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A framework tackling the problem of large wrench application using robotic systems
with limited force or torque actuators is presented. It is shown that such systems can

Ž .apply a wrench to a limited set of Cartesian locations called force workspace FW ,
and its force capabilities are improved by employing base mobility and redundancy.
An efficient numerical algorithm based on 2 n-tree decomposition of Cartesian space is
designed to generate FW. Based on the FW generation algorithm, a planning method
is presented resulting in proper base positioning relative to large-force quasistatic
tasks. Additionally, the case of tasks requiring application of a wrench along a given
path is considered. Task workspace, the set of Cartesian space locations that are
feasible starting positions for such tasks, is shown to be a subset of FW. This
workspace is used for identifying proper base or task positions guaranteeing task
execution along desired paths. Finally, to plan redundant manipulator postures
during large-force-tasks, a new method based on a min]max optimization scheme is
developed. Unlike norm-based methods, this method guarantees no actuator capabili-
ties are exceeded, and force or torque of the most loaded joint is minimized.
Illustrative examples are given demonstrating validity and usefulness of the proposed
framework. Q 1999 John Wiley & Sons, Inc.
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I. INTRODUCTION

Animals and humans can develop and apply large
forces, compared to their muscle force or torque
capabilities. During a task requiring application of
large forces, the body is positioned at a location
near the task and an appropriate arm posture is
assumed. The body position, or arm posture may
change during the execution of the task, and both
mobility and redundancy are used efficiently. On
the other hand, robotic manipulators exhibit limited
force capabilities, even in static or quasistatic tasks.
This issue becomes very important in mobile appli-
cations of robotic systems, where typically develop-
ment of large forces is expected. In these applica-
tions, the position of a mobile base of a system can
be relocated with respect to a task, adding redun-
dancy to the system. In cases where repetitious
tasks are being planned, the robot can be positioned
initially such that its posture is optimal for the
given force task. In space, highly redundant systems
are being built to operate in a gravityless environ-
ment. The application of large forces in this environ-
ment can be problematic given the fact that actua-
tors are typically small due to weight restrictions,
and to the lack of the need to support the weight of
the system.

Actuator limitations have been considered in
studies of time optimal motion planning, and in
resolving manipulator redundancy in motion con-
trol.1,2 The force distribution problem in multilimb
systems has been studied using linear programming
techniques, in conjunction to energy and load bal-
ancing performance indexes.3 The necessary and
sufficient conditions for applying a force to the
environment were presented in ref. 4. Posture con-
trol in motion or force tasks has been considered
using velocity and force ellipsoids, and a task com-
patibility measure.5 The direction and magnitude of
maximum force and torque that can be applied at
some given end-effector location has been studied
to provide a basis for the task planning for force
control of multiple cooperating robot arms.6

Weight-lifting under limited torque capabilities was
analyzed in refs. 7]9. In these works, it is assumed
that a weight is moved from a low to a high fixed
point, while the path is not specified. Norm-based
criteria are used to find the optimum path for lifting
a weight between two extreme points,7 while inte-
gral norm-based criteria are employed in ref. 9. The
effects of limited actuator capabilities on the force
output of multilimbed systems were introduced first
in ref. 10. A configuration-space force workspace

was defined and used to plan motions of such
systems without violating actuation and joint limits,
or frictional constraints.10 Redundancy resolution
criteria were introduced and evaluated based on
desired motion or force task requirements.11

This article analyzes the application of large
forces and torques, i.e., wrenches, by robotic sys-
tems with limited force or torque actuators. Such a
system may be able to apply a wrench in some
configurations only; therefore its useful force

Ž .workspace FW is limited. However, its force capa-
bilities can be improved by employing base mobil-
ity and redundancy. An efficient numerical algo-
rithm based on the 2 n-tree decomposition of the
Cartesian space is designed to generate the force
workspace. Based on this algorithm, a planning
method is presented which results in proper base
positioning relative to large-force quasistatic tasks.
If this method results in no solution, then the task is
either unfeasible, or has to be divided into two
subtasks whose completion requires base motion
during task execution.

In addition, the case of tasks requiring the ap-
plication of a wrench along a specified path is
considered. The task workspace, the set of Cartesian
space locations that are feasible starting positions
for such tasks, is shown to be a subset of the force
workspace. This workspace can be used for identify-
ing proper base or task positions that will guarantee
task execution along desired paths. Finally, to plan
redundant manipulator postures during large
force-tasks, a new method based on a min]max
optimization method is developed and compared to
an existing norm-based one. It is shown that the
latter does not guarantee that actuator limits are not
exceeded, and that they can indeed be exceeded. In
contrast, the min]max optimization method guar-
antees that all joint forces or torques do not exceed
their limits, and that each actuator ‘‘suffers’’ the
least possible, resulting in effective actuator use,
and maximization of a system’s force capabilities.
Illustrative examples are given that demonstrate the
validity and usefulness of the proposed framework.

II. FORCE WORKSPACE CONCEPTS

In this article we focus on tasks which require the
application of large wrenches on the environment.
For example, such tasks include holding or moving
large payloads, pushing heavy containers in ware-
house operations, or removing of orbital removable
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Ž .units ORU during contingency operations in space.
Although manipulators may differ greatly in their
nature, they are all subject to the physical limita-
tions of their actuators, and they all operate in the
same physical world most tasks are defined in: the
Cartesian space. However, the effect of these limita-
tions is not the same in all workspace locations.
For example, a manipulator may be able to lift a
large load when located close to its base, but not
otherwise.

If we consider all possible manipulator configu-
rations q at which the end-effector of a robotic
system can apply a given wrench F, and map these
to a set of Cartesian locations defined by the same
property, then the union of all such locations de-
fines a manipulator’s force workspace. In other words,

Ž .the force workspace FW includes all Cartesian
space locations at which a robotic system can apply
a given wrench without exceeding actuator limits.
Note that as the kinematic workspace is reduced by
the existence of joint limits, the FW is affected by
actuator force or torque limits. If a desired wrench F
is relatively small, then all actuators are able to
generate the required forces or torques at each joint,
such that the end-effector is applying F to the envi-
ronment. In such a case, the FW is identical to the
kinematic workspace. However, as F increases, this
workspace reduces gradually and may even vanish,
i.e., there may be no points in the kinematic
workspace for which the end-effector of the manip-
ulator is able to apply F.

To demonstrate this notion, a simple two-link
planar manipulator is studied. The link lengths are
l s1.4 m and l s1.0 m and actuator torque limits1 2
are t s10 Nm and t s6 Nm. For simplic-1, max 2, max
ity, the second joint is restricted to positive angles
and the effect of gravity has been neglected. As
depicted in Figure 1, when the force is very small,
here 1 N along the positive x axis direction, the
end-effector can apply it at any point in its reach-
able workspace. However, when the force is in-
creased to 8 N, the available FW is reduced signifi-
cantly.

Task Positioning

Finding the FW for a system as a function of the
end-effector wrench allows planning of force-tasks.
For example, a large force can be applied to an
object if this object is located in the corresponding
FW. If it is not, as is the case for the manipulator
configuration shown in Figure 1, then the calcula-
tion of this workspace suggests locations at which

Figure 1. Workspace regions where force F can be ap-
Ž . Žplied. Small F light gray and dark gray , large F dark

.gray .

the object must be moved prior to the execution of
the force-task; it indicates valid positions for the task.
Also, if a manipulator is required to apply a se-
quence of wrenches to an object, we can use the
force workspace to determine a proper location for
this object so that all the wrenches can be applied
by the manipulator, without exceeding its actuator
force or torque limits. The possible locations will be
in the intersection of the force workspaces for each of
the wrenches to be applied by the manipulator.

Mobile Manipulator Base Positioning

Sometimes there is no freedom in choosing the
position for a task, but it may be possible to relocate
the base of the robotic system. For example, assume
that the task for a robotic system is to lift some
heavy object off the ground. The task may be unfea-
sible, if that object is located far from the robotic
system. However, placing the manipulator closer to
the task would load its actuators less and allow
object lifting.

A base position is called feasible when the ma-
nipulator is able to execute a task successfully after
its base is moved to this location. The FW can be
used to determine the feasible base positions of a
robotic system for a given task. Since the FW is
defined in the Cartesian space, the following equa-
tion is true for all the end-effector locations inside
the FW,

0 0 B Ž .p sp qp 1EE B FW
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where p0 is the end-effector position vector withEE

respect to the world frame 0, p0 is the base positionB
of the robotic system with respect to the world
frame, and p B is a position vector that locatesFW
points of the FW with respect to the base position.
Now, if the task to be executed is located at p0 ,T

0 0 Ž .then setting p sp in Eq. 1 results inEE T

0 0 B Ž .p sp yp 2B T FW

Ž .Equation 2 provides the means of finding base
positions for which the task is located inside the
force workspace of the system; hence, where the
force task can be executed, see Figure 2a. As in the
previous section, this concept can be extended to
the case where the robotic system has to execute a
number of tasks. In this case, we must generate a set
of feasible base positions for each of the tasks. Note
that the tasks do not need to be spatially coincident.
Similarly to the previous section, the feasible base
positions for a set of tasks will belong to the inter-
section between all individual base positions for
each of the tasks. This concept is illustrated in
Figure 2b.

Figure 2. Base positioning using the force workspace.
Ž . Ž .a Single task, b multiple tasks.

III. FORCE WORKSPACE GENERATION

When describing a volume of arbitrary shape, sev-
eral methods are available. To describe it accurately,
i.e., to know its exact shape, an analytical descrip-
tion is needed. However, in the case of the FW, such
a description is not always available, and in fact, it
can be found in simple cases only. Another ap-
proach is to approximate the shape of the workspace
using numerical methods. A simple method to iden-
tify a space characterized by a given property, is to
decompose it into a number of equally sized ele-
ments, and test each element to determine if it is
part of this space or not. Here, the quality of the
approximation depends on the resolution, r, of the
approximation. As each element requires some cal-
culations to determine whether or not it is part of
the space, the number of calculations is of the order
Ž n.O r , where n is the dimension of the space. It is

easy to see that such a method is not very efficient,
especially for high n. The 2 n-tree decomposition of
the free space, as proposed by Paden, Mees, and
Fisher is a more efficient technique.12

The 2 n-tree is a variable resolution data struc-
ture. To apply this method, the Cartesian space is
divided into a number of cells that can vary in size
and correspond to the nodes in the tree. Each cell is
a hyper cube and its dimension is that of the space
it belongs to: a square for a two-dimensional space
Ž .quadtree , or a cube for a three-dimensional space
Ž .octree . The root node of the tree represents the
entire Cartesian space under study. To generate the
2 n-tree, a test function must be set up to determine
the feasibility of each node; in our case this function
tests whether a cell is part of the FW or not. Each
node can have one of three states: either it is en-

Ž .tirely feasible it is contained in the FW , entirely
Ž . Žunfeasible outside the FW or partially feasible par-

.tially in the FW , in which case it is labeled mixed. If
a node is feasible, it is added to the tree, if it is
unfeasible, it is discarded, and if it is mixed we
cannot add it nor discard it: we split the cell that
corresponds to this node into 2 n cells. Each new cell
must then be tested to determine its feasibility, and
the process continues. Samet shows that using this
representation, the maximum number of nodes,
which is proportional to the number of calculations,

Ž ny1. 13is of the order O r .
To determine the feasibility of a cell, we need to

ensure that all of its points are valid locations for
the end-effector, or equivalently, that none of the
required actuator forces or torques exceed actuator
capabilities. To this end, these actuator forces or
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torques must be determined. Depending on the na-
ture of the robotic system, this evaluation may be
quite involved and require a significant amount of
calculations.

To avoid calculating a system’s actuator forces
or torques for every location in the root cell of the
Cartesian space, the algorithm displayed in Figure 3
was designed such that cells obviously not part of
the FW are eliminated. First, the search for FW cells
is restricted to those that are located entirely within
the kinematic workspace of a robotic system. Evi-
dently, if the manipulator cannot reach a point, it
will not be able to apply the desired wrench. So the
cells are first screened for kinematical feasibility by
the test TestKW, see Figure 3.

Next, we consider manipulators for which the
first joint is a revolute joint with its axis of rotation
parallel to the direction of gravity. Note that this
class includes the majority of robotic systems in use
today. For these manipulators, we can reduce even
further the volume to be searched. Because of the
orientation of the first joint axis, the weight of the
other links does not affect its actuator. When the
end-effector of such a robotic system applies to its

Figure 3. Force workspace generation flow chart.

w T T xTenvironment a wrench Fs f n statically or
quasistatically, where f is the applied force and n is
the applied moment, the torque applied at the first
joint is simply,

Ž . Ž .t s p =fqn ?z 3ˆ1 EE 1

where p is the position vector of the end-effectorEE
with respect to the origin of frame 1 and z a unitˆ1
vector along the first joint axis. For brevity, the
superscript in p1 was omitted. Let us assume fur-EE
ther that the first joint actuator has limited torque
capabilities such that

Ž .yt Ft Ft 41, max 1 1, max

Ž . Ž .From Eqs. 3 and 4 we find a condition relating
the position of the end-effector to the maximum
actuator torque of the first joint,

Ž . Ž .p =fqn ?z Ft 5ˆEE 1 1, max

Hence, any point in a feasible cell must verify Eq.
Ž .5 . We call this the first joint actuator constraint

Ž .feasibility test TestFJAC . Using this test the search
region can be narrowed even further. However, we
must still determine if each node cell of the remain-
ing volume is part of the FW or not, i.e., its feasi-
bility.

To determine the feasibility of a node cell, we
Ž .first set up a point feasibility criterion PFC that

determines the feasibility of a single end-effector
Ž .location or point in the Cartesian space. Assuming

that a robotic system with N joint actuators has
limited force or torque capabilities such that

Ž .yt Ft Ft is1, . . . , N 6i , max i i , max

a normalized force or torque can be defined as

t i Ž .t s 7î t i , max

and therefore, for the robotic system to be able to
apply the desired wrench F, the following condition
must hold

< < Ž .max t F1 is1, . . . , N 8î
i

Let us now define the point feasibility function
Ž .U p , F of a point p in the kinematic workspaceEE EE

of the robotic system as

Ž . < < Ž .U p , F s max t is1, . . . , N 9ˆEE i
i
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where the t represents the required actuator nor-î
malized force or torque such that the end-effector of
the robotic system is applying a wrench F at p inEE
some configuration q. Therefore, a point is feasible
if the point feasibility function satisfies

Ž . Ž .U p , F F1 10EE

Ž .To evaluate U p , F , the necessary actuator forcesEE
w xTor torques ts t t ??? t that will produce a1 2 N

desired end-effector wrench F must be computed.
For static or quasistatic operation of a serial manip-
ulator, these can be expressed simply by

Ž . T Ž . Ž .tsG q qJ q F 11

Ž . Ž .where G q is the vector of gravity terms and J q is
the Jacobian of the manipulator. In this work we
assume that the number of actuated joints is equal
to or exceeds the dimension of the desired wrench
and therefore, that the robotic system can apply an
arbitrary wrench. For any statically nonredundant
manipulator, there exists a set of inverse kinematic

Ž .functions f p , with a finite number of solutionsIK EE
such that

Ž . Ž .qsf p 12IK EE

We can therefore express the point feasibility func-
tion for a nonredundant robotic system as

Ž . Ž Ž ..U p , F s max t f pˆEE i IK EE
i

Ž .is1, . . . , N 13

On the other hand, redundant manipulators typi-
cally have an infinite number of inverse kinematic
solutions. Let us define q , a subset of q, as a set ofr
redundant joint variables. We can obtain the config-
uration of a redundant manipulator using the fol-
lowing equation

Ž . Ž .qsf p , q 14IK EE r

Ž .where f p , q is a vector of inverse kinematicIK EE r
functions. To be part of the FW, points of the Carte-
sian space must correspond to end-effector locations
where the end-effector can apply the desired wrench.
Hence, for redundant manipulators, an end-effector
location is part of the FW if there is at least one
configuration for which this condition is true. This
can be achieved by making sure that there exists
some configuration at which the most loaded actua-
tor does not exceed its limits. Mathematically, this

requires finding the maximum of the normalized
actuator forces or torques and subsequently check-
ing if the minimum value of this maximum, as the
redundant joint variables take all possible values, is
smaller than or equal to 1. Therefore, the point
feasibility function for a redundant manipulator is
defined as

Ž . Ž Ž ..U p , F s min max t f p , qˆEE i IK EE r
q ir

Ž .is1, . . . , N 15

For a feasible workspace position, the condition
Ž .given by Eq. 10 must still hold true.

Once the feasibility of a point is determined
Ž .using the point feasibility criterion, Eqs. 10 , and

Ž . Ž .13 or 15 , we can proceed to determine the feasi-
bility of a cell by setting up a cell feasibility crite-

Ž . Žrion CFC . For a cell to be entirely feasible i.e.,
.inside the FW , we require that all end-effector

locations p in that cell have a point feasibilityEE
function value smaller than or equal to 1, i.e., that
they all verify the PFC. If we define

Ž . Ž .U s max U p , F 16feasible EE
p gcellEE

Ž .then the cell feasibility criterion CFC is simply,

Ž .U F1 17feasible

ŽSimilarly, for a cell to be unfeasible i.e., outside the
.FW , we require that the PFC is never verified at all

location in that cell. If we define

Ž . Ž .U s min U p , F 18unfeasible EE
p gcellEE

then the cell to be unfeasible is

Ž .U )1 19unfeasible

Whenever a cell has points for which the point
feasibility function U takes values above and below
1, it is mixed, and has parts both inside and outside
the FW. Since performing the computations dictated

Ž . Ž .by Eqs. 16 or 18 is computationally intensive, we
decided to check the U values at the vertices and
the middle point of a cell, and subdivide the mixed

Ž .cells right away TestCUV .
However, this test is not sufficient to conclude

on the overall feasibility of a cell; i.e., if it is located
entirely inside or entirely outside the FW. To do this

Ž .we must implement the CFC, hence Eqs. 17 or
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Ž .19 . If the U values found with TestCUV are all
Ž .below 1, we use Eq. 17 . We then verify that all

points in that cell are feasible locations by comput-
ing U ; if U is greater then 1, then the cellfeasible feasible
is mixed and is further subdivided, otherwise it is
feasible and is saved. If the U values found with

Ž .TestCUV are all above 1, we use Eq. 19 , and verify
that all points in that cell are unfeasible locations by
computing U . If U is smaller than 1,unfeasible unfeasible
the cell is mixed and is further subdivided, other-
wise it is unfeasible and is discarded. Cell subdivi-
sion stops at some predetermined resolution.

In the flow chart shown in Figure 3, the function
Split1 is used to subdivide the cells when no knowl-
edge of the U function values at the vertices and
middle point is required, while Split2 is used when
the U function value must be determined at the
new vertices and middle points. The algorithm can
be modified to find the intersection of force
workspaces corresponding to a number of different
force tasks. To minimize the amount of computa-
tions, the cells are deemed feasible at each test level
only when they have been determined to be feasible
for all tasks at that test level. For example, a cell is

Ž .declared feasible by TestFJAC only if Eq. 5 is veri-
fied over the entire cell for all of the required tasks.

Examples. We generated a FW for the two-link
planar manipulator used previously and depicted in
Figure 1. The center of mass of each link is located
at l s0.5 m and l s0.3 m and the mass ofC M C M1 2

each link is m s0.30 kg and m s0.25 kg. The task1 2
was to apply a force of 8 N at 08. Figure 4 shows the

Figure 4. Force workspace of a two-link manipulator
without gravity.

Figure 5. Force workspace of a two-link manipulator
with gravity.

result of the FW generation algorithm when gravity
acts along the z axis, while Figure 5 shows the
result when gravity acts along the negative t axis
Ži.e., the first joint actuator constraint approximation

.is not valid . Notice that gravity deforms the FW,
assisting the force application at some points, and
making it impossible at other points.

Using the FW generation algorithm described
above, we also generated the feasible base locations
for a redundant three-link SCARA-type manipula-
tor for which gravity acts along the joint axes. The
manipulator parameters are given in Table I. Here,
two force tasks were prescribed. The first task, T ,1
was to apply a force of 10.0 N at 308 at the position

w xTp s 1.0 1.0 0.0 m, while the second task, T ,T 21

was to apply a force of 10.0 N at y308 at the
w xTposition p s y1.0 0.0 0.0 m. Figure 6 depictsT2

the computed locations at which the manipulator
base must be placed so that both tasks can be
accomplished without violating the actuator con-
straints of the manipulator. It is apparent that these
limits have reduced the feasible base locations. Note
that Figure 6 can also be used to place the base to a
location that will tolerate greater force deviations
with respect to the nominal desired force. Clearly,
this can be achieved by placing the base as far away
from the boundaries of the feasible base location
area as possible.

IV. TASK WORKSPACE

The above analysis focused on the application of
some end-effector wrench at some particular loca-
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Table I. Three-link manipulator parameters.

Ž . Ž .LinkrJoint i l m t Nmi i, max

1 1.4 10.0
2 1.0 5.0
3 0.6 3.0

tion. However, there are tasks for which wrenches
must be applied along some given path. If the task
is simple, such as applying a constant force in a
constant direction, then the FW remains the same
throughout the execution of the task. Therefore, the
task is feasible if the path starting at some initial
location is contained within the FW; i.e., placing the
end-effector at the start location guarantees that the
manipulator can accomplish the task without ex-
ceeding its actuator constraints. In general, a simple
FW is not sufficient to determine if the manipulator
can perform the entire task or not. We call the
collection of all possible initial locations from which
we can perform the task of applying some wrench

Ž .along a given path the task workspace TW . Accord-
ing to its definition, the TW is a subset of the FW.

To illustrate the concept of the task workspace,
consider a two-link manipulator example with l s1
1.0 m, l s0.9 m, and t s10 Nm, t s62 1, max 2, max
Nm. The union of the light and dark gray areas in
Figure 7 depicts the FW for applying a force of 12 N
at 08. In comparison, the dark gray region depicts
the TW when the task is to apply the same force
along a straight line of 0.5 m along the negative x
direction.

Figure 6. Feasible base positions for two different tasks.

Ž .Figure 7. Comparison of the FW light gray and the TW
for a two-link manipulator.

Note that the shape of the TW depends on the
force-task, whose path may be arbitrary with an F
direction and magnitude changing along it. There-
fore in general, the task workspace cannot be deter-
mined symbolically. However, a numerical algo-
rithm such as the one proposed in this work can
generate the TW or feasible base positions for an
arbitrary task, even if no symbolic description of the
task is available.

To obtain an accurate TW, each point of the
initial force workspace must be validated for the
entire path. The joint torque histories from the start-
ing point and over the path must never exceed their

Žrespective actuator limits. Again, the quadtree for
. Ž .2D or octree for 3D method can be implemented

to decompose the workspace in a more efficient
manner. The test function in this case must be
validated for each starting point over the entire task
before admitting it as part of the task workspace.

To generate the TW, the core of the algorithm
used in the previous section is used again. The
testing functions that determine the feasibility of a
cell are modified to account for the fact that the
wrench must now be applied along some arbitrary
path. The kinematic feasibility test verifies that the
path starting at any given cell location is contained
at all times inside the kinematic workspace. Simi-
larly, the first joint actuator constraint test verifies
that the actuator torque limit of the first joint is
never exceeded along the entire path.

For a path of length S, if s is the position of the
end-effector along the path, then the normalized
path length is defined as sssrS, and thereforeˆ

Ž .0FsF1. The test given by Eq. 5 is modified asˆ

Ž . Ž . Ž . Ž .max p p , s =f s qn s ?z Ft 20ˆŽ .EE EE 1 1, max0s
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where p refers to the starting location of theEE0

path. Also, the definition of the U function is modi-
fied to reflect the fact that the wrench is now being
applied along a path,

Ž .U p , Fs EE0

Ž .s max min max t f p p , s , qˆ Ž .ž /i IK EE EE r0s q ir

Ž .21

Ž . Ž . Ž . Ž .Replacing Eqs. 5 and 15 by Eqs. 20 and 21
allows us to use the FW generation algorithm for
computing the TW.

Example. This modified algorithm was used to
generate the TW of the same three-link planar ma-
nipulator used in the previous section. The task was
to apply a constant force of 10 N directly toward
the center of a quarter circle of radius 0.5 m. For this
task, it is impossible to determine the shape of the
TW from a simple inspection of the FW, as was
done in Figure 7. Figure 8 shows the path of the
task and the feasible base positions found using

Ž .Eq. 2 when the starting position for the task is
w xTp s 1.0 1.0 0.0 m. Also shown in the same fig-T

ure is a mobile manipulator whose base has been
placed to a position from which it is able to accom-
plish this task. This example also demonstrates the
advantage of having manipulators with mobile bases
in performing large force-tasks; for example, this
manipulator would not have been able to execute

Figure 8. Feasible base positions for a three-link planar
manipulator found using the TW.

this task if its base was located at the origin and
was not mobile.

V. CONFIGURATION PLANNING FOR
REDUNDANT MANIPULATORS

Optimal Configurations

A redundant manipulator has more degrees of free-
dom than a task requires, allowing one to choose
additional conditions, which allow for redundancy
resolution. Such conditions include energy mini-
mization, joint limit avoidance, manipulability max-
imization, etc. A comprehensive review of geomet-
ric dynamic, or static criteria can be found in ref 11.
To apply these, some manipulator performance in-
dex is defined first, and then optimized to result in
planning configurations and trajectories. However,
if these criteria are norm-based, they affect the ma-
nipulator in an overall manner; i.e., they cannot
ensure that individual joint limitations are not vio-
lated. For example, optimizing the mechanical ad-
vantage, does not guarantee that individual joint
actuator limits are not exceeded.

In the previous section, we referred to redun-
dant manipulators and established a criterion for
computing their force or task workspace. For a point
to belong in those workspaces, there should be at
least one configuration or one set of successive
configurations at which the system can apply the
desired wrenches.

In this section, we are interested in designing a
force-task planner for redundant systems, able to
select an optimal configuration or a succession of
optimal configurations, so that the force capabilities
are maximized. To do this, one must establish an
appropriate criterion. This criterion should ensure
necessarily that all individual joints are not required
to exceed their force or torque limits. If configura-
tions subject to this requirement do not exist, then
the desired task is unfeasible. In addition, one may
require that the normalized load of the most loaded
actuator is minimized. This additional condition will
then yield optimal manipulator configurations. Note
that such a criterion has been defined already in Eq.
Ž .15 , where the focus was identifying feasible points,
and is repeated here in a slightly modified form,

U < < Ž .q such that Us min max t 22ˆr i
q ir

If the end-effector point of interest is in the FW of a
system, then the U is less than or equal to 1.
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Therefore, the first requirement discussed above is
automatically met. Note however, that the criterion

Ž .given by Eq. 22 allows one to find the optimal
configuration qU , as defined above. This is because
this criterion also provides the redundant joint an-
gles qU at which the load of the most loaded joint isr
minimized. This optimal qU , along with the end-r
effector location and inverse kinematics, allows
computing the optimal configuration qU. If the ma-
nipulator configuration is qU , then application of the
given wrench will result in minimum loading of the
most loaded actuator. All other actuators will be
loaded less than this one, in a normalized sense.

Force-Task Planning

Force-task planning in redundant systems requires
that a succession of optimal configurations for the
manipulator is found as a function of the path
end-effector. To solve this problem, a min]max op-
timization is performed as a function of the path
parameter s. The optimal qU is computed for theˆ
initial point on the path, where ss0, and the proce-ˆ
dure is repeated by increasing s, until the end of theˆ
path, where ss1. It can be shown that the resultingˆ
optimal configurations qU are piecewise continuous.
However, there are path points at which the manip-
ulator must change its posture while keeping its
end-effector at the same location.14 This can be
explained as follows. Assume that actuator A is the
most loaded one during motion along some path
segment. At a switching point, actuator B becomes
equally loaded to A, i.e., their normalized torques
are equal. If for further motion of the end-effector
along the path actuator B is the most loaded one,

Ž .then Eq. 22 may result in a different set of optimal
configurations, and therefore in a discontinuity in
qU. Note that there is no need to perform the switch-
ing rapidly, as we are interested in path and not
trajectory following. For example, removing an ORU
with the special purpose dexterous manipulator
Ž .SPDM requires application of a given wrench along
a given path. If at some point along the path two of
the manipulator joints are equally loaded and
switching has to occur, then the end-effector stops
moving until the manipulator slowly reconfigures
itself. Once this happens, it will resume applying
the desired wrench along the desired path. If during
configuration switching, a manipulator’s end-effec-
tor is not able to apply the desired wrench, then the
particular combination of desired path and wrench
is not feasible without repositioning the manipula-
tor base.

In some cases, switching configurations may be
undesirable or too time consuming. Then, one can
reduced the switchings by selecting suboptimal con-
figurations, i.e., ones for which actuator normalized
forces or torques are below 1, but not necessarily
minimum. However, in some cases switching can-
not be avoided completely. Next, the min]max opti-
mization along a path is illustrated using an exam-
ple, and compared to a norm-based method.

Example. The planning method described above is
applied here to the three-link SCARA manipulator
whose parameters are given in Table I. The force-task
consists of applying a force of 8 N at 08 along a
straight line connecting points A and B with coordi-

Ž . Ž . Ž .nates x , y s 0.3, y0.6 m and x , y sA A B B
Ž .2.3, y0.6 m, i.e., a motion parallel to the x axis.

Ž .For this system, Eq. 22 becomes

U Ž Ž ..q such that min max t f p , qˆ1 i IK , 3 L EE 1
q i1

Ž .is2, 3 23

Ž .where f p , q is the vector of inverse kine-IK , 3 L EE 1
matic functions for a three-link planar manipulator
when joint angle q is chosen as the redundant joint1
variable. However, any other angle could have been
used. Figure 9 depicts the result of the min]max
optimization in the form of the maximum normal-

Ž .ized torque, U p , F , as a function of the pathEE
parameter s. Figure 10 displays the correspondingˆ
solution for qU. Discontinuities in this figure corre-1
spond to switchings from one configuration to an-
other. To minimize the number of switchings, one

Figure 9. Maximum normalized torque vs. path parame-
ter s corresponding to the optimal and minimum switch-ˆ
ing solutions.
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Figure 10. Optimal q -configurations along path s.̂1

can use a suboptimal solution as shown in Figure 9.
This suboptimal solution requires a single switching
at ss0.7. Figure 10 displays the resulting solution
for q , while Figure 11 displays the evolution of1
configurations along the path when the minimum
switching solution is used.

Next, the proposed method is compared to a
frequently used method which resolves the redun-
dancy by minimizing the sum of weighted actuator
squared torques as follows,

U � 2 Ž . 2 Ž . 2 Ž .4q satisfies min w t q qw t q qw t q1 1 1 1 2 2 1 3 3 1

Ž .24

Ž .Weights w is1, 2, 3 are needed especially in thei
case where prismatic and rotary actuators coexist so

Figure 11. Snapshots of configurations for the minimum
switching solution.

Figure 12. Maximum normalized torques comparison for
the min]max optimal and the squared-torques methods.

that the criterion is dimensionally homogeneous.
Note that the min]max method proposed here does
not suffer from this limitation. Also note that the

Ž .criterion given by Eq. 24 does not guarantee that
during a force-task no actuator will saturate. In-
stead, it guarantees that the ‘‘power’’ required is
minimum.

To compare the solution obtained previously by
using the min]max criterion, to the one resulting

Ž .from the use of Eq. 24 , we apply the latter using
Ž .unit weights. In such a case, Eq. 24 roughly mini-

mizes total power consumption. The normalized
torques computed using the min]max optimal and
the squared-torque method are shown in Fig-
ure 12, while the corresponding q -configurations1
are shown in Figure 13. Figure 12 reveals that the
maximum normalized torque computed by the

Figure 13. Joint angle q comparison for the min]max1
optimal and the squared-torques methods.
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squared-torque method exceeds the maximum
available, 1.0, for a substantial part of the task.
Therefore, in the case where the desired end-effector
force is large, such a method fails to yield feasible
posture planning. On the other hand, the min]max
optimal method yields normalized torques that are
always below one. It should be noted that changing

Ž .the weights in Eq. 24 does not alleviate the prob-
lem; for example, increasing the weight on joint 3
does result in lower torques for it, but then the
other joint actuators do saturate.

VI. CONCLUSIONS

This article presented a framework for the problem
of applying large wrenches with robotic systems of
limited force or torque actuator capabilities. It was
shown that the configurations in which such sys-
tems can apply a large wrench are limited. Mapping
these configurations to the Cartesian space gives

Ž .rise to the concept of the force workspace FW . An
efficient numerical algorithm based on the 2 n-tree
decomposition of the Cartesian space was proposed
to generate the FW of a manipulator. It was shown
that force capabilities can be improved by employ-
ing base mobility and manipulator redundancy.
Based on the FW generation algorithm, a planning
method was presented which results in proper base
positioning relative to large-force quasistatic tasks.
In addition, the case of tasks requiring the applica-
tion of a wrench along a given path was considered.
The task workspace, the set of Cartesian space loca-
tions that are feasible starting positions for such
tasks, was shown to be a subset of the force
workspace. This workspace can be used for identify-
ing proper base or task positions that will guarantee
task execution along desired paths. Finally, to plan
redundant manipulator postures during large
force-tasks, a new method based on a min]max
optimization scheme was developed. Unlike other
norm-based methods, this method guarantees that
no actuator capabilities are exceeded, and that the
force or torque of the most loaded joint is mini-
mized. Illustrative examples were given that
demonstrate the validity and usefulness of the pro-
posed framework.
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mation de Chercheurs et l’Aide a la Recherche
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