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Abstract

In a number of industrial, space, or mobile applications, reaction forces and moments transmitted by

a manipulator to its base are undesirable. In this paper, we analyze the problem of force and torque

transmission in robotic systems, and propose design and planning methods that can eliminate it, or

reduce it. Based on force and moment transmission analysis, a three DOF redundant manipulator

design is selected. Dynamic reaction forces are eliminated by force balancing. Reaction moments

are eliminated by following reactionless paths, whose planning is simplified by rendering the

dynamics configuration-invariant. Reactionless Workspaces are defined in which any end-effector

path can result in zero dynamic reactions. An example is used to demonstrate the usefulness of the

proposed methods. An important advantage of these methods is that the manipulator can be used

either as a redundant, or as a reduced DOF reactionless system.

1 Introduction

Reaction forces transmitted by a manipulator to its base are highly undesirable. In an industrial

setting, the accuracy of a rapidly accelerating manipulator will be degraded by vibrations caused by

the transmission of large reaction forces to its mounts, (Karidis et al., 1992). In space, dynamic

reactions due to an accelerating manipulator mounted on a satellite will disturb the position and

orientation of the latter (Dubowsky and Torres, 1991). If allowed to transmit reaction forces,

manipulators operating in a micro-gravity environment will have adverse effects on it (Rohn et al.,

1988). Manipulators mounted on compliant mobile bases, be it a truck, a Mars rover, or the Shuttle

Canadarm, will inevitably excite the base dynamics and result in poor dynamic performance and

accuracy (Erb, 1990, West et al., 1990).

Moving a manipulator slowly is the simplest way to reduce reactions to acceptable levels.

However, this is not acceptable in high performance applications. Reducing manipulator reactions

by cost function minimization applied to redundant manipulators was proposed (Quinn et al.,

1988). Complete shaking force elimination can be achieved by adding counterweights or by

relocating the support point of the manipulator (Berkof et al., 1977, Walker and Oldham, 1978).
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Minimization of the rocking moment was accomplished by using an additional actuator with a

preset inertia, along with a suitable controller (Karidis et al., 1992). However, such actuators can not

contribute to system manipulative capabilities. In space, there exist paths that, if followed by a

manipulator mounted on a free-floating spacecraft, zero attitude disturbance for the spacecraft will

result (Papadopoulos, 1992). Use of such paths may require relocating the spacecraft to a favorable

initial position, while reaction forces are not eliminated, i.e. the spacecraft will translate.

In this paper we analyze the transmission of force and moment reactions in manipulators and

propose guidelines that can result in reactionless motions. These include force balancing of the

manipulator, invariance of its mass matrix, and use of special joint-space reactionless trajectories.

The concept is demonstrated with a three Degree-of-Freedom (DOF) nine link redundant

manipulator with its three direct drive actuators base-mounted and sharing a common axis; with this

design, reaction moments can be canceled if the actuators rotate in opposite directions. The system

Center of Mass (CM) is fixed by force balancing, and the dynamics of the system are rendered

invariant. The latter feature simplifies planning of reactionless paths, since they simply belong to

fixed orientation joint space planes. Reactionless Workspaces are defined in which it is possible to

follow any end-effector path and still eliminate dynamic forces and moments. An advantage of the

proposed method is that a manipulator can be used either as a redundant or as a reduced DOF

reactionless system.

2 Base Force and Moment Balancing

Consider a manipulator as a mechanism that transmits a force f B and a moment nB to its base at a

single point B, see Fig. 1. A force balance for the manipulator in the presence of gravity, results in

f B = - d
dt

M«rCM{ } + Mg (1)

where M is the total manipulator mass, g is the acceleration of gravity vector, and «rCM  is the velocity

of the system CM. It can be seen that f B has an undesired dynamic component resulting from

changes in system’s linear momentum, and a static component due to gravity (zero in space). The
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dynamic components in Eq. (1) are zero if the system CM does not accelerate, or equivalently, if

«rCM  = const. Assuming zero initial CM velocity, integration of this condition yields rCM  = const.,

i.e. to transmit zero dynamic forces, the manipulator’s CM has to be fixed. In principle, this

condition can be achieved by design. To this end, note that by definition

rCM = 1
M

mj
j =1

l

Â rc, j (2)

where l is the number of manipulator links, mj  the mass of the jth link and rc, j  the position vector

of the jth CM with respect to base frame origin B, see Fig. 1. Differentiation of Eq. (2) yields
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where n is the number of DOF, «qi  is the ith joint rate, «q  is the n ¥1 vector of joint rates, and         gg is a

3¥n matrix with         ggi  its columns. Eq. (3) shows that the condition rCM  = const. can hold for any set

of «q  if and only if all         ggi  are identically equal to zero, or equivalently if         gg  ∫ 0000. In principle, the

condition         ggi  = 0 can be satisfied by proper design, usually by static balancing. However, balancing

may not possible for any manipulator. For example, for planar systems without axisymmetric link

groupings, force balancing by internal mass redistribution is possible if, and only if, for each link

there is a path to the ground by way of revolutes only (Berkof et al., 1977). As a consequence, a

planar mechanism with revolute joints can be balanced always. Therefore, in this paper we consider

manipulators planar with revolute joints, only.

It is worth noting that the dynamics of a manipulator can be written as (Abu-Abed, 1993)

        tt = H(q) ««q + V (q,«q) + ggT(q) g (4)

where H(q) is the n¥n manipulator mass matrix, q = [q1,…,qn]
T is the vector of generalized

coordinates, tttt = [t1,…,tn]
T the vector of actuator torques, and V q q( ,«) the vector of velocity terms.

Eq. (4) shows that force balancing the manipulator, also eliminates static actuator requirements and

simplifies a system’s dynamics.

To study reaction moments, a moment balance written about point B in Fig. 1 yields
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nB = rCM ¥ Mg - d

dt
I j ∑ ww j + mjrc, j ¥ «rc, j( )

j =1
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˝
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where nB is the moment transmitted to the base, I j  is the jth link inertia, and         ww j  its inertial angular

velocity. The sum in Eq. (5) represents the angular momentum of the manipulator with respect to

the base frame origin B, and can be equivalently written as (Papadopoulos and Dubowsky, 1991)

        
I r r q qj j j c j c j

j

l

m∑ + ¥( ) =
=

Â ww , ,
« ( )«

1

D (6)

where D(q)  is an inertia-type matrix of size 3¥n. The static moment represented by the cross

product in Eq. (5) can be eliminated by locating the system CM at point B.

Eliminating nB can be achieved by using additional base actuators, such as reaction wheels, that

can cancel reaction moments. This method was employed in the design of a high-acceleration

minipositioner (Karidis et al., 1992), and can been used in space (Dubowsky and Torres, 1991). A

limitation of this method is that any additional actuators cannot be used to increase the DOFs of a

manipulator. Here, we are interested in eliminating dynamic moments using a manipulator’s own

design. In such case, all links and actuators can contribute to manipulation tasks.

Assuming zero initial velocities, Eqs. (5) and (6) suggest that to eliminate dynamic moments the

angular momentum must be zero. However, unlike with linear momentum, in general it is not

possible to set D q 0( ) =  by design. This is because the elements of D(q)  contain sums of inertia

and other configuration dependent terms that cannot be set equal to zero for all configurations q.

Another possibility is to set D(q)«q = 0, which requires that «q  trajectories are in the null space of

D(q) . This solution results in velocity constraints that reduce the available DOF of the manipulator,

and therefore, redundant systems must be employed if the end-effector is to follow any desired

paths in space. However, D(q)«q = 0 represents a Pfafian equation which, in general, cannot be

integrated to yield constraints in terms of the joint angles q. The nonintegrability of the angular

momentum introduces nonholonomic characteristics, i.e., a closed path in joint or Cartesian space

will result in a drift in a manipulator’s configuration. Such features are undesirable, since after

some time, some joint will reach its limits, and motion will stop. To avoid nonholonomic problems,
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one can make D(q)  invariant by design or, equivalently, equal to a constant matrix. Then

D(q)«q = 0 can be integrated to yield configuration constraints. This is the approach taken here.

3 Planar Manipulator Designs for Reactionless Motions

Consider a planar manipulator with revolute joints for which the dynamic reaction forces were

eliminated, i.e.         gg 00= . Due to Eq. (4), actuator torques necessary to cancel static gravity torques are

also zero. Therefore, at static conditions, nB is also zero. Direct observation of Eq. (5) under static

conditions shows that in such case rCM  is zero, i.e. force balancing results in zero static moments

about the attachment point of the manipulator to its base, point B in Fig. 1.

As discussed above, a desired step in eliminating dynamic moments transmitted to the base is to

make D(q)  constant. The actual form of D(q)  will depend on the mechanical design of the

manipulator. If only one actuator is located at the base, then nB will be necessarily nonzero, and

equal in magnitude to t1. In such case, it will not be possible to have D(q)«q = 0. However, if two or

more actuators are mounted at the base and act along the same axis k containing the origin B, then it

is possible to eliminate nB by having torques from one actuator cancel torques of the others. Such

design will certainly allow for D(q)«q = 0, and possibly for a constant D(q) . It can be shown that

invariance of D(q)  requires invariance of the mass matrix H as the elements of D(q)  are linear

combinations of those of H.

From the above analysis, the following design guidelines emerge for reactionless planar

manipulators: (a) force balance a manipulator with revolute joints to eliminate dynamic forces, and

(b) use mass matrix invariance and special planning techniques to eliminate reaction moments. As

explained above, guideline (b) introduces a constraint between the joint angles, and consequently

redundant manipulator designs must be employed.

Based on this analysis, a 3 DOF nine link parallel manipulator with three actuators mounted at

its base is selected that can meet the requirements for reaction-free motion. For other designs that

can result in reactionless motions, see (Abu-Abed and Papadopoulos, 1994). To maintain planar

operation, the manipulator is assumed to be symmetric with respect to its plane of action. As evident
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from Fig. 2, this manipulator is redundant in terms of the in plane positioning requirements, and

was proposed as a mechanical hand finger (Youcef-Toumi and Yahiaoui, 1988). This manipulator is

composed of three parallel mechanisms; links 1-4-6 are always mutually parallel, and so are 2-5-8

and 3-7-9. Note also that the following sets of links share common lengths: l1 = l4 = l6, l5 = l8, and

l3 = l7. Each set of parallel links can be made to rotate while the other links are either stationary or

translating. The driving links (1, 2, & 3) and their direct drive actuators are on the base; this

simplifies decoupling of the manipulator’s mass matrix and results in simpler dynamic equations.

In the next section we focus on force and moment balancing this nine-link parallel manipulator.

4 Manipulator Design

To force balance the manipulator shown in Fig. 2, first the         ggi  vectors are found according to Eq.

(3), and given in Eq. (A1). Setting these equal to zero results in

m1lc1 + m4lc4 + m6lc6 + (m5 + m7 + m8 + m9)l1 = 0

m2lc2 + m4l2 - m5lc5 - m8lc8 - m9l5 = 0

m3lc3 + m6l3 + m7lc7 + m8l3 - m9lc9 = 0 (7)

where lci  (i = 1,…,9) are the locations of the nine CMs, defined as shown in Fig. 2.

To obtain a reactionless constraint in terms of the joint angles q, the D matrix given in Eq. (A3)

must be made invariant. This yields three more equations to be satisfied by design

m4l2lc4 - m5l1lc5 - m8l1lc8 - m9l1l5 = 0

m6l3lc6 + m7l1lc7 + m8l1l7 - m9l1lc9 = 0

m9l5lc9 - m8l7lc8 = 0 (8)

Note that both Eqs. (7) and (8) are not functions of link inertias. Therefore, lengths lci  can be

adjusted by the use of constant mass counterweights. To solve for the nine lci  lengths, the six

equations (7) and (8) are written in compact matrix form as
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Alc = k (9)

where A is a 6¥9 matrix and k a 6¥1 vector, both functions of link masses and lengths, and lc is a

9¥1 vector that contains the unknown lci . This linear system is under-constrained and has an in-

finite number of solutions including the minimum-norm one. Depending on the relative importance

of the lci, one can minimize Wlc instead of lc, where W is a diagonal weighting matrix. In such case,

the weighted minimum norm solution for lc is given by

lc = W -1(W -1)T A T (AW -1(W -1)T A T )-1 k (10)

Using W = diag (1.0, 0.2, 1.0, 1.2, 1.0, 1.0, 1.0, 1.2, 1.0), Eq. (9) is solved and the resulting

manipulator parameters are displayed in Table I.

Table I. Manipulator Parameters

i l
i
 (m) m

i
 (kg) I

i
 (kgm2) l

ci
 (m)

1 0.50 7.00 0.2501 -0.2214
2 0.18 1.45 0.0025 -0.1111
3 0.20 2.00 0.0180 -0.1605
4 0.50 1.50 0.0199  0.2016
5 0.46 0.70 0.0215 -0.0110
6 0.50 1.50 0.0419 -0.0349
7 0.20 1.15 0.0143 -0.0682
8 0.46 0.50 0.0162  0.0032
9 0.30 0.25 0.0058  0.0027

It is worth pointing out that in this case, the manipulator’s mass matrix is both invariant and

decoupled, resulting in the following equations of motion
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However in general, reactionless manipulators do not necessarily have a decoupled mass matrix.

5 Reactionless Path Planning

As discussed in Section 2, elimination of reaction moments requires that the angular momentum

given by Eq. (6) be maintained equal to zero. For the force balanced and invariant mass matrix

manipulator of the previous section, this equation is written as
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«q1 + l 2 «q2 + l 3 «q3 = 0 (12)

where l 2 = =h h d d22 11 2 1, and l 3 = =h h d d33 11 3 1. This equation suggests that reactionless

motions require that at least one joint be moving opposite to some other one. Since l 2 and l 3 are

constants, Eq. (12) can be integrated to yield

q1 + l 2q2 + l 3q3 = b (13)

where the constant b is called the pose constant, and depends on the initial configuration q.

Equation (13) represents a joint space plane, with llll = [1, l2, l3]
T its normal vector. For a

reactionless motion, all via points and the target point must be on the plane defined by the b of the

initial configuration q. Since a redundant manipulator can reach points in its workspace in more

than one poses, it follows from Eq. (13) that a single x-y point can have a range of b constants

associated with it. Each of these b constants defines a different plane, but since the normal vector llll

is fixed for a given manipulator, all these planes are parallel (Papadopoulos and Abu-Abed, 1994).

Given an end-effector location in x-y space, the range of pose constants which correspond to it

can be found using inverse kinematic relationships. To each of these constants corresponds a set of

q1 - q2 - q3 angles. A plot of q1 versus the available pose constants b is shown in Fig. 3, for two

(x, y) points. This plot can be used to determine if two (x, y) points can be joined by a reactionless

path. To this end, a pose constant which is available to both points, or equivalently, a plot overlap

should exist, such as the one in Fig. 3. For example, point (0.50, 0.50) is reachable from (0.55,

0.90), if the initial angle q1 is between 1.6 and 1.9 rad.

Path planning can be facilitated if the set of points that can be accessed with reactionless paths

from some initial configuration is known. The set of such points defines the Reactionless

Workspace associated with a particular initial configuration. To find this workspace, it is assumed

that the first joint can rotate freely, while relative joint angles a1 = q2 - q1  and a2 = q3 - q2 + p vary

within their limits. The forward kinematic equations for this manipulator are, see Fig. 2

x = l1 cos(q1) - l5 cos(q2) - l9 cos(q3) (14a)

y = l1sin(q1) - l5 sin(q2) - l9 sin(q3) (14b)
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Solving Eq. (13) for q1  yields

q1 = b

1+ l2 + l3

+ l3(p - a2) - a1(l2 + l3)
1+ l2 + l3

= b* + f(a1,a2) (15)

where b* = b/(1+l2+l3) is a constant, and f an angle function of a1 and a2. Substituting Eq. (15)

into Eq. (14) and using the relative joint angles ai , Eq. (14) is written as

x

y
È
ÎÍ

˘
˚̇

=
c(b* ) -s(b* )

s(b* ) c(b* )

È

Î
Í

˘

˚
˙

c(f) -s(f)

s(f) c(f)
È
ÎÍ

˘
˚̇

l1 - l5c(a1) + l9c(a1 + a2)

-l5s(a1) + l9s(a1 + a2)
È
ÎÍ

˘
˚̇

(16)

where c(), s() denote the cosine and the sine of an angle. For a given initial pose, b and therefore b*

are fixed. Hence, the Reactionless Workspace can be found by varying the ai  in their range. Note

that since b* only appears in the rotation matrix in Eq. (16), the shape of the reactionless workspace

is independent of this constant. However, its orientation in space depends on it.

Using Eq. (16), the Reactionless Workspace is plotted in the Cartesian plane for b = 2.4 rad

and depicted in Fig. 4. Any two points in this region can be connected with any path, to result in a

reactionless motion as long as the motion in the joint space adheres to its reactionless plane. If the

desired path cannot be contained in this shaded region, reaction moments will be transmitted to the

base when the end-effector crosses the boundary of the reactionless workspace. Fig. 4 also depict

the Reactionless Workspace corresponding to b = 5.0 rad. As expected, its shape is identical to that

for b = 2.4 rad, but its orientation is different.

6 Simulation Results and Comparisons

The base reactions of the manipulator whose parameters appear in Table I were computed using its

equations of motion. As expected, these parameters result in zero dynamic force transmission,

irrespective of the path followed. To calculate reaction moments, initial and final points A and B

were chosen from a Reactionless Workspace as follows: (xA, yA) = (0.50, 0.50) and (xB, yB) = (0.55,

0.90), with corresponding b = 2.4 rad. To test the effect of different paths on the base reactions

moments, the following three paths were chosen
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1. A path planned in Cartesian space, independent of any reactionless requirements.

2. A path planned in the configuration space; the path did not adhere to any reactionless plane.

3. A reactionless path. In Cartesian space, the path was identical to that in Case 2 above. The x-y

pairs along with the b constant determine the initial and final angles of the manipulator, q
A
 and

q
B
, see Eqs. (13) and (14). The path was a straight line in joint space connecting q

A
 and q

B
,

both lying on the plane defined by Eq. (13).

Quintic polynomial trajectories were used in the simulation to result in continuous joint velocity and

acceleration profiles. A computed torque control scheme was employed to determine motor torques,

while the control gains were the same in all three cases. The required actuator torques t
1
, t

2
, and t

3
,

as well as the resultant base reaction are shown in Fig. 5. Snapshots of the corresponding motion

sequences of links 1, 5 and 9 are also shown. As depicted in Figs. 5 (a) and (b), the resulting

reaction moment is high for Cases 1 and 2, since no reactionless plane is adhered to. For Case 3,

Fig. 5 (c) shows that throughout the motion the base reaction moment is zero.

Although the above analysis indicates zero base reactions, small deviations from the ideal zero

reaction case may occur in practice. Sources of such deviations include manufacturing tolerances,

neglected small unbalanced friction in the direct drive actuators, and manipulator unbalance due to a

payload. However, in all these cases the proposed design will eliminate the most significant base

reactions which are due to manipulator accelerating links. Finally, note that in principle higher DOF

spatial reactionless manipulators can be constructed using as building blocks two or three DOF re-

actionless manipulators. On the other hand, since most of the base reactions are due to the proximal

links of a manipulator, one can use the proposed methods to reduce such reactions significantly.

7 Conclusions

Analysis of force transmission properties of manipulators has shown that dynamic reactions can be

eliminated if the system Center of Mass is kept fixed. For planar mechanisms with revolute joints,

this condition can be satisfied by proper design. However, elimination of reaction moments requires

in general appropriate trajectory planning. Rendering a system’s mass matrix invariant, simplifies
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the planning of reactionless paths, since they only need to be on fixed orientation joint space planes.

A three-DOF planar manipulators was designed based on analysis, and was used to demonstrate the

value of the proposed methods. An advantage of this design is that the manipulator can be used

either as redundant, or as reduced DOF reactionless system.
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Appendix A

For the 3 DOF manipulator in Fig. 2, the columns of the gggg matrix in Eq. (3) are

        gg aa1 1 1 1 4 4 6 6 5 7 8 9 1= + + + + + +[ ( ) ]m l m l m l m m m m lc c c

        gg aa2 2 2 2 4 2 5 5 8 8 9 5= + - - -[ ]m l m l m l m l m lc c c

        gg aa3 3 3 3 6 3 7 7 8 3 9 9= + + + -[ ]m l m l m l m l m lc c c (A1)

where aaaak , (k = 1,2,3), are given by

aaaa k = - sin(qk ) cos(qk ) 0[ ]T
(A2)
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The elements of matrix D(q) = [d1, d2, d3] are given by

d1 = I1 + I4 + I6 + m1lc1
2 + m4lc4

2 + m6lc6
2 + (m5 + m7 + m8 + m9)l1

2 +
+ (m4l2lc4 - m5l1lc5 - m8l1lc8 - m9l1l5)cos(q1 - q2) +
+ (m6l3lc6 + m7l1lc7 + m8l1l7 - m9l1lc9)cos(q1 - q3)

d2 = I2 + I5 + I8 + m2lc2
2 + m5lc5

2 + m8lc8
2 + m4l2

2 + m9l5
2 +

+ (m4l2lc4 - m5l1lc5 - m8l1lc8 - m9l1l5)cos(q1 - q2)

+ (m9l5lc9 - m8l7lc8)cos(q2 - q3)

d3 = I3 + I7 + I9 + m3lc3
2 + m7lc7

2 + m9lc9
2 + m6l3

2 + m8l7
2 +

+ (m6l3lc6 + m7l1lc7 + m8l1l7 - m9l1lc9)cos(q1 - q3)

+ (m9l5lc9 - m8l7lc8)cos(q2 - q3)

(A3)
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Fig. 2. A nine-link 3 DOF parallel manipulator.
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Fig. 5. Manipulator snapshots and corresponding torque profiles. End-effector paths start at

point A, and end at point B. (a) Path planned in Cartesian space, (b) Path planned in

joint space, (c) Reactionless path.


