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Abstract|Space manipulators mounted on an on-o� thruster-

controlled base are envisioned to assist in the assembly and main-

tenance of space structures. When handling large payloads, ma-

nipulator joint and link 
exibility become important, for it can

result in payload-attitude controller fuel-replenishing dynamic in-

teractions. The dynamics of these systems is rather complicated,

expecially when link 
exibility must be modelled, and thus, the

most convenient way of dealing with such systems is probably

the �nite-element method. The commercial package Mecano, a

module of the general-purpose �nite element software Samcef, has

proven its ability to accurately model systems with 
exible ele-

ments. However, this package has no built-in functions allowing

the use of control techniques to analyze the systems at hand. This

paper is intended to introduce the new control tools developped

for Mecano to model the use of on-o� thrusters, time delays, as

well as second-order �lters and state-estimators. An example is

used to illustrate the application of these control techniques.

1 INTRODUCTION

Robotic devices in orbit will play an important role in space exploration and ex-
ploitation. The mobility of such devices can be enhanced by mounting them on
free-
ying bases, controlled by on-o� thrusters. Such robots introduce a host of
dynamic and control problems not found in terrestrial applications. When han-
dling large payloads, manipulator joint or structural 
exibility becomes important
and can result in payload-attitude controller fuel-replenishing dynamic interactions.
Such interactions may lead to control system instabilities, or manifest themselves as
limit cycles [1].

The CANADARM-Space Shuttle system is the only operational space robotic
system to date. Its Reaction Control System (RCS), which makes use of on-o�
thrusters, is designed assuming rigid-body motion, and uses single-axis, thruster
switching logic based on phase-plane techniques. This approach is common in the
design of thruster-based control systems. However, the 
exible modes of this space
robotic system have rather low frequencies, which continuously change with ma-
nipulator con�guration and payload, and can be excited by the RCS activity. The
performance degradation of the RCS due to the deployment of a 
exible payload,
with or without the CANADARM, has been studied [2]. A new design for the RCS
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was developed to reduce the impact of large measurement uncertainties in the rate
signal during attitude control, thereby increasing signi�cantly the performance of
the RCS for rigid-body motion [3]. However, the 
exibility problem was not ad-
dressed. Currently, the method for solving these problems consists of performing
extensive simulations. If dynamic interactions occur, corrective actions are taken,
which include adjusting the RCS parameter values, or simply changing the oper-
ational procedures [2]. The consequences of such interactions can be problematic,
since fuel is an unavailable resource in space; hence, classical attitude controllers
must be improved to reduce the possibility of such dynamic interactions.

This problem was studied using a single-mode, linear translational mechanical
system to approximate the dynamic behaviour of a two-
exible-joint manipulator
mounted on a three-degree-of-freedom (dof) base with a constant damping ratio of
the system [4], and with a variable one [5]. A state-estimator and design guide-
lines were suggested to minimize such undesirable dynamic interactions, as well as
thruster fuel consumption. These results were validated using a more realistic model
with rotational dof [6], but the dynamics of such systems is very complicated, es-
pecially when link 
exibility must be modelled. A convenient way of dealing with
these systems is the �nite-element method. The commercial package, Mecano, a
module of Samcef, was chosen due to its ability to accurately model systems with

exible elements. Samcef is a �nite element software package developed at the Lab-
oratoire de Techniques A�eronautiques et Spatiales (LTAS) of Universit�e de Li�ege,
Belgium. Besides Mecano, this �nite element package includes modules for the dy-
namic analysis of rotating structures, thermal analysis, fracture mechanics, analysis
of structures in composite materials, analysis of cable strutures, viscoplasticity anal-
ysis, and structural optimization. However, this package has no built-in functions
allowing the use of control techniques to analyze the systems at hand. Since the
main objective of our research is to develop control methods that are intended to
reduce the undesired e�ects of dynamic interactions, the use of control techniques
is mandatory. This problem was overcome by programming our own control sub-
routines via the Samcef user-element. This paper is intended to introduce the new
control tools developped for Mecano to model the use of on-o� thrusters, time de-
lays, as well as second-order �lters and state-estimators. The application of these
control techniques is illustrated using the model of a spacecraft with a one-link ma-
nipulator mounted on it [6]. Simulation results are presented and compared with
those obtained using Matlab.

2 CONTROL THEORY

2.1 GENERAL BACKGROUND

Generally, a control system is composed of three main parts: the plant, the con-
troller, and the observer or state-estimator. The plant denotes the physical system
under control. The plant usually provides output signals measured by sensors, and
admits input signals generated by actuators, in order to modify its performance.
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The role of the controller is to synthesize the control strategy, i.e., to derive the
command signals for the actuators in response to the sensor outputs. The controller
may be implemented using analog devices, but digital control has become prevalent,
its elements including digital electronic cards and computer software. Finally, when
speci�c outputs are required by the controller, but not readily available by sensors,
an observer or state-estimator is included to obtain an estimate of the required
output, based on the available signals and a model of the plant.

An important part of a control system implementation is the design of the con-
troller and the state estimator. First, a good model of the plant is required in order
to simulate properly the dynamics of the plant with the aid of software. This dynam-
ics, like those of the controller and the observer, are represented mathematically by
a set of di�erential equations. In modern control theory, these di�erential equations
are usually represented with a system of �rst-order equations of the form

_x = f(x;u) (1a)

while the output takes the form

y = g(x;u) (1b)

where u and y are, respectively, the input and output vectors of the system, while
f and g are, in general, nonlinear functions of the state variables x of the system
and the input u. In classical control theory, where linear systems are involved, the
transfer function concept is also widely used. A transfer function is de�ned as the
ratio of the Laplace transform of the output variable to the Laplace transform of the
input variable with all initial conditions assumed to be zero. This transfer function
represents a relation describing the dynamics of the system under consideration.

There are basically two types of controller structures. The �rst one, the open-
loop control, consists of a system where we give a speci�ed input u, which may be
based on a desired output of the system and a good mathematical model, but does
not use any information of the actual states of the system. This kind of control
actions, shown in Fig. 1(a), may not work in the presence of parameter variations in
the system, or in the presence of disturbances. To overcome this problem, closed-loop
control has been developed. In this case, shown in Fig. 1(b), the output y of the plant
has a direct in
uence on the control input u, since this control input can be based on
the error e between the desired output yd and the actual output. Therefore, closed-
loop control is relatively insensitive to parameter variation or disturbances; besides,
the overall dynamics of the system can be modi�ed as desired. However, the stability
of the system can be a�ected by the chosen control scheme, the implementation of
the controller being more complicated and expensive than its open-loop counterpart.

Mecano, which is based on the �nite element method, was not developed to
easily design control systems. Its main feature is the modelling of a mechanical
systems|the plant| including 
exible bodies. External inputs can be supplied to
the system to study its dynamic behaviour under di�erent excitations de�ned by the
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Figure 1: (a) Open-loop control, (b) Closed-loop control.

user. Mecano can be readily used for the analysis of open-loop control when the input
does not involve any dynamics. However, the analysis of closed-loop system becomes
cumbersome and additional work is required. An input that is a function of the
output variables of the plant can be given through the user-function of the \.SOL"
command. However, this user-function cannot involve any dynamics, the user being
left with the general user-element to describe the dynamics that may be contained
in the controller or the observer. This problem will be ascertained in Section 3 to
see how Mecano can be used to simulate a control system involving feedback control
and state-estimators. In the next subsection, a control system similar to the one
used on the Space Shuttle for the control of its attitude is described as an example.

2.2 ATTITUDE CONTROL WITH ON-OFF THRUSTERS

In this subsection, we present a typical control system to control the attitude of a
spacecraft using thrusters. Currently available technology does not allow the use of
proportional thruster valves in space, and thus, the classical PD and PID control
schemes cannot be used in this application. Therefore, spacecraft attitude and posi-
tion are controlled by the use of on-o� thruster valves, that introduce nonlinearities.

The usual scheme to control a spacecraft with on-o� thrusters is based on the
error phase plane, de�ned as that with spacecraft attitude error e and error-rate
_e as coordinates. The on-and-o� switching is determined by switching lines in the
phase plane and can become complex, as is the case in the phase plane controller
of the Space Shuttle [2]. To simplify the switching logic, two switching lines with
equations e+ � _e = �� can be used. The deadband limits [��, �] are determined by
attitude limit requirements, while the slope of the switching lines, by the desired rate
of convergence towards equilibrium and by the rate limits. This switching logic can
be represented as a relay with a deadband, where the input is e+ � _e, the left-hand
side of the switching-line equations [4].

To compute the input to the controller, the attitude and the rate of the spacecraft
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are required. Using current space technology, both states can be obtained by sensor
readings. However, it can happen that only the attitude is available and then,
the velocity must be estimated. In this case, we assume that only the attitude is
available from sensors and a state-estimator is used to obtain the required velocity.
This attitude signal is passed through a second-order �lter of transfer function

Gf (s) =
!2
f

s2 + 2�f!fs+ !2
f

(2)

to eliminate high-frequency noise. The attitude signal is also di�erentiated while
passed through a second-order �lterGse(s), as the one de�ned in Eq. (2), to obtain an
estimate for the velocity. A time delay � has been included to account for the delay
between the time a sensor reads a measurement, and the time this measurement is
used. Since this delay is more signi�cant than the delay of turning on or o� the
thrusters, only a sensor time delay is included. This model is presented in Fig. 2,
where, clearly, three parts can be identi�ed. The plant is modelled using built-in
elements of Mecano. However, the controller and the state estimator, which includes
dynamics, have to be modelled by means of the user-element of Mecano.

Figure 2: An on-o� thruster attitude control system.

3 CONTROL TOOLS FOR MECANO

3.1 TRANSFORMATIONS OF EQUATIONS

In this subsection, it is shown how to transform a general control system with
feedback in a form that can be analyzed with Mecano. In order to apply the user-
element of Mecano, the system of equations must be cast in the form of a vector
second-order equation, namely,

M�q+ gint = gext (3)
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The output signals of the user-element Fortran subroutine are the inertial forces fine,
the internal forces fint and the iteration matrix S, which are given by

fine =M�q (4)

fint = gint (5)

S = �1KT + �2M + �3C (6)

where �i, for i = 1; 2; 3, are constants de�ned in the Mecano user-element, and KT

and C are, respectively, the sti�ness and the damping matrices, de�ned as

KT =
@fint(q)

@q
; C =

@fint(q)

@ _q
(7)

As mentioned in the previous section, control systems generally involve transfer
functions and �rst-order equations to represent the dynamics of the system. Most of
the time, controllers and estimators are designed using linear di�erential equations.
Therefore, �rst-order equations, as those of Eqs. (1a & b), can be written in the
usual state-space form as

_x = Ax+Bu (8a)

y = Cx+Du (8b)

Then, a representation of this system in transfer-function form is readily available,
namely,

G(s) = C(sI �A)�1B+D (9)

where I denotes the n�n identity matrix,G(s) being generally a matrix composed
of transfer functions, and is, hence, called the matrix transfer function. There-
fore, considering a block diagram representing a control system, we can �rst write
the state-space equations in transfer-function form, then, by block-diagram trans-
formation [7], the transfer function mapping a desired input variable u to a desired
output variable y can be obtained. Generally, for a single-input single-output system
(SISO), this transfer function takes the form

G(s) =
bns

n + bn�1s
n�1 + � � �+ b1s+ b0

ansn + an�1sn�1 + � � �+ a1s+ a0
=
Y (s)

U(s)
(10)

where U(s) represents the Laplace transform of the input variable and Y (s) that
of the output variable. Note that the order of the numerator is, in general, smaller
or equal to n. In cases, where it is equal to m, with m < n, we have bi = 0 for
i = m+1; � � � ; n. From Eq. (10), a nth-order di�erential equation is readily obtained,
namely,

any
(n)+an�1y

(n�1)+ � � �+a1y
(1)+a0y = bnu

(n)+bn�1u
(n�1)+ � � �+b1u

(1)+b0u (11)
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Usually, the j-th derivative of the input u is not known. However, by introducing
a proper change of variable, this nth-order equation can be written in a more suitable
form. Let us consider the equation

anx
(n) + an�1x

(n�1) + � � �+ a1x
(1) + a0x = du (12)

Then, we can write

y = c0x+ c1x
(1) + � � �+ cn�1x

(n�1) + cnu (13)

Therefore, if the coe�cients ci, i = 0; � � � ; n, of Eq. (13) can be determined, then the
output variable y(t) is obtained as a linear combination of the time response x(t) of
Eq. (12), and its i-th time derivative, for i = 1; � � � ; (n� 1). In order to determine
these coe�cients, let us consider the i-th derivative of y, for i = 1; � � � ; n,

y(1) = c0x
(1) + c1x

(2) + � � �+ cn�1x
(n) + cnu

(1)

y(2) = c0x
(2) + c1x

(3) + � � �+ cn�1x
(n+1) + cnu

(2)

... (14)

y(n�1) = c0x
(n�1) + c1x

(n) + � � �+ cn�1x
(2n�2) + cnu

(n�1)

y(n) = c0x
(n) + c1x

(n+1) + � � �+ cn�1x
(2n�1) + cnu

(n)

Substituting Eqs. (14) into Eq. (11), we obtain

anc0x
(n) + anc1x

(n+1) + � � � + ancn�1x
(2n�1) + ancnu

(n)

+an�1c0x
(n�1) + an�1c1x

(n) + � � �+ an�1cn�1x
(2n�2) + an�1cnu

(n�1)

... (15)

+a1c0x
(1) + a1c1x

(2) + � � � + a1cn�1x
(n) + a1cnu

(1)

+a0c0x+ a0c1x
(1)+ � � � + a0cn�1x

(n�1) + a0cnu =

bnu
(n) + bn�1u

(n�1) + � � � + b1u
(1) + b0u

Di�erentiating Eq. (12) m times, we derive

anx
(m+n) + an�1x

(m+n�1) + � � �+ a1x
(m+1) + a0x

(m) = du(m) (16)

Therefore, using a suitable value for m, Eq. (15) reduces to

c0du+ c1du
(1) + � � �+ cn�1du

(n�1)

+ancnu
(n) + an�1cnu

(n�1) + a1cnu
(1) + a0cnu =

bnu
(n) + bn�1u

(n�1) + � � �+ b1u
(1) + b0u (17)

which can be written as

ancnu
(n) + (an�1cn + cn�1d)u

(n�1)

+ � � �+ (a1cn + c1d)u
(1) + (a0cn + c0d)u =

bnu
(n) + bn�1u

(n�1) + � � �+ b1u
(1) + b0u (18)
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By equating terms of the same powers, we obtain

cn = bn=an (19a)

ci =
1

d

�
bi �

ai
an
bn

�
; i = 0; 1; � � � ; n� 1 (19b)

Therefore, if an equation of the form of Eq. (11) is to be integrated for a given
input u, then Eq. (12) can be integrated and the desired time response y(t) is
obtained using Eq. (13) with the coe�cients ci, i = 0; � � � ; n, of Eqs. (19a & b).

Moreover, since Mecano can only handle second-order equations, we must write
Eq. (12) as a set of second-order equations. We can introduce the following change
of variables

zi = x(2i�2); i = 1; 2; � � � ; dn=2e (20)

with d�e de�ned as the roof function of its natural argument (�), i.e., in our case, as
the integer that is closest to n=2 from above.

Di�erentiating Eq. (20), we obtain

_zi = x(2i�1); i = 1; 2; � � � ; dn=2e (21)

�zi = x(2i); i = 1; 2; � � � ; dn=2e (22)

For i = 1; 2; � � � ; (dn=2e � 1), we have

�zi = zi�1 (23)

which leads to (dn=2e � 1) equations. Moreover, substituting the zi, _zi and �zi
expressions in Eq. (12), and assuming an even n, we obtain

an�zdn=2e+an�1 _zdn=2e+an�2zdn=2e+an�3 _zdn=2e�1+an�4zdn=2e�1+ � � �+a1 _z1+a0z1 = du
(24)

In vector form, we �nally obtain

M�z+C _z+Kz = f (25)

where

z =

2
6666664

z1
z2
...

zdn=2e�1
zdn=2e

3
7777775
; f =

2
6666664

0
0
...
0
du

3
7777775
; M =

2
6666664

1 0 � � � 0 0
0 1 � � � 0 0
...

...
. . .

...
...

0 0 � � � 1 0
0 0 � � � 0 an

3
7777775

C =

2
6666664

0 0 � � � 0 0
0 0 � � � 0 0
...

...
. . .

...
...

0 0 � � � 0 0
a1 a3 � � � an�3 an�1

3
7777775
; K =

2
666666664

0 �1 0 � � � 0 0
0 0 �1 � � � 0 0
...

...
...

. . .
...

...
0 0 0 � � � �1 0
0 0 0 � � � 0 �1
a0 a2 a4 � � � an�4 an�2

3
777777775
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In cases where n is odd, Eq. (25) is exactly the same, except that we have an = 0,
and the mass matrix becomes semi-de�nite. This semi-de�niteness is not a problem,
since, in the integration scheme used in Mecano, there is no need to invert the mass
matrix; only the iteration matrix S is inverted. Therefore, in order to apply the
user-element of Mecano, we directly have

fine =M�z (26a)

fint = C _z +Kz (26b)

S = �1K+ �2M+ �3C (26c)

3.2 APPLICATION: ATTITUDE CONTROL

We show, in this subsection, how to use Mecano to simulate the model depicted in
Fig. 2 by introducing the techniques presented in the previous subsection.

In that system, the plant dynamics block represents the model of a spacecraft
with a space manipulator mounted on it, where we try to control the attitude of the
base in a planar motion. This plant is modelled using the standard-elements library
of Mecano. Moreover, even if Mecano can give the velocity and the acceleration of
the base, we assume that only the attitude is available by sensors and therefore,
only the angular displacement of the node representing the centre of mass (CM) of
the spacecraft is considered. A time delay � is implemented by writing a Fortran
subroutine that is called by the user-element subroutine and that stacks values of
the attitude for previous time steps in a vector array. The desired value of the
attitude for the current time step is obtained by linearly interpolating the value in
that vector corresponding to the attitude at � seconds before.

Now, in order to implement the state estimator, a transfer function mapping
the �ltered attitude signal �̂0 to the attitude signal �0 must be derived, as well as

a transfer function mapping the estimated attitude rate _̂�0 to the attitude signal �0
and the command of the thruster u. For the attitude, we readily have

�̂0 = Gf (s)�0 (27)

Using the de�nition of Gf (s) given by Eq. (2), we have

�̂0 =
!2
f

s2 + 2�f!fs+ !2
f

�0 (28)

which leads to
�̂�0 + 2�f!f _̂�0 + !2

f �̂0 = !2
f�0 (29)

Comparing this equation with Eq. (11), and using n = 2, since we have a second-
order di�erential equation, we have

a0 = b0 = !2
f ; a1 = 2�f!f ; a2 = 1; b1 = b2 = 0 (30)
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which is in a form readily integrable by Mecano. Note that �0 is not an external
input to the user-element, but the position of the node describing the CM of the
spacecraft represented as a rigid body in Mecano. Therefore, the user-element must
be composed of 2 nodes, the actual CM of the spacecraft, and a second node that
will be the desired estimated attitude �̂0 obtained by solving the di�erential equation
of Eq. (29).

For the attitude rate, we have, by examining Fig. 2,

_̂�0 = _̂�
0

f + _̂�c

= sGse(s)�̂
0
f + _̂�c

= sGse(s)(�0 � �̂c) + _̂�c

= sGse(s)(�0 �
1

s
_̂�c) + _̂�c

= sGse(s)�0 + [1 �Gse(s)] _̂�c

_̂�0 = sGse(s)�0 + [1 �Gse(s)]
1

s

u (31)

where 
 is the angular acceleration impinged to the system by the thrusters.
Using the de�nition of the second-order �lter, as given in Eq. (2) for Gf (s), we

have

_̂�0 =
!2
ses

s2 + 2�se!ses+ !2
se

�0 +

 
1�

!2
se

s2 + 2�se!ses+ !2
se

!
1

s

u

_̂�0 =
!2
ses

s2 + 2�se!ses+ !2
se

�0 +
s+ 2�se!se

s2 + 2�se!ses+ !2
se


u (32)

Moreover, we de�ne

 = _̂�0 (33)

to obtain, from Eq. (32),

� + 2�se!se _ + !2
se = !2

se
_�0 + 
 _u+ 2�se!se
u (34)

Since this equation is linear, we have, by superposition,

� 1 + 2�se!se _ 1 + !2
se 1 = !2

se
_�0 (35a)

� 2 + 2�se!se _ 2 + !2
se 2 = 
 _u+ 2�se!se
u (35b)

 =  1 +  2 (35c)

Comparing Eq. (35a) with Eq. (11), we have

a0 = b1 = !2
se; a1 = 2�se!se; a2 = 1; b0 = b2 = 0 (36)

Since the input to Eq. (35a) is _�0 and only �0 is assumed available, we must resort to
the technique introduced in the previous subsection. Let us consider the equation

�x1 + 2�se!se _x1 + !2
sex1 = !2

se�0 (37)
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Comparing this equation with Eq. (12), we have

d = !2
se (38)

The desired time response  1(t) is thus obtained by integrating Eq. (37) in a user-
element and then using Eq. (13) with c0, c1 and c2 given by Eq. (19a & b), namely,

c0 = 0; c1 = 1; c2 = 0 (39)

Now, comparing Eq. (35b) with Eq. (11), we have

a0 = !2
se; a1 = 2�se!se; a2 = 1; b0 = 2�se!se
; b1 = 
; b2 = 0 (40)

Resorting to the same technique just introduced above, we can consider the equation

�x2 + 2�se!se _x2 + !2
sex2 = !2

se
u (41)

which gives
d = !2

se
 (42)

The desired time response  2(t)is thus given by integrating Eq. (41) and by using
Eq. (13) with c0, c1, and c2 given by Eq. (19a & b), namely,

c0 =
2�se
!se

; c1 =
1

!2
se

; c2 = 0 (43)

Therefore, the estimate of the attitude rate is given by

_̂�0 =  =  1 +  2 = _x1 +
2�se
!se

x2 +
1

!2
se

_x2 (44)

The last item required to simulate the whole system of Fig. 2 is a user-element
for the controller. From that �gure, we have that

� = �d0 � �̂0 � � _̂�0 (45)

= e+ � _e (46)

where e end _e are, respectively, the error on the attitude and that of the attitude
rate, as de�ned in Section 2. The parameter � thus represents the left-hand side
of the switching-line equations. The required command of the thruster u is thus
simply the output of a relay with a dead zone whose input is �. Thus, we have the
algorithm

if � > � then
u = 1

elseif � < �� then
u = �1

else

u = 0
endif

This algorithm can be easily implemented in a user-element.
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3.3 INPUT-OUTPUT PROBLEMS IN MECANO

As mentioned previously, Mecano was not developed to simulated control systems,
but only to analyze dynamical systems. Therefore, the inputs and outputs allowed
in the user-element subroutine are su�cient for most cases, but result in some prob-
lems when dealing with control systems. For example, there is no input to the
subroutine for the resulting forces applied to a node, and there is no output to allow
the application of an external force to a node. These two input-output drawbacks
became a challenge when modelling the system analyzed in the previous subsection.
For example, the input in Eq. (41) is the command of the thruster u. Since this
information is not readily available in the subroutine, we had to de�ne a rigid body
composed of one node with the same inertia of the spacecraft. Then, when the
thruster force was applied to the spacecraft, the same force was also applied to this
rigid body. The node representing the CM of this rigid body was thus part of the
user-element to integrate Eq. (41), and by considering the acceleration of the node,
the command of the thruster u, which is either +1, 0 or �1, was extracted.

Another challenge was the application of the force produced by the thruster to
the spacecraft. Since that force is obtained in a user-element, it was not possible to
apply directly this force to the node representing the CM of the spacecraft because
only inertial and internal forces can be speci�ed. To overcome this problem, the
thruster force was de�ned as the inertial force of this node used by the user-element.
This force was de�ned in the opposite direction of the thruster force required. The
e�ects of this inertial force, when combining it with the overall motion of the node
representing the CM of the spacecraft, was an acceleration in the desired direction.

Apparently, the addition of a few arguments in the inputs and outputs of the
user-element would decrease signi�cantly the workload needed when developing a
user-element to simulate control systems.

4 SIMULATION RESULTS AND COMPARISON

The relations derived in Subsection 3.2 for the model of Fig. 2 have been imple-
mented in four user-elements; one to integrate each of Eqs. (29, 37, and 41), and
one to implement the thruster switching logic introduced at the end of Subsec-
tion 3.2. Moreover, we consider for the plant, the planar one-
exible-joint manip-
ulator on the 3-dof spacecraft of Fig. 3, with the parameters of Table 1, where
xc = (2712 + 15:5�m0)=(320 + �m0). These parameter values have been chosen in
[8, 6] to approximate the Space Shuttle/CANADARM system when the arm is fully
extended. Moreover, this system has been studied in [6], the reader being referred
to that paper for the derivation of the mathematical model. The spacecraft and the
link are modelled using rigid elements inMecano, while the 
exible joint is modelled
using a hinge-joint element with elastic locking and viscous damping. The spring
sti�ness k and damping coe�cient c of the 
exible joint were chosen to match the �rst
natural frequency and the damping ratio of the same Space Shuttle/CANADARM
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Figure 3: A planar free-
ying manipulator.

Table 1: Shuttle, simpli�ed 1-link manipulator and payload parameter values.

Body li (m) ri (m) mi (kg) Ii (kg m2)

0 1 75,000 1,635,937

1 xc 15:5� xc 320 + �m0 (320 + �m0)x
2
c � (5423:5+ 31�m0)xc

+31424:11+ 240:25�m0

system, in a speci�c con�guration, namely

k = 123; 985 Nm=rad (47)

c = 6; 166 Nms=rad (48)

As done in [6], the joint is locked in a speci�c con�guration �1, with �1 being the
angular position of the rotor. Moreover, using the parameters in Table 2, which are
based on available space-manipulator data, the system was simulated using both
Mecano and Matlab. In this table, � is the ratio of the mass of the payload to
the mass of the spacecraft, � is the slope of the switching lines, � is the spacecraft
attitude limit, 
0 is the nominal angular acceleration of the spacecraft, i.e 
0 = n=I0
where n is the available thruster torque, � is the time delay, and !f , !se, �f , and
�se are the parameters of the second-order �lters. Simulations results for an initial
base angular error of 0.05 rad are shown in Fig. 4 when using Matlab and in Fig. 5
when using Mecano.

A qualitative comparison of Figs. 4 and 5 shows that the results are identical.
Figures 4(a) and 5(a) show the error phase-plane that determines the switching logic,
while Figs. 4(b) and 5(b) show the attitude of the spacecraft vs. its attitude rate.
The �nal attitude and attitude rate of the spacecraft are included in Table 3. We can
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Figure 4: Simulation results using Matlab: (a) Error phase plane; (b) Attitude
phase plane; (c) x-y trajectory; (d) joint angle history; (e) Joint rate history; and
(f) Thruster command history.
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Figure 5: Simulation results using Mecano: (a) Error phase plane; (b) Attitude
phase plane; (c) x-y trajectory; (d) joint angle history; (e) Joint rate history; and
(f) Thruster command history.
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Table 2: Parameter values for simulations.

�1 � � (s) � (rad 
0 � (s) !f (rad=s) !se (rad/s) �f �se

135� 0.3 5 0.03 0:02�=s2 0.1 0.2513 0.2513 0:707 0:707

Table 3: Attitude and attitude rate at t = 500 s.

Matlab Mecano Error

�0 7:745817 � 10�2 7:743437 � 10�2 0.03%
_�0 1:676471 � 10�3 1:655943 � 10�3 1.2%

see that, after 500 seconds, the di�erence between the attitude calculated with both
packages is only 0.03%, while this error is 1.2% for the attitude rate. Figures 4(c)
and 5(c) show the x and y position of the CM of the spacecraft, while Figs. 4(d)
and 5(d) and Figs. 4(e) and 5(e) show the joint angle and joint rate, respectively.
Finally, Figs. 4(f) and 5(f) show the history of the thruster command u.

It is interesting to note that, if the same system is simulated for a longer period,
say 2000 s, a large limit cycle will develop, thus resulting in a continuous operation
of the thrusters and a high fuel consumption. Results for a 2000 s run are reported
in [6] using Matlab.

From this good matching of the simulation results using Mecano and Matlab, we
can conclude that Mecano can be used e�ectively to simulate control systems. Since
Matlab has built-in functions for control-system design, it could be used �rst to
design a control system based on an approximate model of the plant. Then, Mecano
could be used to simulate the same control system, but with a more detailed model
of the plant to give more insight on the behaviour of the actual physical plant. In our
case, Mecano will be used to model a 6-link manipulator mounted on a spacecraft
where both joint and link 
exibility will be considered.

5 CONCLUSIONS

This work examined the capacity of Mecano to simulate control systems. Various
techniques were applied to transform the equations describing a controller or an
observer in a form suitable for implementation in the user-element of Mecano. A
typical spacecraft attitude control system was employed as an example to expe-
rience these techniques, and to perform a comparison with results obtained using
Matlab. We have shown that Mecano could be e�ectively used to simulate control
systems, thus allowing an extended analysis of a system with a detailed model of the
plant. Moreover, it was pointed out that a few additional arguments in the inputs
and outputs of the user-element Fortran subroutine would decrease signi�cantly the
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workload needed when developing a user-element to simulate control systems.
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