0 gmI  . The ankle spring-damper coefficients 

were set to 300Nm/radak  , and 2Nsm/radab  , and the 

viscous coefficient for every other joint was set to 

0.3Nsm/radjb  . A stiff terrain with 400,000N/mgk  , and 

120,000Ns/mgb   was finally considered, with a kinematic 

friction coefficient 0.8c   and a static coefficient 

0.9s  . The velocity threshold and the Stribeck velocity 

were 310 m/seu  , and 210 m/ssu   respectively. Motor 

characteristics were not included, in order to get a better 

understanding of the system’s needs, before imposing satu-

ration limits and properties valid only for a specific actua-

tion system (electrical, hydraulic or other). 

C. Simulation Results 

To show the inherent stability and robustness of the low-

level controller, in the first experiment we started the model 

from stance with all the control parameters fixed: 0.2ma  , 

0.07mb  , 0.1mcx   , 0.4mcy   , 22rad/str   , 

250Nm/radpk   and 50Nsm/radvk  . After the forward 

velocity converged to 1m/s , we suddenly changed the virtu-

al stiffness of the joints pk  to 450Nm/rad  making the robot 

increase its forward velocity to 1.7m/s , as shown in Fig. 

4(a). Figs 4(d) and 4(e) show the two locally stable limit 

cycles that appeared in the phase portrait of the body height, 

and Fig. 4(f) the two corresponding fixed points of the Poin-

caré section taken at the apex height of each stride. Fig. 4(c) 

illustrates the footfall pattern of the gait corresponding to the 

second fixed point, as a graph in the style of Hildebrand; 

obviously, the gait is a running trot. We note that this is an 

example out of the numerous fixed points identified. 

In this experiment, the model was able to reject undesired 

initial perturbations (it started from stance and converged to 

a stable running trot of 1m/s  in 1s ), and to move easily to 

another fixed point (transition to a stable running trot of 

1.7m/s ). The results indicate that the controller exhibits in-

herent stability and robustness, coming into view through 

large regions of attraction around the various fixed points 

found for simple changes in the control parameters. 

These results can lead to the hypothesis that a relationship 

exists between the system virtual stiffness pk  and the ro-

bot’s forward velocity, if the other parameters are properly 

tuned. Based on this hypothesis, we conducted a second 

experiment, in which the system virtual stiffness linearly 

varied from 100Nm/radpk   to 800Nm/rad , and then back 

to 100Nm/rad , aiming at controlling a complete scenario of 

acceleration, stable running and deceleration. The rest of the 

parameters were equal to those of the first experiment, ex-

cept for the ellipse semi-axes that were set at 0.13ma  , 

and 0.05mb  . For the transient phases before 1st   and 

after 11st  , the robot was commanded to stay in a resting 

posture using simple joint controllers. 

As shown in Figures 5(a) and 5(b), the model successfully 

performed the expected motion, beginning with a walking 

trot (no white areas in Fig. 5(a) for 1.8st  ), reaching a sta-

ble running trot of 1.5m/s , and decelerating again back to 

stance. The torques exerted on FR and HR hips and knees 

are plotted in Figures 5(c) and 5(d), showing increased val-

ues while accelerating. Figure 6 illustrates the FR and HR 

toe trajectories, showing that for higher forward velocities 

the actual trajectories approach the fixed virtual ones. 

 

 

Figure 4.  Experiment 1: (a) the body’s forward speed, (b) the body CoM 

trajectory, (c) the gait graph for the second fixed point, showing stance 

phases in one stride, (d) the body height phase portraits through time, (e) the 

two limit cycles on the body height phase portrait, (f) the two corresponding 

fixed points of the Poincaré section taken at the apex height of each stride. 

 

 

Figure 5.  Experiment 2:(a) The body’s forward velocity, (b) the body CoM 

trajectory, (c) the torques exerted on FR joints, and (d) on HR joints, gray 

areas denote phases when at least one leg contacts the ground. 
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Figure 6.  A snapshot from the second experiment, with the FR and HR 

actual and virtual toe trajectories plotted w.r.t. the moving hip-fixed frames. 

D. Discussion 

The results showed that the proposed framework can gen-

erate a wide range of stable motions, from slow walking 

gaits to more dynamic ones. Although some tuning was re-

quired, the proposed scheme provided a simple and intuitive 

way to find multiple stable fixed points spanning a wide 

range of forward velocities, and to smoothly move between 

them by properly adjusting the system virtual stiffness. 

Among several other observations made throughout the 

experiments, it was evident that the higher the stride fre-

quency, the easier was to stabilize the system, and the more 

robust the gait was, mainly due to the more frequent interac-

tion with the ground. It was also apparent that the abscissa 

of the ellipse center 
cx  w.r.t. to a leg’s hip-fixed frame 

HO  

should be negative; this way the frictional forces pointed 

forward for a larger percentage of the stance phase, mini-

mizing the deceleration in each cycle. The reference trajec-

tory played a major role in performance, since, combined 

with the virtual stiffness of the joints, they produced the 

necessary torques for driving the robot. In general, the tra-

jectories should lie close to the boundaries of the leg’s 

workspace, in order to take the most from the robot’s struc-

ture; how close the actual trajectories are, is defined by the 

system virtual stiffness. As a comment on the effect of the 

virtual damping vk , we observed that the controller worked 

well for values close to 2v pk k , a relation that results in 

a damping ratio of 1   in a simple second order system. 

Furthermore, although the use of passive springs at the an-

kles is not required by the controller, we found out that the 

additional compliance helped stabilizing the gait and 

smoothened the robot’s performance. In fact, most robots 

use springs for shock absorption and energy storing. It was 

observed that stiffer springs allowed for faster gaits. 

In conclusion, it was shown that the proposed control pa-

rameters can be combined in multiple ways producing a rich 

repertoire of gaits. The ranges of the parameters leading to 

stable gaits remain to be discovered, and closed loop strate-

gies (e.g. following a desired speed profile) are left to be 

designed on the basis of this framework. 

V. CONCLUSION 

In this paper, a compact control scheme was proposed, 

consisting of a toe trajectory planning part and an active 

compliance part driving each leg, leading to stable dynamic 

trotting at a wide range of forward velocities. The notion of 

the system virtual stiffness was introduced as a single pa-

rameter tuned to drive a quadruped through a complete gait 

scenario, with smooth acceleration, constant speed locomo-

tion, and deceleration. The proposed ideas were validated 

through simulation experiments with a 2D biomimetic robot. 
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