
 

Abstract—We present a novel algorithm for estimating a 
quadruped robot’s pitch and roll angles. Assuming even terrain 
and an ideal bounding gait, we compute the roll and pitch 
angles to be fused with on-board Inertial Measurement Unit 
(IMU) measurements in an unscented Kalman filter (UKF). 
Simulation results illustrate the validity of the methodology 
developed. It is shown that the error in the estimation of both 
angles is much smaller compared to those in the literature. 

I. INTRODUCTION

Quadruped robots have been proven to provide a promising 
locomotion system, capable of performing extraordinary 
tasks compared to conventional wheeled vehicles. Their 
advantage stems from the fact that they use isolated footholds 
that optimize support in contrast to the continuous path of 
support required by wheel vehicles. To achieve the desired 
performance, the controllers of such robots require both 
precise and real-time knowledge of the controlled states. Of 
all the states that can be chosen, pitch and roll are critical for 
dynamically stable gaits. The most common technique to 
obtain precise estimation is sensor fusion. To this end, a 
number of research groups use various kinds of available 
information, from leg kinematics to vision based techniques. 

One of the earliest navigation systems based on leg-
kinematics was presented by Roston et al. [1]. Several years 
later Lin et al., working with the RHex hexapod, and 
assuming that three of its feet are co-linear at every time, they 
implemented a leg-odometer technique based on the 
kinematics [2]. As their method was affected by drift, they 
fused that information with the data provided by an on-board 
Inertial Measurement Unit (IMU) and the results were 
improved [3]. Along these lines, Bloesch et al. fused IMU 
feedback and leg kinematics information within an Extended 
Kalman Filter (EKF) [4]. Their algorithm estimated within 
0.5 deg. the roll and pitch angles of a quadruped, as well as 
its Center of Mass (CoM) velocity. The same group proposed 
an improved estimator for handling rough terrain [5]. 

Reinstein and Hoffman focused on velocity-aided 
estimators [6]. Their novel leg odometer was based on a 
combination of joint and pressure sensors, yielding the stride 
length in each gait period. The estimated velocity was used to 
update the Inertial Navigation System (INS) algorithm within 
an EKF. The main drawback of this method is that the 
estimator requires training, as the legged odometer is based 
on a data-driven model that relates sensory information to 
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stride length. Chilian developed a technique for the fusion of 
leg-odometry, visual odometry and IMU data [7]. The 
multisensor data fusion resulted in robust and accurate pose 
estimation of the DLR crawler, even in poor lighting 
conditions. Singh considered optical flow based estimation, 
but the pitch angle experimental error was about one degree 
[8]. Additionally, optical flow adds significant delay, 
degrading control performance. Alternate feedback sources 
include Motion Capture systems (MoCap) and Global 
Positioning Systems (GPS). Despite the cost of the former, it 
is still limited to confined workspaces, while the latter lacks 
signal robustness, accuracy and availability in interior spaces. 

In this paper, we develop a novel algorithm for estimating 
the orientation of a quadruped robot in bounding. Inspired by 
[2], we employ the quadruped full stance phase to calculate 
its absolute pitch and roll angles. The resulting estimates are 
used to improve the predicted states estimated using the on-
board IMU measurements. It is assumed that measurements 
are affected by Gaussian noise. While results on estimating 
the rotation around an axis using more complex probabilistic 
distributions are encouraging, still a recursive estimation 
algorithm of 3D rotations is missing [9]. Our implementation 
is achieved with an UKF. Although the resulting 
computational costs in UKF are slightly higher than those in 
an EKF, the minimal selection of the states yields fast and 
precise information when requested by the controller. Our 
method results in an error of 0.03 deg. for both roll and pitch, 
outperforming previous referenced estimation techniques.  

II. GYROSCOPE MODEL AND ROLL PITCH ANGLES

A. Gyroscope Model
As part of the Inertial Measurement Unit (IMU), a three-axis 
gyro provides measurements of the angular velocity 
expressed in the IMU coordinate frame. We use a simple 
model to relate the gyro measurement  ω to the real angular 
rate ω , both expressed in the IMU body coordinate frame: 

  ω = ω + bω + ηω (1) 
where the tilde is used to denote measured quantities. The 
measurement noise ηω is modeled as additive white Gaussian 
noise and the term bω represents the non-static bias of the 
gyro, considered as a Brownian process, i.e. its derivative 
with respect to time is modeled as white noise: 

   bω = ηbω   (2) 
Both white noise processes are assumed to be of zero-mean, 

 E[ηω ] = E[ηbω ] = 0 (3)

The angular velocity and the corresponding biases covariance 
matrices are Qω, Qbω. The covariance parameters can be 
derived by examining the measured IMU Allan plots [10].  
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B. Roll and Pitch Estimation 
The attitude of the quadruped can be described by means of 
the quaternion parameterization defined as: 
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where   ĵ  is a unit vector corresponding to the rotation axis 
and ρ is the angle of rotation. A rotation quaternion must 
always satisfy the following constraint: 

   q
Tq = q1

2 + q2
2 + q3

2 + q4
2 = 1   (5) 

In addition, the inverse quaternion is: 

 
  
q−1 = [ −q1 −q2 −q3 q4 ]  (6) 

Due to the complexity of the problem, a few assumptions 
are made. Firstly, the ground is considered even, which is 
realistic since high-speed gaits are can be achieved on even 
terrain. The slope of the ground can be nonzero; in such a 
case, it is assumed that this slope is known via some other 
system, such as vision. Additionally, the bounding gait is 
assumed to include a full-stance phase.  

We now focus our attention to the quadruped shown in 
Fig. 1. We denote by I and B the inertial and body frame 
respectively, while the subscripts  ( ⋅)br  and  ( ⋅)fl refer to back 
right leg and front left leg respectively. Moreover, a pre-
superscript refers to the frame in which a vector is expressed. 

 
Fig. 1. 3D model of the quadruped at double stance during a bounding gait. 

Assuming that a leg pair such as the (br, fl) is in contact 
with the ground, then vectors lbr and lfl can be expressed as 
functions of the encoder angles αbr and αfl as follows: 

 
  
B lbr = Roty(αbr ) lbr ẑ  (7) 

 
  
B lfl = Roty(α fl ) lfl (− ẑ)  (8) 

where li is the length of the foot i, which is provided by the 
leg spring encoders. The term 

  
Roty α( )  is a rotation matrix 

corresponding to a rotation of angle α around a y-axis: 

 

  

Roty α( ) =
cosα 0 −sinα

0 1 0
sinα 0 cosα

⎡
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⎥

 (9) 

Since the vectors rbr and rfl, which express the position of the 
i-th hip of the quadruped in the body frame, are constant in 
the body frame, the computation of the vector   

B l1  is trivial: 

   
B l1 =

B lbr +
B lfl +

Brfl −
Brbr  (10) 

Additionally, the vector l1 in the inertial frame is given by: 

   
I l1 =

I CB(ψ,θ,ϕ) ⋅ B l1  (11) 

where   
I CB  represents the rotation matrix from B to I, 

parameterized by the yaw, ψ, pitch, θ, and roll, φ, angles. 
In the case of ideal bounding, the yaw angle is zero while 

due to the assumption of even terrain, the third component of 

  
I l1  

lies in the X-Y plane. The assumption of zero yaw is also 
realistic on a treadmill, where we can constrain the rotation of 
the platform with respect to the gravity vector. The 
mathematical expression of the above observations is: 

 
  
I CB 0,θ,ϕ( ) B l1 ⋅ Ẑ = 0  (12) 

Considering the full stance phase, (12) holds for any set 
of two feet. Denoting   

B l2  the distance between the back right 
leg and front right leg, pitch and roll can be computed as: 

 

 
ϕ = tan−1

B l2,z ⋅
B l1,x −

B l2,x ⋅
B l1,z

B l2,x ⋅
B l1,y −

B l2,y ⋅
B l1,x

⎛

⎝
⎜

⎞

⎠
⎟  (13) 

 

 
θ = tan−1 sin ϕ( ) ⋅ B l1,y + cos ϕ( ) ⋅ B l1,z

B l1,x

⎛

⎝
⎜

⎞

⎠
⎟  (14) 

Finally, given the roll and pitch, we compute the Direction 
Cosine Matrix (DCM) and the corresponding quaternion. The 
quaternion that expresses the rotation from the inertial to the 
body frame is a function, namely m, of roll and pitch: 

 
  
qBI,m = m θ,ϕ( )  (15) 

Next, an UKF is developed to improve the IMU feedback. 

III. UNSCENTED KALMAN FILTER 

We use the following notation: a subscript k is added to 
discretized quantities, while a hat represents estimated 
quantities. Two kind of errors are used, δ ⋅⎡⎣ ⎤⎦  and 

 
d ⋅⎡⎣ ⎤⎦ . The 

former represents a rotation error in the Euclidean space, 
while the latter represents a rotation error in the quaternion 
manifold. Furthermore, the superscripts  ( ⋅)

−  and  ( ⋅)
+  refer 

to a priori and a posteriori estimates. 

A.  State Definition 
The state vector x consists of the quaternion describing the 
rotation from the I to the B frame qBI, and the gyro biases bω: 

 
   
x = qBI

T bω
T⎡

⎣⎢
⎤
⎦⎥

T

 (16) 

The error of the states, which is tracked by the covariance 
matrix Pxx, is denoted by δx. 

Since the quaternion represents three degrees of freedom, 
the corresponding covariance matrix also has to be 
represented as a three dimensional matrix. The constraint of 
the unit quaternion influences the positive definiteness of the 
state covariance. To this end, we employ the quaternion error 
dq corresponding to a small rotation between the estimated 
quaternion   q̂BI  and the true quaternion   qBI : 

   qBI = dq⊗ q̂BI  (17) 
where ⊗  stands for the quaternion multiplication. In contrast 
to the additive property of the gyro biases’ error, the 
quaternion error is multiplicative, and is derived from (17) as: 

   dq = qBI ⊗ q̂BI
−1  (18) 

Given dq, we can extract the rotation error δζ. The error δζ is 
considered as the vector part of dq. 
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Having all state errors expressed in the Euclidean space, 
the derivation of the state covariance Pxx, where we make use 
of the covariance operator Cov(*), is trivial: 

   Pxx = Cov(δx)  (19) 
where, 

 
  
δx = δζζT δbω

T⎡
⎣⎢

⎤
⎦⎥

T

 (20) 

In the above equation the term  δbω  denotes the error related 
to the bias states. On the other hand given δζ, the 
corresponding quaternion error dq can be computed using the 
unit norm constraint. As there will be both positive and 
negative values of the scalar part of the quaternion that 
satisfy the quaternion normalization constraint, we choose the 
positive value. As a consequence the quaternion error is: 

 
  
dq = [ δζζT 1− δζζTδζζ ]T  (21) 

For the subsequent discretization, we use the function 

 ε(⋅) which maps an arbitrary three dimensional rotation 
vector v to its corresponding quaternion: 

 

  

ε : v → εε(v) =
v / v sin v / 2( )

cos v / 2( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (22) 

where ⋅  stands for the Euclidean norm. 

B. Prediction Model 
The propagation of state x is achieved by the following 
equations: 

 

   
qBI =

1
2

Bω − bω − ηηω

0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⊗qBI   (23) 

 
   bω = ηbω   (24) 

To discretize the above stochastic differential equations, 
we integrate the deterministic part separately. Assuming a 
zero-order hold for the gyroscope measurements, and 
denoting the time between two subsequent measurements as 
Δt, we obtain: 

 
   
q̂k+1

− = ε Δt ⋅ ω k − b̂ω ,k
+( )( )⊗ q̂k

+  (25) 

 
  
b̂ω ,k+1

− = b̂ω ,k
+   (26) 

Furthermore, the discretized process noise covariance 
matrix is: 

 

  

Q =
Qω ⋅Δt 03×3

03×3 Qbω ⋅Δt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (27) 

In (27), the diagonal terms represent the discretized 
quaternion qBI and bias bω covariance matrices respectively. 

C. Measurement Model 
The measurement equation is: 

 
  
q̂BI,m = m θ,ϕ,ηm( )  (28) 

where the term ηm expresses the standard measurement noise 
of the incremental encoders, assumed to be white Gaussian 
noise, as well as model imperfections and numerical errors. 
The measurement covariance matrix, which will be used in 
the UKF, is R and is the main tuning parameter of the filter. 

D. Unscented Kalman Filter Equations 
The UKF addresses the linear approximation issues of the 
EKF. The concept is based on the observation that it is easier 
to approximate a probability distribution than a nonlinear 
function. The state distribution is represented by a Gaussian 
Random Variable (GRV), but is now specified using a 
minimal set of carefully selected perturbations about the 
current state estimate, namely sigma points. These sigma 
points completely capture the true mean and covariance of 
the GRV, and after being propagated through the nonlinear 
system, they capture the posterior mean and covariance 
accurately to the second order (Taylor series expansion). The 
main tool of the selection of the sigma points is the 
Unscented Transformation (UT). For a more in depth study 
of the UT as well as the UKF, please refer to [10]. 

From a mathematical point of view, to implement a UKF, 
our system has to be in the form of discrete time equations: 

 
  
xk+1 = f xk ,ηx,k( )  (29) 

 
  
yk+1 = h xk ,ηy,k( )  (30) 

where    xk ∈
n×1 ,    yk ∈

m×1  are the n-dimensional state and 
m-dimensional measurement vectors respectively, while f 
and h correspond to nonlinear functions which represent the 
process model and the measurement model. In addition, the 
terms 

 
ηx,k  and 

 
ηy,k  are related to the process noise and 

measurement noise. Here, the process model is given by (25)-
(26), whereas the measurement model is described by (28).  

Since the quaternion lies on the SO(3) manifold, the 
quaternion mean cannot be computed as a weighted sum of 
sample points. As a consequence, the UKF implementation in 
quaternion space needs special care. Although the UKF 
algorithm is known, there is need for its adaptation in the unit 
quaternion manifold. This is presented next, based on [11]. 

Given the  n × n covariance matrix Pxx,k and the process 
covariance matrix Qk at the timestamp k, a set of (2n+1) 
sigma points, namely    Xk ∈

n×(2n+1)  , is calculated: 

 
  
Xk = X0,k X1,k ⋅⋅⋅⋅ X2n,k X2n+1,k

⎡
⎣⎢

⎤
⎦⎥

 (31) 

where the columns of   Xk  are calculated as: 

 
  
X i,k = x̂k i = 0  (32) 

 
  
X i,k = x̂k + ui i = 1,...,n  (33) 

 
  
Xn+i,k = x̂k − ui i = 1,...,n  (34) 

The term   ui  stands for the ith column of the matrix U; it is 
computed as the square root of the sum of the matrices Pxx,k 

and Qk scaled by γ, and derived by employing a lower 
Cholesky decomposition: 

 
  
U = γ Pxx,k +Qk( )   (35) 

The factor γ is given by: 

  γ = n + λ  (36) 

 
 
λ = w2 n + κ( )− n  (37) 

In (36) and (37), w determines the sigma points spread 
around the state   x̂k mean, and is usually set to a small 
positive value. The constant κ is set between 3-n and zero, to 
improve the capture of distribution higher order moments. 
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While the selection of sigma points is trivial, when the 
states are expressed in Euclidean space, using (32)-(34), the 
quaternion states needs special care since addition is not 
closed in the SO(3) manifold. Based on this idea, we 
distinguish between sigma points related with quaternion 
states, denoted by   Xk

q , and sigma points referring to bias 
states, namely   Xk

b . Furthermore, we denote   ui , at the 
timestamp k, in (33)-(34) as: 

 
  
ui = ξ i,k

q Τ , ξ i,k
b Τ⎡⎣ ⎤⎦

Τ
 (38) 

where 
 
ξ i,k

q  are the first three elements of the ith column of 
matrix U which represent the vector part of the quaternion 
and thus they are a three dimensional error. The 

 
ξ i,k

b  are the 
last three elements of the ith column of U related to the error 
in the gyro bias bω. 

Observing (33)-(34), one can see that sigma points are 
scattered around the current mean based on the uncertainty of 
the current estimate, which can be considered as a small 
perturbation to the current mean. Το scatter the quaternion 
sigma points around the current quaternion estimate   q̂k , the 
error 

 
ξ i,k

q  has to be represented in quaternion space. To this 
end, we map 

 
ξ i,k

q  to the quaternion error 
 
dξ i,k

q  by means of 
the quaternion normalization constraint: 

 

 
dξ i,k

q = ξ i,k
q( )T

1− ξξ i,k
q( )T

ξ i,k
q

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

 (39) 

Given the quaternion error 
 
dξ i,k

q  the quaternion sigma 
points are: 

 
  
Xk

q = X0,k
q X i,k

q Xn+i,k
q⎡

⎣⎢
⎤
⎦⎥

i = 1,...,n  (40) 

where: 

 
  
X i,k

q = q̂k i = 0  (41) 

 
  
X i,k

q = dξ i,k
q ⊗ q̂k i = 1,...,n  (42) 

 
  
Xn+i,k

q = dξ i,k
q( )−1

⊗ q̂k i = 1,...,n  (43) 

From a mathematical point of view, the definitions of 
addition and subtraction in the quaternion manifold stand out 
from the above equations. In other words, addition is 
considered as the pre-multiplication between the two 
quaternions, namely 

 
dξ i,k

q  and   q̂k , while subtraction is 
considered as the pre-multiplication with the inverse 
quaternion 

 
dξ i,k

q( )−1
 and   q̂k . 

The rest   Xk
b  sigma points are selected based in (32)-(34): 

 
  
Xk

b = X0,k
b X i,k

b Xn+i,k
b⎡

⎣⎢
⎤
⎦⎥

i = 1,...,n  (44) 

where: 

 
  
X i,k

b = b̂ω ,k i = 0  (45) 

 
  
X i,k

b = b̂ω ,k + ξ i,k
b i = 1,...,n   (46) 

 
  
Xn+i,k

b = b̂ω,k − ξξ i,k
b i = 1,...,n  (47) 

Then, the set of sigma points is: 

 
   
Xk = Xk

qT , Xk
bT⎡⎣ ⎤⎦

T
 (48) 

Additionally, the UKF weights are chosen as: 

  W0
(m) = λ / (n + λ)  (49) 

  W0
(c) = λ / (n + λ) + (1− w2 +β)   (50) 

 
 
Wi

(m) = Wi
(c) = 1/ 2(n + λ)⎡⎣ ⎤⎦ i = 1,...,2n  (51) 

where the superscripts m and c stand for mean and 
covariance respectively. The term β is used to improve the 
estimates of higher order moments of the distribution; its 
optimal value is 2 for Gaussian distributions [10]. 

The set of sigma points in (48) is then propagated based 
on (25)-(26) to form the newly predicted sigma points Xk+1. 
Furthermore, the predicted sigma points of the measurements 
are computed by: 

   Yk+1 = HXk+1  (52) 

 
   
H = I4x4 04x3

⎡
⎣

⎤
⎦  (53) 

The mean of the state as well as the mean of predicted 
measurements at timestamp k+1, are calculated as: 

 
  
x̂k+1
− = Wi

(m)X i,k+1
i=0

2n

∑  (54) 

 
  
ŷk+1 = Wi

(m)Yi,k+1
i=0

2n

∑  (55) 

Although, the above equations hold in the case of the states 
that are expressed in the Euclidean manifold, the quaternion 
mean, part of the state mean, cannot be computed in this way. 
The computed quaternion mean has to lie in the unit sphere 
and as a consequence it requires a different metric. The 
metric used was the Euclidean norm [11]. As a result, the 
quaternion mean was computed as: 

 

  
q̂k+1

− = Wi
(m)X i,k+1

q

i=0

2n

∑ Wi
(m)X i,k+1

q

i=0

2n

∑   (56) 

Given the newly predicted mean   x̂k+1
− , the predicted state 

covariance is: 

 
  
P̂xx,k+1

− = Wi
(c) (X i,k+1 − x̂k+1

− )(
i=0

2n

∑ X i,k+1 − x̂k+1
− )T  (57)  

In (57), when the states are expressed in quaternion terms, to 
derive the quaternion error at the timestamp k+1, the 
subtraction in the quaternion manifold is employed as: 

 
  
dqi,k+1 = X i,k+1

q ⊗ (q̂k+1
− )−1  (58) 

In addition, the above quaternion error has to be represented 
in three dimensions; this is achieved using the error δζ we 
defined earlier. Given δζ, the predicted state covariance 
matrix, at the timestamp k+1, 

  
P̂xx,k+1

−  is computed. The 
measurement mean   ŷk+1  and measurement covariance matrix 
Pyy,k are computed similarly as presented above: 

 
  
P̂yy,k+1 = (Yi,k+1 − ŷk+1

− )
i=0

2n

∑ (Yi,k+1 − ŷk+1
− )T + R   (59) 

 The cross correlation matrix Pxy,k+1 between the states 
and the measurements is computed as: 

 
  
P̂xy,k+1 = (X i,k+1 − x̂k+1

− )
i=0

2n

∑ (Yi,k+1 − ŷk+1
− )T  (60) 

where subtraction as defined in the quaternion space, is used 
when necessary. Then, the Kalman Gain can be calculated as: 

 
  
K̂ k+1 = P̂xy,k+1P̂yy,k+1

−1  (61) 

734



  

The innovation, which is the difference between the 
actual measurements and the predicted ones, is expressed as 
the quaternion error between 

  
q̂m,k+1  and   ŷk+1 : 

 
  
dqk+1 = q̂m,k+1 ⊗ ŷk+1( )−1

 (62) 

Finally, the correction step of the UKF is: 

 
  
P̂xx,k+1

+ = P̂xx,k+1
− − K̂ k+1P̂yy,k+1K̂ k+1

−1  (63) 

 
  
δxk+1 = K̂ k+1 dq1, k+1 dq2, k+1 dq3, k+1

⎡
⎣⎢

⎤
⎦⎥

T

 (64) 

   x̂k+1
+ = x̂k+1

− + δxk+1  (65) 

In (65), addition as defined in quaternion space was used in 
order to calculate the a posteriori estimate of the quaternion 

  q̂k+1
+  as well as (21) when the correction vector has to be 

mapped from the Euclidean Space to the SO(3) manifold. 

IV. SIMULATION RESULTS  

Experiments were performed in the WebotsTM simulation 
environment, see Fig. 2. The quadruped has four legs, each 
with an actuated rotational hip joint and a compliant passive 
prismatic joint. The IMU is positioned at the CoM of the 
quadruped robot. The implemented controller can set both the 
robot speed and its apex height, despite the single per leg 
actuated hip joint [12]. The robot is running in a bounding 
gait, and achieves an average speed of 1 m/s along the x-axis. 

 
 (a) 

 
 (b) (c) 

Fig. 2. (a) The quadruped robot in the WebotsTM simulation environment, 

(b) body pitch angle response, and (c) body roll angle response.  

To evaluate the performance of the UKF, the noise levels 
of the gyroscope measurements as well as of the leg encoders 
must be realistic. In the WebotsTM environment, this was 
achieved by including actual sensor measurement noise, 
obtained from static experiments. The robot has variable 
pitch angle; the yaw and roll angles were commanded by the 
controller to remain zero. During the simulation, the robot 
was executing a bounding gait for approximately one minute. 
The terrain was set to be even. The sensor sampling 
frequency was set at 1ms, and the w, κ and β filter parameters 
were chosen as 0.03, -2.0 and 2.0 respectively. The time 
response of the robot pitch, roll, and yaw angles is shown in 
Fig. 2 for reference. The pitch angle error which is of high 
significance for control, oscillates between 0.08o and -0.08o, 

see Fig. 3. Some peaks around 0.1o are related to numerical 
errors in the WebotsTM environment. The absolute of the 
mean of the error in the pitch angle is approximately 0.03o. In 
Fig. 4, the error in roll angle is plotted; the corresponding 
error is similar to that for the pitch angle. 

 
Fig. 3. Pitch Error.  

 
Fig. 4. Roll Error.  

To compare our estimation results with results in the 
literature, we chose the estimation technique proposed in [4]. 
While we could choose to fuse the information of the leg 
kinematics within a UKF, we implemented the EKF due to 
the computational effort a computer needed to handle a 21-
state UKF. Figure 5 depicts the pitch errors for the developed 
estimation methodology and the referenced one, whereas in 
Fig. 6 the corresponding roll errors are plotted. 

 
Fig. 5. Pitch error for different estimation techniques.  

Comparing the two responses, we can observe that the 
mean of the pitch error in the developed estimator is close to 
zero, (0.029o), whereas in the referenced one, the mean is 
approximately 0.33o, see Fig. 5. Regarding the roll angle 
error, despite the fact that the means of the errors are close, 
namely 0.02o and 0.09o, the difference in the magnitude of 
the oscillations, as illustrated in Fig. 6, is significant. 
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The pitch and roll errors corresponding to the developed 
UKF estimator and the simplest sensor fusion filter, i.e. the 
complementary filter are given in Figs. 7 and 8. The resulting 
pitch and roll angle estimation error means, considering the 
complementary filter, are 0.16o and 0.079o respectively; i.e. 
three times larger than the error obtained from the UKF.  

 
Fig. 6. Roll error for different estimation techniques.  

 
Fig. 7. Pitch errors for the developed UKF and the complementary filter.  

 
Fig. 8. Roll errors for the developed UKF and the complementary filter. 

To conclude, the developed estimator yields angle errors 
which are ten times smaller compared to the referenced 
technique. The main reason for these superior results is that 
in our measurement model, the actual states are being 
observed, whereas in the referenced estimator the 
measurement model consists of a combination of all states; as 
a consequence, an error even in one state affects all its states. 
From an implementational point of view, since the referenced 
estimator consists of more states, it is prone to more 
numerical errors than the proposed one. 

V. CONCLUSION AND FUTURE WORK 

In this paper, a novel approach for the estimation of roll and 
pitch angles of a bounding quadruped was proposed. 
Assuming even terrain and an ideal bounding gait, the roll 
and pitch angles were computed, to be fused with on-board 
IMU measurements in an UKF. The simulation results were 
very encouraging as the error, even for durations up to a 
minute, was not drifting but instead was staying below 0.07o. 
The main bottleneck of the UKF is the computation of the 
square root of the covariance matrix, which has complexity 

 O(n3) . This was overcome via a minimal state selection. 
In the near future, full experimental results will be 

obtained after our quadruped robot under development is 
operational. Although, the simulation environment can model 
many realistic situations, we did not simulate slippage. We 
anticipate that our estimator will handle slippage, since no 
assumption of zero velocity at the foot points is made. Thus 
we aim at developing algorithms for slippage detection. 
Finally, the use of sensors such as the ΚinectTM will be 
considered in order to improve position relative estimates. 
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