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translational motion of the system, and a set of body-fixed vectors which reflect both
geometric configuration and mass distribution of the system are used. On the other

Žhand, the direct path method relies on taking a point on the base body preferably its
.center of mass as the representative point for the translational motion of the system.

The consequences of using each of the two approaches in deriving dynamics equations
and in control design of SFFRs are discussed. It is revealed that the direct path method
is a more appropriate approach for modelling multiple arm systems, in the presence of

Ž .external forces!torques i.e., free-flying mode . A 14 degree-of-freedom space free-
flying system is considered as a benchmark system and a quantitative compar-
ison between the two approaches is presented. The results show that the direct
path method requires significantly less computations for position and velocity analy-
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I. INTRODUCTION

Unlike fixed-based manipulators, the spacecraft
Ž . Ž .base of a space free-flying robot SFFR can re-
spond to dynamic reaction forces due to manipula-
tor motions. Hence, in order to control such a sys-
tem, it is essential to consider the dynamic coupling
between the manipulators and the base. To this end,
one should first derive a proper kinematics model
for the system. Early studies focused on space
robotic systems with a single manipulator, while the
more complex case of multiple manipulators has
received some attention recently.

The kinematics of a single manipulator SFFR
was described using the virtual manipulator approach.1
Under the assumption of no external forces acting
on the system, the system center of mass is fixed in
inertial space, enabling the description of the kine-
matics of a free-floating system by a virtual kine-
matic chain with a fixed base. This approach has
been employed in path planning of space manipula-
tors aiming at minimization of spacecraft attitude
disturbances.2 The generalized Jacobian matrix for a
free-floating system was presented to reflect both
momentum conservation laws and kinematic rela-
tions.3, 4 Assuming that no external forces are ap-
plied on a rigid robotic system with revolute joints,
a generalized Jacobian matrix was derived and em-
ployed for control purposes. The proposed general-
ized Jacobian matrix converges to the conventional
Jacobian, when the base body is relatively massive.
This Jacobian has been derived for multiple arm
systems, and employed in minimizing attitude dis-
turbances due to manipulator motions.5 The effi-
cient computation of the generalized Jacobian ma-
trix for control purposes, in the case of multiple arm

space robots, has been presented.6 The barycentric
vector approach was employed to study kinematics
and dynamics of a single arm SFFR in free-floating
mode.7, 8 Taking the center of mass of the whole
system as a representative point for the translational
motion, and using barycentric vectors which reflect
both geometric configuration and system mass dis-
tribution, results in decoupling the total linear and
angular momentum equations from the rest of the
dynamic equations, and therefore in a system equa-
tion reduction. This approach was also applied to
obtain the dynamics and to control a multiple arm
SFFR in free-flying mode.9, 10

Most studies discuss the kinematics of space
free-flyers in brief, and as a prelude of the dynamics
and control. This article focuses on the kinematics of
systems of multiple manipulators mounted on a
spacecraft, and studies the consequences of using
different kinematics approaches on deriving dynam-
ics equations and on system control. To this end,
two fundamental approaches for the kinematics
modelling of a rigid multi-arm space robotic system
are developed, and the results obtained are com-
pared. In section II, free-flyer kinematics are devel-
oped using a minimum set of body-fixed barycentric
vectors. Position analysis based on the definition of
these vectors, and velocity analysis leads to a
derivation of a Jacobian matrix of the system. In
section III, free-flyer kinematics are developed based
on the direct path method,11 using a set of body-fixed
vectors. Comparisons of the developed approaches
allow the conclusion that the direct path method
results in equations with simpler terms, and re-
quires significantly less computations for position
and velocity analyses. Therefore, it emerges as a
more appropriate approach for modelling multiple
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arm systems, especially in the presence of external
forces.

II. THE BARYCENTRIC VECTOR
( )APPROACH BVA

In this section, the kinematics of a rigid multiple
arm free-flying space robotic system is developed,
using a minimum set of body-fixed barycentric vec-

Ž .tors. The motion of the system center of mass CM
is used to describe system translation with respect
to an inertial frame of reference, XYZ. The body 0 in
Figure 1, represents the spacecraft of the free-flyer,
which is connected to n manipulators or ap-
pendages, each with N links. Manipulator jointsm

Ž .are revolute with a single degree-of-freedom DOF .
The joint angles and rates are represented by

Ž Ž1.T Ž2.T Žn.T .TK!1 column vectors !" ! , ! , . . . , ! , and
˙ ˙Ž1.T ˙Ž2.T ˙Žn.T T Žm.Ž .!" ! , ! , . . . , ! , where ! is an N !1m
column vector which contains the joint angles of
mth manipulator, and K"Ýn N . The total num-m" 1 m
ber of DOF of the system, including the spacecraft,
is N"K#6.

The inertial position of an arbitrary point P, R ,P
can be written as

Ž .R "R #" 1P CM P

and
Ž ." "" #r 2P C p! Ci i

where " is the position vector of P with respect toP
the system CM, R is the inertial position of theCM
system CM, C is the CM of the ith body, " is itsi Ci

position vector with respect to the system CM, and
r is the position vector of P with respect to C .p! C ii

Next, " can be computed and expressed in termsCi

of barycentric vectors. Note that for simplicity, ad-
ditional subscripts and superscripts are not added
in the above equations. When a more precise speci-
fication is required, subscript ‘‘0’’ is used for the

Ž .base, a right superscript e.g., ‘‘m’’ to indicate a
Ž .specific manipulator, and a right subscript e.g., ‘‘i’’

is used to indicate a specific body of that manipu-
lator.

Definition of Barycentric Vectors: Vectors " inCi
Ž .Eq. 2 , are position vectors of the CM of the ith

Figure 1. Developing barycentric vector approach for a free-flying space robotic system
with n manipulators.
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body with respect to the system CM. These vectors
can be computed based on the definition of the CM
location,

Nn m
Žm. Žm. Ž .m " # m " "0 3Ý Ý0 C i C0 i

m"1 i"1

and using the following geometrical relationships,

"Ž1.$"Ž1. "r Ž1. $ lŽ1. i"1, . . . , NC C i$1 i 1i i$1

...

"Žm.$"Žm. "r Žm. $ lŽm. i"1, . . . , NC C i$1 i mi i$1

...
Žn. Žn. Žn. Žn. Ž ." $" "r $ l i"1, . . . , N 4C C i$1 i ni i$1

Ž . Ž .Equations 3 and 4 represent a system of K#1
Ž .vector equations with K#1 unknowns " whichCi

can be solved to yield

Nn m
Žm.˜ Ž ." "e # l 5a˜ Ý ÝC 0 k0

m"1 k"1

N Njn m m"1, . . . , nŽm. Žm. Ž j. Žm.˜" "r # l # v˜ ˜Ý Ý ÝC 0 k k i ½i i"1, . . . , Nmj"1 k"1 k"1
j"m

Ž .5b

!
!Ž .where denotes body-fixed barycentric vectors de-

fined as

% Žm. Žm. Žm.r "r $e k# ik̃ k k

m"1, . . . , nŽm. Žm.Žm. & Ž .e "$e k" i˜v " 6˜ k kk i ½ i"1, . . . , Nm

Žm. Žm. Žm.'̃l " l $e k$ ik k k

Referring to Figure 1, vectors lŽm. and r Žm. are in-i i
variant body-fixed vectors which describe position
of joints i and i#1 with respect to C , respectively,i
and e and eŽm. are computed as0 i

n
Žm. Žm. Ž .e " r " 7aÝ0 0 1

m"1

Žm. Žm.Ž Žm. . Žm. Žm. Ž .e " l 1$" #r " 7bi i i i i#1

The quantity "Žm. describes the ratio of the out-i
board mass after the ith joint of the mth manipula-

tor with respect to the total mass, and is given by
N Žm.m mkŽm. Žm." " i"1, . . . , N and " "0Ýi m N #1mMk"i

Ž .7c

where M is the total mass of the system, and mŽm.
k

is the mass of the k th body of the mth manipulator.
Ž . Ž .Considering Eqs. 6 and 7 , it can be seen that

barycentric vectors are physically meaningful. For
the ith link of mth manipulator, if an augmented
body is formed by concentrating the inboard and
outboard masses at the corresponding joint of both
ends, then eŽm. describes the CM position of thisi
augmented body with respect to the real CM of the
link. Taking the CM of the augmented body as a

Žm. Ž̃m. Žm.reference point, vectors e , l , and r describe˜ ˜i i i
the CM position of the link, and the position of
joints i and i#1 with respect to that point, respec-
tively.

Ž . Ž .Substitution of Eqs. 5a and 5b for " into Eq.Ci
Ž . Ž .2 , and the result into Eq. 1 completes the position
analysis and yields

P(Base: RŽ0."R # ẽp CM 0

Nn m
Žm.˜ Ž .# l #r 8aÝ Ý k # ! C0

m"1 k"1

Njn
Žm. Žm. Žm. Ž j.˜P(Link : R "R #r # l˜ Ý Ýi # CM 0 ki

j"1 k"1
j"m

Nm
Žm. Ž .Žm .# v #r 8b˜Ý k i p! Ci

k"1

Note that the position vectors in the above equa-
tions are written in terms of invariant body-fixed
vectors. To obtain scalar equations, appropriate
transformation matrices for each term must be em-
ployed. Also, note that based on the spacecraft atti-
tude and corresponding joint angles, the orientation
of any link of the system can also be obtained.

Velocity Analysis: To obtain the inertial velocity of
˙ Ž . Ž .point P, R , Eqs. 1 and 2 are differentiated withP

respect to time, which results in

˙ ˙ Ž .R "R #" ## !r 9˙p CM C i p! Ci i

˙where R is velocity of the system center of mass,CM
Ž .and " is obtained by differentiation of Eqs. 5a˙Ci

Ž .and 5b which describe " in terms of barycentricCi

vectors. Note that barycentric vectors, according to
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the definition, are body-fixed vectors with constant
Žlength as long as system mass distribution does not
. Ž .change . Therefore, differentiation of Eqs. 5a and

Ž .5b yields

Nn m
Žm. Žm.˜ Ž ." "# !e # # ! l 10a˙ ˜ Ý ÝC 0 0 k k0

m"1 k"1

Njn
Žm. Žm. Ž j. Ž j.˜" "# !r # # ! l˙ ˜ Ý ÝC 0 0 k ki

j"1 k"1
j"m

Nm m"1, . . . , nŽm. Žm. Ž .# # !v 10b˜Ý k k i ½ i"1, . . . , Nmk"1

where #s are angular velocities and individual bod-
ies.

Ž . Ž .Substitution of Eqs. 10a and 10b , for " , into˙Ci
Ž .Eq. 9 completes the velocity analysis

˙ Ž0. ˙P(Base: R "R ## ! ẽp CM 0 0

Nn m
Žm. Žm.˜# # ! l ## !rÝ Ý k k 0 p! C0

m"1 k"1

Ž .11a

Žm. ˙ Žm. ˙ Žm.P(Link : R "R ## ! r̃i p CM 0 0i

Njn
Ž j. Ž j.˜# # ! lÝ Ý k k

j"1 k"1
j"m

Nm
Žm. Žm. Žm.

Žm .# # !v ## !r˜Ý k k i i p! Ci
k"1

Ž .11b

Again, in order to obtain scalar equations, appropri-
ate transformation matrices for each term must be
used.

For single DOF joints, the angular velocity of an
individual body can be obtained as

k m"1, . . . , nŽm. Žm. Žm.˙ Ž .# "# # $ z 12Ýk 0 i i ½ k"1, . . . , Nmi"1

where zŽm. is a unit vector along the axis of rotationi
˙Žm.of the ith joint of the mth manipulator, and $ isi

the corresponding joint angle rate.
Note that choosing a set of coordinates as sys-

tem generalized coordinates, the linear velocity of an
arbitrary point P, and the angular velocity of the
corresponding body can be related to the time

Žderivative of generalized coordinates i.e., general-

.ized speeds through a Jacobian matrix. For in-
stance, if point P belongs to the ith body of the mth
manipulator, then

Ṙ p Žm. Ž ."J $ 13i , pŽm.½ 5# i

where J Žm. represents a Jacobian matrix, relating thei, p
vector of generalized speeds $ to the linear velocity
of point P and the angular velocity of body m. The
vector of generalized speeds is selected as

T
T T T˙ ˙ Ž .$" R , # , ! 14ž /CM 0

Ž . Ž . Žm.Then, based on Eqs. 11b , and 12 , J is obtainedi, p
as

Žm. Žm.1 J J3!3 1 2Žm. Ž .J " 15ai , p Žm.0 1 J3!3 3!3 3 6!N

where

!
N Njn m

0 k kŽm. Žm. Ž j. Ž j. Žm. Žm.˜J "$ T r # T l # T v˜ ˜Ý Ý Ý1 0 0 k k k k i , p
j"1 k"1 k"1
j"m

Ž .15b

Njn !kŽm. Ž j. Ž j. Ž j.˜J "$ T l EÝ Ý2 k k k
j"1 k"1
j"m

Nm !kŽm. Žm. Žm. Ž .$ T v E 15c˜Ý k k i , p k
k"1

Žm. Žm. Ž .J "E 15d3 i

The T and T Žk . are rotation matrices between0 j
!

!) *body-fixed frames and the inertial frame, is the
cross product operator defined as

0 $r rz y
!) * Ž .r 0 $rr " 16z x

$r r 0y x

and

Žk . Žk . Ž .Žm .v "v #% r 17a˜ ˜ji , p ji ji p! Ci

1 jŽk . Žk . Žk . Žk . Žk .E " 0 T z &&& T z 0j 3!b 1 1 j j 3!K

Ž .17b
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where % is Kronecker delta, b"Ýk$1 N , and jzŽk .%ji l"1 l j
Ž .T0, 0, 1 is a unit vector along axis of rotation of the
jth joint of the k th manipulator expressed in its own
body-fixed frame. Note that a left superscript refers
to the frame in which the corresponding vector is
expressed, and it disappears for the inertial frame.

Ž . Ž . Ž0.Similarly, based on Eqs. 11a , and 12 , J canp
be obtained for a point P on the spacecraft as

Ž0. Ž0.1 J J3!3 1 2Ž0. Ž .J " 18ap 0 1 03!3 3!3 6!N

where

!Njn
0 kŽ0. Žm. Žm.˜J "$ T e #r # T l˜ Ý Ýž /1 0 0 p! c k k0

m"1 k"1

Ž .18b

Njn !kŽ0. Žm. Žm. Žm.˜ Ž .J "$ T l E 18cÝ Ý2 k k k
m"1 k"1

The above equations provide a complete set of
kinematic relations useful in developing equations
of motion and in control of multiple SFFRs. In the

next section, kinematic equations are developed us-
ing the direct path method.

( )III. THE DIRECT PATH METHOD DPM

In this section, the kinematics of a rigid multiple
arm free-flying space robotic system is developed
using a set of body-fixed geometric vectors. The
motion of the spacecraft CM is used to describe the
system translation with respect to an inertial frame
of reference, XYZ. The rest of the definitions de-
scribed in section II, are applicable here too.

Considering Figure 2, the inertial position of an
arbitrary point P, R , is written asP

Ž .R "R #r 19aP C P0

and
Ž .r "r #r 19bP C p! Ci i

where R is the inertial position of the spacecraftC0

CM, r is the position vector of point P with respectp
to the spacecraft CM, and r is the CM positionCi

vector of the ith body with respect to the spacecraft
CM. Referring to Figure 2, r can be expressed asCi

Spacecraft
(body 0)

Denotes body
center of mass

li
(m)

ir (m) Link i

Link 2

Link 1

Link N

r
0
(m)

Manipulator n

Manipulator/Appendage 1

Z

Y

X R
0C r(m)

Ci

Figure 2. Developing direct path method for a free-flying space robotic system with n
manipulators.
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follows,

Ž .r "0 20aC0

i$1
Žm. Žm. Žm. Žm. Žm.Ž .r "r # r $ l $ lÝC 0 k k ii

k"1

m"1, . . . , n Ž .20b½ i"1, . . . , Nm

where, as before, vectors lŽm. and r Žm. are body-fixedi i
vectors which describe the position of joints i and
i#1 with respect to C , see Figure 2.i

Ž . Ž .Substitution of Eqs. 20a and 20b for r , intoCi
Ž . Ž .Eq. 19b , and the resulting equation into Eq. 19a

completes the position analysis and yields

Ž0. Ž .P(Base: R "R #r 21ap C p! C0 0

i$1
Žm. Žm. Žm. Žm. Žm.Ž .P(Link : R "R #r # r $ lÝi p C 0 k ki 0

k"1

Žm. Ž .Žm .$ l #r 21bi p! Ci

Velocity Analysis: To obtain the inertial velocity of
Ž .point P, Eq. 19 is differentiated to yield

˙ ˙ Ž .R "R #r ## !r 22˙p C C i p! C0 i i

˙where R is velocity of the spacecraft CM. TheC0
Ž .velocity r is obtained by differentiation of Eqs. 20Ċ i

which yields

Ž .r "0 23aĊ0

i$1
Žm. Žm. Žm. Žm. Žm.Ž .r "# !r # # ! r $ l˙ ÝC 0 0 k k ki

k"1

m"1, . . . , nŽm. Žm. Ž .$# ! l 23bi i ½ i"1, . . . , Nm

where #s are angular velocities of individual bod-
ies.

Ž . Ž .Substitution of Eqs. 23a and 23b , for r , intoĊ i
Ž .Eq. 22 completes the velocity analysis,

˙ Ž0. ˙ Ž .P(Base: R "R ## !r 24ap C 0 p! C0 0

Žm. ˙ Žm. ˙ Žm.P(Link : R "R ## !ri p C 0 0i 0

i$1
Žm. Žm. Žm.Ž .# # ! r $ lÝ k k k

k"1

Žm. Žm. Ž .Žm .$# ! l $r 24bŽ .i i p! Ci

Note that the angular velocity of any individual
body, in a treelike structure of bodies with single

Ž .DOF joints, can be obtained using Eq. 12 .
To obtain a typical Jacobian matrix, the linear

velocity of an arbitrary point P on the ith body of
the mth manipulator, and angular velocity of the
corresponding body are expressed as

Ṙ p Žm. Ž ."J $ 25i , pŽm.½ 5# i

where JŽm. represents a Jacobian matrix, and $ isi, p
the vector of generalized speeds, which is defined
as

T
T T T˙ ˙ Ž .$" R , # , ! 26ž /C 00

Note that the generalized speeds are here a function
˙ ˙ Ž .of R and not of R , see Eq. 13b . Then, based onC CM0
Ž . Ž . Žm.Eqs. 12 and 24b , J is computed asi, p

Žm. Žm.1 J J3!3 1 2Žm. Ž .J " 27ai , p Žm.0 1 J3!3 3!3 3 6!N

where
i$1

0 k kŽm. Žm. Žm. Žm. Žm.J "$ T r # T r $ lŽ .Ý1 0 0 k k k
k"1

!

i iŽm. Žm. Ž .Žm .$T l $ r 27bž /i i p! Ci

i$1
!k kŽm. Žm. Žm. Žm. Žm.J "$ T r $ l EŽ .Ý2 k k k k

k"1

!i iŽm. Žm. Žm. Ž .Žm .# T l $ r E 27cž /i j p! C ii

Žm. Žm. Ž .J "E 27d3 i

and the definitions given for different terms in Eq.
Ž .15 , are applicable here, too.

Similar to the above, JŽ0. can be obtained for thep
one corresponding to point P on the spacecraft,

Ž . Ž .based on Eqs. 12 , and 24a ,

Ž0.1 J 03!3 1Ž0. Ž .J " 28p 0 1 03!3 3!3 6!N
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where

!Ž0. 0 Ž .J "$ T r 291 0 p! C0

IV. DISCUSSION AND COMPARISONS

In this section the two approaches developed for
kinematics analysis of SFFR with rigid multiple
manipulators are compared. However, as revealed
by the above formulations, the barycentric vector

Ž .approach BVA is developed based on

a. Taking the center of mass of the whole sys-
tem as a representative point for the system’s
translational motion.

b. Using a set of body-fixed barycentric vectors
which reflect both geometric configuration
and mass distribution of the system.

Ž .On the other hand, the direct path method DPM is
developed based on

Ža. Taking a point on the base body preferably
.its CM as the representative point for the

translation of the system.
b. Using a set of body-fixed geometric vectors.

Comparing the results obtained for position
Ž . Ž .analysis, Eqs. 8 compared to Eqs. 21 , it can be

seen that the direct path approach results in single

summations, yielding more compact relationships.
Ž .Note that presence of double summations in Eqs. 8

means that all system links are contributing in
defining the position of any arbitrary point P. This
is due to the fact that by taking the center of mass of
the whole system as a representative point for the
translation of the system, the mass distribution of

Ž Ž ..the entire system represented in Eq. 3 has to be
taken into account in writing position relationships.
The difference between the two approaches is more

Ž .considerable for computing velocities, Eqs. 11
Ž .compared to Eqs. 24 , as this leads to a big differ-

ence between the resulting Jacobian matrices, Eqs.
Ž . Ž .15 compared to Eqs. 27 . Note that the complexity
of Jacobian matrix is important because many con-
trol algorithms require its computation; these algo-
rithms can be implemented more easily using the
direct path approach.

To obtain quantitative comparison results for
the two approaches, a 14-DOF free-flying system is
considered, see Figure 3. The spacecraft includes
three open chain appendages, two of which are
3-DOF manipulators, while the third is a 2-DOF
communication antenna. A complete description of
the system can be found in ref. 13. The required
multiplications and additions for obtaining the posi-

Žm. Ž .tion of a point P, R , on the first i"1 and thep i
Ž . Ž .last link i"3 of the first manipulator m"1 , are

compared in Table I. It is seen that the required
computations for the BVA are almost twice as many
as those of the DPM, when a point P belongs to the

Figure 3. A spatial three-manipulator!appendage space free-flyer.
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Table I. Comparing the required computations for
Ž1. Ž .position analysis, i.e., obtaining R based on Eqs. 8bpiŽ .and 21b .

i"1 i"3
Mult. Add. Mult. Add.

BVA 81 84 81 84
DPM 18 21 36 39

third link. The difference is more significant when a
point on the first link is considered. In such a case,
the required computations for the DPM substan-

Žtially decrease multiplications and additions of 18
.and 21, respectively while the BVA requires the
Žsame effort as before i.e., 81 multiplications and 84

.additions . Therefore, as a result, the required com-
putations for the BVA are almost four times greater
than those of the DPM in this case. Note that here
the required computations for calculating the

Ž . Ž .barycentric vectors, given by Eqs. 6 and 7 , are
not considered. Taking these computations into ac-
count makes the difference even more pronounced.
The required computations for obtaining the veloc-

Ž . Ž .ity of a point P, according to Eqs. 11 and 24 , are
displayed in Table II. These results ratify that the
DPM requires significantly less computations, e.g.,
135 multiplications and 111 additions for BVA are
compared to 30 and 27 for DPM, respectively.

It should be mentioned that the barycentric vec-
tor approach is one which may be very useful in
developing dynamics equations and control laws in
certain cases. In fact, it results in decoupling of the
total linear and angular motion from the rest of the
equations, when no external forces and torques are
applied on the system. This is very helpful in study-
ing attitude dynamics of large space systems, de-
coupled from the orbital mechanics, or the dynam-

Žics and control of free-floating robotic systems i.e.,
the ones in which the spacecraft thrusters are turned

.off . However, according to the above discussion,

Table II. Comparing the required computations for
Ž1. Ž .velocity analysis, i.e., obtaining R based on Eqs. 11bpiŽ .and 24b .

i"1 i"3
Mult. Add. Mult. Add.

BVA 135 111 135 111
DPM 30 27 60 51

the direct path approach results in more compact
equations in kinematics and consequently in dy-
namics. This approach results in a larger number of
dynamics equations with simpler terms which have
clearer physical interpretation, see ref. 13. Since the
system dynamics cannot be reduced when external
forces act on the system, this approach becomes
more appropriate in the case of multiple arm sys-
tems, subjected to spacecraft thruster forces or other
external forces and torques. Note that to develop
model-based algorithms for controlling free-floating
systems, the dynamics model obtained based on the
direct path approach will have to be reduced by
mathematical techniques such as the orthogonal
complement methods.a However, if the barycentric
vector approach is used, no such methods are
needed and the equations can be directly reduced
using a modified Lagrangian, see ref. 7.

V. CONCLUSIONS

This paper studied the kinematics of a multiple
Ž .manipulator space free-flying robot SFFR . Two ba-

sic approaches for kinematics modelling of a rigid
multibody space robotic system were developed,
and the obtained results were compared from a
computational point of view. Taking the center of
mass of the whole system as a representative point
for the translational motion of the system, and using
a set of body-fixed vectors which reflect both geo-
metric configuration and mass distribution of the
system, are characteristics of the so-called barycen-
tric vector approach. This approach eventually results
in decoupling the total linear and angular motion
from the rest of the dynamics equations, when no
external forces!torques are applied on the system.
On the other hand, taking a point on the base body
as the representative point for the translational mo-

Žtion of the system preferably the center of mass of
.the spacecraft , characterizes the so-called direct path

method. This approach results in a larger number of
dynamics equations with simpler terms with clearer
physical meaning. A 14-DOF space free-flying sys-
tem was considered for a quantitative comparison
between the two approaches. It was shown that the
direct path method requires significantly less com-
putations for position and velocity analyses. There-
fore, as a result, using the direct path approach is
more appropriate when dealing with multiple arm

a For a description of the natural orthogonal complement method
see ref. 12.
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systems, and especially in the presence of external
forces!torques.
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