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Dynamics, Design and
Simulation of a Novel
Microrobotic Platform Employing
Vibration Microactuators
This paper presents the analysis, design, and simulation of a novel microrobotic platform
that is able to perform translational and rotational sliding with submicrometer position-
ing accuracy and develop velocities up to 1.5 mm/s. The platform actuation system is
novel and based on centripetal forces generated by vibration micromotors. The motion
principle is discussed in detail, and the dynamic model of the platform and of its actua-
tion system is developed. Analytical expressions for the distinct modes of operation of the
platform are derived and used to provide system design guidelines. Simulations are
performed that verify the analytical results, demonstrate the platform capabilities, and
examine its transient response. The microrobot design is simple, compact, and of low
cost. In addition, the energy supply of the mechanism can be accomplished in an unteth-
ered mode using simple means, such as single-cell batteries. �DOI: 10.1115/1.2168472�
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1 Introduction
In the last decade, microrobotics has become an increasingly

important field of research. Domains of application, such as mi-
crofabrication, biotechnology, microscopy and optoelectronics,
demand miniaturized or microrobotic platforms that provide ultra-
high precision, flexibility, and a wide mobility range. Further-
more, scientists that are involved to the emerging nanotechnology
will require variety of novel tools to probe and manipulate their
invisible specimens. To this aim, extensive research has been car-
ried out in the design and realization of micromanipulators and
microrobots �a robot so named not because it has microdimen-
sions itself but because it can manipulate specimens with nanom-
eter and micrometer accuracy�. Motion principles and actuation
mechanisms that combine submicrometer motion of high resolu-
tion and the speed virtues of coarse positioning have been the
subject of intensive studies.

Several microactuation techniques have been devised and are
usually based on smart materials such as piezoelectric actuators,
shape memory alloys, etc. The most popular micropositioning mo-
tion mechanism is the stick-slip principle �1�, which is imple-
mented using piezoelectric actuators. This principle is employed
by the 3-DOF �degree-of-freedom� microrobotic platform pre-
sented in �1� and by the MINIMAN microrobot presented in �2,3�.
These platforms are capable of positioning accuracy of �200 nm
and provide velocities of up to a few millimeters per second. The
impact-drive principle �a variant of the stick-slip principle� is em-
ployed by the 3-DOF microrobotic platform Avalon, which pro-
vides a step size of about 3.0 �m and speeds up to 1 mm/s and is
presented in �4,5�. A different motion mechanism based on piezo-
tubes is utilized by the Nano Walker microrobot presented in �6�.
The first prototypes of this microrobot were capable for minimum
steps of the order of 30 nm and demonstrated a maximum dis-
placement rate of 200 mm/s. Also, interesting is the extensive
work on the development of miniature multilayer actuators and
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the analysis of the walking principle presented in �7–9�. A motion
principle based on piezoactuators and electromagnets is presented
in �10�, where the interaction of piezoelectric elements and elec-
tromagnetic actuators results in a step length of 7.0 �m and a
velocity of 1.16 mm/s. Furthermore, �11� describes an earth-
wormlike locomotion principle implemented using shape memory
alloys.

Although piezoelectric actuators seem to be the favored smart
material for micropositioning and do provide the required posi-
tioning resolution and actuation response, they usually suffer from
complex power units that are expensive and cumbersome and that
do not easily allow for untethered operation. Furthermore, piezo-
electric actuators are complex systems that exhibit nonlinear be-
havior and, as a result, they lack accurate mathematical model that
can provide a reliable prediction of the system’s behavior. A novel
and low-cost alternative approach is the six-axis nanomanipulator
presented in �12�, which is based on a single-piece, flexible con-
struction. An interesting unconventional motion principle that em-
ploys inverse pendulum dynamics is presented in �13�. Miniature
robotic platforms of relatively low cost have been built by �14�.
These platforms employ wheels, which limit the repeatability and
the resolution of motion.

The thrust of this paper is in analyzing and presenting the ex-
pected dynamic behavior of vibration microrobots and can be
used for developing such devices. The theoretical model of the
robotic platform suggests that it is able to perform translational
and rotational sliding with submicrometer positioning accuracy
and velocities up to 1.5 mm/s. All the components of the mecha-
nism, including its driving units, are of low cost and readily avail-
able. The motion mechanism is based on the interaction of cen-
tripetal forces generated by platform-mounted vibration
micromotors and friction forces at the supports of the same plat-
form. The concept was inspired by observing the motion of de-
vices that vibrate, such as cellular phones or unbalanced washing
machines �15,16�. The microrobotic platform presented in this pa-
per is novel primarily due to its motion mechanism, which, to the
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Innovative is also the design of the platform, which allows for
multidirectional, ultraprecise sliding motion with low-cost driving
units.

First, analysis of the motion principle physics is provided.
Then, rigid and deformable body dynamic models of the platform
are developed. The dynamics of the DC vibration micromotors are
considered also. Analytical expressions for the distinct modes of
operation of the platform are derived and used to provide system
design guidelines. A commercial vibration micromotor is selected
that complies with the derived guidelines. Using a basic platform
design, simulations are performed that verify the analytical re-
sults, demonstrate the platform modes of operation, and examine
the transient effects that the platform may exhibit. Finally, a set of
equations for open-loop control of the platform are derived and
tested through the execution of a simple sequence of trajectories.

2 Motion Principle
The motion principle is first demonstrated using a simplified

single-degree-of-freedom mobile platform of mass M. The motion
mechanism employs an eccentric mass m rotated by a motor O
mounted on the platform as shown in Fig. 1.

It is assumed that the mass m rotates on a vertical plane at
constant angular speed �, about point O, and that the platform is
constrained to move only along the y-axis. One cycle of operation
is completed when the mass has described an angle of 360 deg.
Gravitational and centripetal forces exerted on the rotating mass
are resolved along the y-z axis to yield

foy = mr�2 sin �

�1�
foz = − mg = mr�2 cos �

where g is the acceleration of gravity and r the length of the link
between m and O. These forces are also applied to the platform at
point O, while the moment due to the small eccentric mass is
neglected. When the angular speed � is low, the platform does not
move because the horizontal actuation force foy is cancelled by
frictional forces at the platform contact points A and B. However,
if the angular speed � exceeds a critical value, then foy overcomes
the Coulomb friction forces applied at the two support points, and
as a result, the platform begins to slide.

Using a simplified static-kinetic friction model �17�, the motion
of the platform along the y and z axes is described by the follow-
ing equations:

Mÿ = foy − f fr

�2�
0 = faz + fbz + �− Mg + foz�

where all forces are defined in Fig. 1, M is the mass of the plat-
form, and f fr is the friction force. Neglecting viscous friction, the

Fig. 1 Simplified 1-DOF platform with rotating mass m
friction force is given by

Journal of Dynamic Systems, Measurement, and Control
f fr = � fC sgn�ẏ� , ẏ � 0

foy , �foy� � fC, ẏ = 0, ÿ = 0

fC sgn�foy� , �foy� � fC, ẏ = 0, ÿ � 0
� �3�

where fC is the Coulomb friction level, i.e., the maximum friction
force that can exist for the current normal force, and is given by

fC = ��faz + fbz� = ��Mg − foz� �4�

and the viscous friction is neglected. The parameter � is the co-
efficient of kinetic friction and the function sgn�ẏ� is defined by

sgn�ẏ� = �+ 1, ẏ � 0

0, ẏ = 0

− 1, ẏ � 0
� �5�

To gain some insight into the behavior of the platform-rotating-
eccentricity system, its response is obtained by means of a nu-
merical simulation and the results are displayed in Fig. 2. Figure
2�a� depicts the time response of the sum of the vertical forces
exerted on the platform, i.e., the actuation force component foz
plus the gravitational force Mg. This sum is equal in magnitude to
the support reaction forces and is time periodic because it includes
a sinusoidal and a DC component. Because of Eq. �4�, the same
applies to the Coulomb friction level fC. In Fig. 2�b� the magni-
tude of the black thick curve is given by fC, but its sign changes

Fig. 2 Forces applied to the 1-DOF platform
from positive to negative, depending on the speed direction. This
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figure also shows the horizontal forces that act on the platform,
namely, the horizontal actuation force foy and the friction force
f fr.

Figure 2�c� depicts the acceleration of the platform ÿ, computed
using Eqs. �2�–�5�, while Fig. 2�d� depicts its velocity, and Fig.
2�e� its displacement. From Figs. 2�b� and 2�d�, it is clear that
motion is induced when the horizontal actuation force overcomes
the static friction limit fC. Quite interestingly, as shown in Fig.
2�e� for a counterclockwise rotation of the motor, the platform
exhibits a net displacement along the positive y-axis.

The physics of the motion principle are explained next, in more
detail. When the eccentric mass is at the lower points of its tra-
jectory, the normal forces �and therefore, the frictional forces� are
high, whereas when the eccentric mass is at its highest points, the
frictional forces are low. Accordingly, for counterclockwise rota-
tion of mass m initiated at �=0 deg, the platform tends not to
move when m is low and to move to the right when the mass is
high. When m passes the highest point �=180 deg, the platform
already has a positive velocity. As m moves past this point, fric-
tion forces together with actuation forces tend to decelerate the
platform and even change its direction. As friction still increases
eventually brings the platform to a stop. The actuation forces are
now pointing to the left, and as a result, reverse platform motion is
induced. Since the platform velocity became zero past the 180 deg
point, there is less time for it to accelerate in the opposite direc-
tion and, finally, return back to its initial position before stopping
again. Therefore, once a cycle is completed, the platform exhibits
a net displacement as shown in Fig. 2�e�. It is easy to see that if
the rotational velocity of the eccentric mass increases, then plat-
form velocity becomes zero at a point even further past the
180 deg point, increasing the net platform displacement per cycle.
Reversal of the direction of � will lead to a reversal of the direc-
tion of motion.

3 3-DOF Platform
The motion principle presented in Sec. 2 is employed here in

the design of a 3-DOF mobile mini robot. The design of the mini
robot must meet the following design objectives: The platform
should be capable of performing x ,y ,� motion. It should be able
to reach positioning resolution of the order of submicrons. The
platform should also be able to travel long distances, i.e., it should
be able to scan a workspace whose area is five to ten times the
dimensions of the platform. It should develop speeds of the order
of several millimeters per second. Its size should be less than
5 cm2 so that multirobot cooperation within a workspace of lim-
ited area would be feasible. Finally, the cost of constructing and
powering the platform should be as small as possible.

3.1 Platform Base. The geometry of the base of the microro-
bot is an equilateral triangle of length l. Three small rigid supports
A, B, and C located at each vertex of the triangle provide the
contact points between the platform and the ground; see Fig. 3�a�.
The three-contact point configuration is favored due to the fact
that it is not overconstrained and ensures static equilibrium along
the vertical axis. For reliable open-loop response of the platform,
the center of mass �CM� of the base of the platform is chosen to
coincide with the geometrical center of the equilateral triangle.

3.2 Actuators. The actuation of the platform employs
miniature-vibrating motors. The vibrating motor is axially coupled
to an eccentric mass �imbalance� �see Fig. 3�b��, and the control
input is the motor spin speed �. During rotation, the eccentric
mass generates dynamic forces, which are applied to the platform.

Three identical vibrating motors D, E, and F are symmetrically
mounted on top of the platform as shown in Fig. 4. If actuators D
and F spin at an opposite sense of rotation while E is inactive,
then the platform slides along the positive x-axis, if their sense of
rotation is reversed then sliding occurs along the negative x-axis.

Similarly when motors D and E or E and F spin at the same speed
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and opposite sense of rotation, pure translational motion is in-
duced at an angle of 120 deg or 240 deg with respect to the x-axis,
respectively. When D, E, and F motors spin at the same speed and
at the same sense of rotation, then pure rotation about the platform
CM is performed.

4 Dynamics
The description of the dynamics of the microrobotic platform

requires the use of three dynamic models:

1. The platform dynamics, which are expressed through the
corresponding equations of motion.

2. A mass-spring system that models the deformations of the
platform base. The consideration of the platform as a de-
formable object through the mass-spring system is required
in order to solve the 3 deg indeterminate problem of the
static equilibrium equations and is used only during static
equilibrium. Otherwise the platform is considered to be a
rigid body.

3. A dynamic model describing the response of the DC vibra-
tion micromotor.

4.1 Platform Dynamics. The assumptions on which the plat-
form dynamic model is based are: �i� The imbalance load can be
modeled as a point mass m, rotating at a distance r from the motor
axis. �ii� All actuators are identical. �iii� Every rotating mass m
rotates at a constant angular speed � and the plane of rotation is
normal to the plane of the base. �iv� All rotating masses are in
phase. �v� For reasons of simplicity, it is assumed that the contact
points of the platform experience Coulomb friction with a con-
stant friction coefficient �. Later it will be shown that assump-
tions �iii� and �iv� may be relaxed.

The platform analysis involves the body-fixed frame Bxy and
the inertial frame Oxy; see Fig. 4. The adopted notation is i f j,
where i is the frame index and j is the component x ,y ,z index.
The b superscript denotes frame B. Frame O uses no superscript.
The position vectors of the contact points A, B, and C are denoted

Fig. 3 „a… Platform base, „b… vibrating motor, 8 mm long
Fig. 4 Actuation and reaction forces applied to the platform
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by bra , brb , brc, and the position vectors of the motor axis points
D, E, and F on which the imbalance forces are applied are denoted
by brd , bre , br f. Forces bfa , bfb , bfc include the normal and fric-
tional contact forces at contact points A, B, and C, respectively.
The angle � is the eccentric mass angle with respect to the vertical
axis; see Fig. 5. Because of the rotating eccentricities, forces
bfd , bfe , bf f, are applied at points D, E, and F of the platform, and
moments bnd , bne , bn f are applied along its motor axes; see Fig. 4.
Their body-fixed components are given by

�
bf ix = − mr�2 sin �i sin �
bf iy = mr�2 cos �i sin �
bf iz = − mg − mr�2 cos �
bnix = − mgr cos �i sin �
bniy = − mgr sin �i sin �
bniz = 0

� i = �d,e, f	 �6�

where �= �̇ is motor angular velocity, r is the eccentricity of the
imbalance mass m and �i= �60 deg,180 deg,−60 deg	 are the
angles of position vectors brd , bre , br f. Then, the Newton-Euler
equations of the platform are written as �18�

Mv̇ = R

i

bfi, i = �a,b,c,d,e, f	 �7a�

bI�̇p + b�p � bIb�p = 

i

�bri � bfi� + 

i

bn j

i = �a,b,c,d,e, f	, j = �d,e, f	 �7b�

where R is the rotation matrix between frames B and O, �p is the
platform angular velocity, bI is its inertia matrix, and v
= �ẋ , ẏ , ż�T is its CM position in the inertial frame. Because of

platform symmetry and planar motion, �p= �0,0 , �̇�, the term
b�p� bIb�p is zero, and Eq. �7b� reduces to a scalar equation
involving the platform polar moment of inertia, Izz, and moments
about the z-axis

Izz�̈ = ẑ · 

i

�bri � bfi�, i = �a,b,c,d,e, f	 �8�

where ẑ denotes the unit z-axis vector.

4.2 Deformable Body Dynamics. When the actuation forces

Fig. 5 Actuation, reaction, and spring forces applied to the
mass-spring model
applied on the platform are not sufficient to overcome the static
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friction forces, the platform does not slide. As the actuation forces
increase, the forces distributed to the platform legs reach the Cou-
lomb level and motion is impending. In order to conceive the way
the platform shall pass from static equilibrium to motion, it is
necessary to determine at which legs loss of static equilibrium will
occur first. For example, if only two legs out of three begin to
slide, then, inevitably, the platform shall perform a constrained
motion about the third leg whose static equilibrium has not yet
been lost. To this aim, it is required to have knowledge of the
force distribution on each of the three supports A, B, and C of the
triangular platform.

The vertical reaction forces together with the friction forces at
each of the three legs constitute nine unknowns in the six static
equilibrium equations. Hence, solving the static equilibrium prob-
lem results in three unknown friction forces, i.e., the rigid-body
platform is statically indeterminate. These three unknowns can be
determined by considering small deformations along the base of
the platform. For this purpose, the platform is modeled as a
lumped system, consisting of three point masses connected via
stiff springs; see Fig. 5. The lumped masses M1=M2=M3, whose
aggregate equals the mass M of the base, are located at the tips of
an equilateral triangle, and the springs have constants k1=k2=k3.
The produced deformations are adequately small so that the
change in the angle of the springs is considered negligible. forces
fai , f fi , fsi with i= �1,2 ,3	, are the actuation, friction, and spring
forces exerted at mass i. The dynamic equations of the spring-
mass system are

Mẍ = Ax + fa + f f

x�0� = 0 �9�

ẋ�0� = 0

where M is the mass matrix, A is a matrix containing spring
constants �see Appendix�, and x= �x1 ,x2 ,x3 ,y1 ,y2 ,y3�T represents
the x-y displacement of the three masses. When the masses are in
a static state, the unknowns of the system are the six friction
forces, which are determined by solving the six static equilibrium
equations. In the case where some or all of the masses are in
motion, then the magnitude of the corresponding friction forces is
determined by the static friction limit �i.e., the vertical reactions
times the coefficient of friction ��, whereas the direction of the
friction forces is determined by the velocity of the corresponding
mass.

4.3 Actuator Dynamics. The actuator is modeled as a system
comprising a DC permanent magnet motor and an imbalanced
load m; see Fig. 6. The input to the actuator is the voltage Vs. The
DC motor equations that relate voltage and current to speed and
torque are

� = �̇ = kT
−1e

T = ikT �10�

e = Vs − iR

where kT is the torque constant of the DC motor, R is its ohmic

Fig. 6 Schematic representation of the lump parameter model
of the actuator
resistance, i is the motor current, e is the armature voltage, and T
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is the torque of the motor. If the viscous friction exerted on the
axis of the DC motor and the inductance of the windings of the
motor are considered negligible, then the dynamics of the actuator
with respect to � are expressed through the following equation:

�̈ = −
kT

2

RJ
�̇ −

mgr

J
sin � − � c

J
+

b

J
�̇� +

kT

RJ
Vs �11�

where J is the inertia of the eccentric load, and term ��c /J�
+ �b /J��̇� is the Coulomb and viscous friction.

5 Modes of Operation
In this section, the basic motion capabilities of the microrobotic

platform are examined. For reasons of simplicity and for exploit-
ing the merits of an analytical solution, only the cases of pure
rotation and pure translation of the platform are examined.

If at least one of the actuators is spinning, then the platform is
said to be in operation. The feasible driving speeds � define three
modes of operation according to the type of motion �or no motion�
that is induced to the platform. These are �a� the static mode, �b�
the closed orbit mode, and �c� the locomotion mode.

5.1 Static Mode of Operation. As stated in Sec. 2, if � is
below a critical value �sl �i.e., 0��	�sl�, then the actuation
forces are not large enough to induce motion. This is the first
mode of operation, called the static mode. In order to derive an
analytical expression for �sl, consider first the case of pure trans-
lation along the x-axis, where actuators D and F operate at the
same spinning speed �=�sl and at an opposite sense of rotation.
Sliding is impeding, and friction forces have reached the static
limit

bfax + bfbx + bfcx = ��bfaz + bfbz + bfcz� �12�

Substituting Eq. �6� into Eq. �12� and solving for � yields

�sl = � �g�M + 3m�

mr�3 sin � − 2� cos ��
�1/2

�13�

From Eq. �13�, it is evident that for every � there is a particular
critical speed �sl. Since the rotating masses describe complete
circles, it is necessary to determine the angle � at which the mini-
mum �sl occurs. Differentiating Eq. �13� with respect to angle �
and setting the result equal to zero yields the angle of minimum
�sl

��sl min = tan−1�−
3

2�
� �14�

Substituting Eq. �14� into Eq. �13� and after simple algebraic
manipulations, the minimum critical speed for translation is ob-
tained

�sl min trans = � �2�

3
�g�3m + M�

2mr1 + �2�

3
�2�

1/2

�15�

Next, consider the case of pure rotation about the CM of the
platform, where all three masses operate synchronously in a
clockwise or counterclockwise direction, depending on the desired
sense of rotation. Following similar reasoning with the transla-
tional case, it is found that

�sl min rot = � 2g�3 + M/m�
3r�4 + a2�−1�1/2�1/2

�16�

5.2 Closed Orbit Mode of Operation. If speed � is greater
than �sl, then the actuation forces are large enough to counteract
the friction forces and, consequently, to induce motion. It can be

shown that for a small range of angular speeds �sl��	�c, the
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forward and reverse displacements per cycle are equal. Hence, the
platform performs forced oscillations about a fixed point and the
net displacement over time is zero. Next, the existence of this
closed orbit mode of operation for �sl��	�c is proved, analyti-
cally, and also the value of �c is determined.

To this aim, Fig. 7 presents a graph of the horizontal actuation
force fx, and of the Coulomb level fC during a full rotation of the
eccentric mass �single cycle� of closed orbit mode of operation.
Angle �1 is the point where forward sliding begins, since actua-
tion forces overcome the Coulomb friction level. Angle 
 is the
angle at which the platform begins to decelerate, and angle �2 is
the point where forward sliding terminates. Similarly angle �3 is
the point where reverse sliding begins, angle � is the angle at
which the reverse motion begins to decelerate, and �4 is the point
where reverse motion terminates and platform comes back to rest.
The angles �1, 
, �2, �, and �3 depend only on the angular speed
� of the rotating mass and platform design parameters. Figure 8
presents, schematically, one cycle of the rotating mass during
closed orbit operation and relates the motion state of the platform
to the angular position � of the rotating mass m.

Assume pure translational motion along the positive x-axis, i.e.,
the masses at motors D and F rotate at a constant speed � and
with opposite sense of rotation. The resultant forces Ff��� for the
forward sliding and Ff��� for the reverse sliding along the x di-
rection can be written as

Fig. 7 Values of static friction limit and actuation forces
Fig. 8 A complete cycle during closed orbit operation
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Ff��� = − �g�3m + M� + mr�2�− 2� cos � + 3 sin ��
�17�

Fr��� = �g�3m + M� + mr�2�2� cos � + 3 sin ��

Setting Eqs. �17� to zero and solving for � yields

�1 = � − cos−1�/��, 
 = � + cos−1�/�� �18�

�3 = 2� − 
, � = − �1 �19�

where �=�−tan−1�3/ �2���, =�g�3m+M� / �mr�2�, �= �4�2

+3�1/2. The corresponding expression for the velocity of forward
motion is given by

v f�t� =
1

M�
t1

t

Ffdt Þ v f��1 + �� =
1

M�
�

�1

�1+�

Ffd�

=
1

M�
�− �g�3m + M��

+ 2mr�2 sin
�

2
�− 2� cos��

2
+ �1� + 3 sin��

2
+ �1���

=
1

M�
�− �g�3m + M��

+ 2mr�2 sin
�

2
� cos��

2
+ ��1 − ���� �20�

where � is the angle past �1 traveled by the rotating mass m.
Substituting Eq. �18� into the right-hand side of Eq. �20� yields

v f��1 + �� = �M��−1�− �g�3m + M��

+ 2mr�2 sin
�

2
� cos��

2
− k�� �21�

with

k = cos−1� �g�3m + M�

mr�23 + 4�2�
Following similar reasoning, the expression for the reverse motion
velocity is given by

vr��3 + �� = �M��−1��g�3m + M�� − 2mr�2 sin
�

2
� cos��

2
− k��

�22�

where � is the angle past �3 traveled by the rotating mass m. From
Eqs. �21� and �22�, it is evident that for �=�=�

v f��1 + �� = − vr��3 + �� �23�
Consider

v f��1 + �� = 0

vr��3 + �� = 0 �24�

Each of Eqs. �24� has only two solutions. The first solution is at
�=�1 and �=�3, respectively, i.e., for �=0 and �=0. The second
solution of Eq. �24� is �=�2−�1 and �=�4−�3, respectively.
Now, if �2−�1��4−�3, then, according to Eq. �23�, each of Eqs.
�24� would possess three solutions and not two, which is impos-
sible. Therefore, �2−�1=�4−�3, i.e., the angle described by the
eccentric mass m during the forward motion of the platform is
equal to that described during the reverse motion; see Fig. 8. Next,
Eqs. �21� and �22� are integrated to give the expressions for the
forward and reverse displacements

xf��1 + �� = �M��−1�− g�3m + M��2�

2
+ 2mr�� �cos k − cos�k − �� + � sin k�� �25�
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xr��3 + �� = �M��−1�g�3m + M��2� − 2mr��2�cos k − cos�k − ��

+ � sin k�� �26�

Equation �25� and �26� show that for �=�2−�1 and �=�4−�3,
xf =−xr, and therefore, the net displacement during this mode of
operation is zero.

As the angular speed � of mass m increases, the angles �=�2
−�1 and �=�4−�3 increase as well, and �2 approaches �3. The
upper limit of the closed orbit mode is the angular speed �c at
which �2=�3. Then,

� = �2 − �1 Þ � = �3 − �1 Þ � = 2�� − �� Þ � = 2 tan−1�3/�2���
�27�

Substituting Eq. �27� into the first of Eqs. �24� and solving for
� gives the maximum rotational velocity �c of the closed orbit
mode for pure translation

�c =�g�3m + M�
2mr

�3 − 43� cot−1�2�/3�

+ �3 + 4�2��cot−1�2�/3��2	1/4 �28�
Following similar arguments, it can be shown that a closed orbit

mode exists also for the case of pure rotational motion.

5.3 Locomotion Mode. For values of ���c, �2=�3 and the
angle �2−�1 increases while the angle �4−�3 reduces. This means
that most of the force generated by the rotating masses during one
cycle is spent on accelerating and decelerating the platform during
forward motion. On the contrary, relatively smaller forces accel-
erate and decelerate the platform in the reverse direction and for a
smaller time duration. Hence, smaller speeds develop during the
reverse motion. As a result, the forward displacement is greater
than the reverse one and the platform exhibits a net displacement
during a pure translation mode of operation, or a net change of
angle during a pure rotation mode of operation.

However, if � is very large �i.e., if it exceeds the critical value
�tip�, then tipping occurs and platform stability is lost. Therefore,
an upper limit for the useful motor angular velocities exist. The
range of the driving speeds �� ��c ,�tip� is defined as the loco-
motion range of the platform. Figure 9 depicts a complete cycle at
the locomotion mode of operation. From a design point of view,
the objective is to choose platform parameter values such that the
displacement per cycle is maximized. The values �sl and �c are
similar functions of the parameters � ,r ,m ,M; therefore, the goal
can be summarized as the maximization of the angular velocity
range �� ��sl ,�tip�.

To this aim, analytical expressions are derived that relate the
minimum �tip to platform’s physical parameters. Also, the analyti-

Fig. 9 A complete cycle during locomotion mode of operation
cal expression for the total displacement per cycle is derived and
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its relation to the design parameters is examined.
In the case of tipping, the equilibrium of moments about the

y-axis is marginally stable and reactions bfaz and bfcz are reduced
to zero. Taking moments about contact point B and solving for
�tip yields

�tip = � − gHm�3 + M�

mr�2 cos ��H + 3d2� + 33 sin �ho�
�1/2

�29�

where parameter H is the height of the triangular base and param-
eter ho is the distance between the motor axes and the ground; see
Fig. 4. Differentiating Eq. �29� with respect to angle � and setting
the result equal to zero yields the angle of minimum �tip

�tip min = tan−1� 33ho

2�H + 3d2�
� �30�

Substituting Eq. �30� into Eq. �29� and writing d2=aH, where
parameter a� �0,1 /3� is a constant of proportionality, results to

�tip min trans = � �1 + 3a�−12H�1 + 3a�g�3m + M�

2mr��33ho�2 + �2H�1 + 3a��2	1/2�1/2

�31�

Using Eqs. �15� and �31�, the condition for �slmin��tip min
yields

� 3

2�
�2

+ 1 � �33ho

2H
�2

+ �1 + 3a�2 �32�

Equation �32� is a design condition, which must be met to en-
sure that slip occurs prior to tip during linear motion. In the case
of pure rotation, where all masses rotate at the same angular ve-
locity, platform performs hopping instead of tipping. Following
similar reasoning with the translational case, it is found that for
pure rotation, �hop is given by

�hop = �g�3 + M/m�
3r

�1/2

�33�

Equations �16� and �33� are also taken into account to the selec-
tion of parameters �, r, m, and M.

The net displacement per cycle is found as follows. As was
done previously, a single motion step of the platform is broken up
into the forward phase �forward displacement� and the reverse
phase �reverse displacement�.

Starting from the forward phase, the slip angle �1 for any �
� ��c ,�tip� is derived from Eq. �13�

�1 = f−1��� �34�

Then, the linear acceleration of the forward phase is integrated
with respect to � and yields �all motion variables are expressed
with respect to frame O�

vforward���� =
1

M�
�

�1

��
�ẍforward�d� �35�

where xforward is the displacement along the direction of motion.
Next, vforward����=0 is solved for ��. Setting next �2=��, and
integrating v from �1 to �2 yields

xforward =
1

M�2�
�1

�2

vforward����d�� �36�

At an angle �2, where �2=�3 �see Fig. 9�, the forward phase
ends and the reverse phase begins. Repeating the previous steps
for the reverse phase yields

xreverse =
1

M�2�
�2

�4

vx����d�� �37�
Hence, the net displacement is a function of � and is given by
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xtotal = xforward + xreverse Þ xtotal

=
1

2M�2 �− �g�3m + M���1 − �4���1 − 2�2 + �4�

+ 2mr�2�− 2��cos �1 − 2 cos �2 + cos �4 + ��1 − �2�sin �1

− ��2 − �4�sin �2� + 3��− �1 + �2�cos �1

− ��2 − �4�cos �2 + sin �1 − sin �4�	� �38�
Similarly, the net rotational motion is given by

�total =
1

3I�2 ��H�− g�3m + M���1 − �4���1 − 2�2 + �4�

− 6mr�2�cos �1 − 2 cos �2 + cos �4 + ��1 − �2�sin �1

− ��2 − �4�sin �2�	 − 3mr�2���1 − �2�cos �1

+ ��2 − �4�cos �2 − sin �1 + sin �4��3d1 + 3d2�� �39�

where the values d1, d2, and H are defined in Fig. 4.
It should be emphasized that the motion mechanism is strictly

based on sliding. Hopping or tipping are undesirable effects, and
therefore, they should not be allowed to occur. This is achieved by
keeping the micromotor angular speed � below the threshold lim-
its derived for the translational and rotational cases, see Eqs. �31�
and �33�, respectively. Since the platform does not exhibit hop-
ping or tipping, it is not necessary to use equations of motion that
describe rigid-body three-dimensional �3D� motion.

6 Design Parameters
The equations derived above provide a number of design guide-

lines. Indeed, from Eqs. �32� and �33� it is clear that in order to
increase �tip �or �hop�, parameter H or, equivalently, the base sur-
face should be maximized and parameter ho �i.e., the motor
height� should be minimized. The material at the contact points
should exhibit a low coefficient of friction in order to increase the
total displacement per step, as indicated by Eqs. �38� and �39�.
The parameter r, according to Eqs. �38� and �39�, is proportional
to the total displacement per cycle, but according to Eqs. �31� and
�33�, �tip is inversely proportional to r. An average value of r is
selected in order to increase the step length per cycle without
substantially reducing the value of �tip.

The above design rules apply to both the translational and ro-
tational motion, and it is evident that they extend to the general
plane motion. On the otherhand, increasing the value of parameter
a decreases �tip trans but increases the value of �tip rot. Hence, an
average value of parameter a is desired in order to keep balance
between the translational and rotational operating ranges. It
should be mentioned that to keep the working area for microro-
botics applications limited, the platform side length should not
exceed 5 cm and, consequently, this imposes an upper limit to
parameter H. Finally, from Eqs. �38� and �39�, it is observed that
mass M and inertia I should be kept low; otherwise the net dis-
placement is reduced considerably. Specifically, the platform mass
M should not exceed 0.2 kg and inertia Izz should be
�10−4 kg m2.

The choice of the vibrating micromotor should render feasible
the generation of the required actuation forces in order to drive the
platform into the locomotion mode of operation. Equation �11�
and the analytical expressions of the related critical speeds �c, �tip
result into appropriate selection of micromotor nominal speed and
eccentric load. Also, the electrical characteristics of the micromo-
tor should allow for a low-voltage single-cell untethered power
supply. A typical vibrating micromotor that complies with the
above guidelines and the dimensional constraints of the platform
is the 4TH9-3006A coreless vibration motor of Jinlong Machinery
& Electronics Co. whose mechanical and electrical characteristics

are given in Table 1.
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The particular vibration micromotor is designed to produce
small vibrations to mobile phones of mass 0.08 kg. The consider-
ation of the above analysis leads to the set of design parameter
values listed in Table 2.

7 Simulation
A dynamic simulation of the generalized plane motion of the

platform is implemented using MATLAB and SIMULINK. The aim of
the simulation is to verify analytical results and to demonstrate the
platform motion capabilities.

7.1 Simulator Software Design. Simulation software com-
prises �i� a dynamic model of the platform, �ii� a dynamic model
of the deformable object, �iii� a dynamic model of the actuators
and �iv� a differential kinematics model. The generalized plane
motion of the platform is completely described by five motion
states, depending on the speeds va, vb, and vc at each of the
support points A, B, and C, respectively; see Fig. 10. In state 0, no
motion is induced to the platform. On the contrary, state 1 repre-
sents the unconstrained motion of the platform. States 2–4 repre-
sent the constraint motion about one of the platform’s supports
�either A, B, or C�. At every time step, the procedure presented in
Fig. 11 is executed. The input to the system is either the motors’
speed or input voltage.

7.2 Motion Examples. The first example demonstrates the
closed orbit mode of operation for pure translational motion. To
this aim, it is assumed that the platform parameters are those
presented in Table 2 and that motors D and F rotate at the same
speed and with opposite sense of rotation. According to Eq. �28�,
the upper bound of the closed orbit mode is �c=9685.6 rpm,
whereas, according to Eq. �15�, the lower bound is �sl
=8519.4 rpm. The motors speeds are set to �d=−9400 rpm and
� f =9400 rmp. Figure 12�a� depicts the accelerations of the plat-
form. The spikes that are observed in the acceleration graph are
due to switching from the deformable object model to the rigid-
body model. Figure 12�b� presents the velocity of the platform,
and Fig. 12�c� its displacement. Clearly, the platform operates in

Table 1 Vibrating motor SE-S4E specifications

Parameter Value Parameter Value

Operating voltage �V� �1.4 Weight of motor �g� 0.95
Starting voltage �V� 0.8 Motor diameter �mm� 4
Starting current �mA� 110 Motor length �m� 14.4
Armature resistance ��� 10 Nominal speed �rpm� 10,000

Table 2 Design parameters

Parameter Value Parameter Value

r �m� 0.00177 l �m� 0.05
m �kg� 0.00021 ho �m� 0.004
M �kg� 0.12 � �-� 0.5
Fig. 10 The five motion states of the platform
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the closed orbit mode and exhibits zero net displacement. Figure
12 also depicts the six characteristic angles of a complete cycle of
operation, as these were described in Sec. 5. It is interesting to
observe that the graph of position exhibits, at each peak of the
wave form, an upper flat region between angles �2 and �3 and a
low flat region between angles �4 and �1. As described in Sec. 5,
these flat regions correspond to zero platform velocity.

Figure 13 presents the friction forces developed during the first
cycle of operation. Initially, the platform is static, simulation uses
the deformable object model, and friction is exerted only on legs
A and C. Gradually, the actuation forces and the friction forces on
legs A and C increase. At some point friction forces reach the
Coulomb level, then the platform starts to deform and forces are
transmitted to leg C. When friction at all three legs has reached
the Coulomb level, the platform accelerates, forward motion along
the x-axis is induced, and simulation switches to the rigid-body
model. In a similar manner, the program alternates between de-
formable and rigid-body models during the rest of the simulation.

The second simulation example demonstrates pure translation
at a direction 120 deg with respect to the x-axis. To this aim,
rotational speeds of motors D and E are set at constant speeds of
�d=10,218 rpm and �e=−10,218 rpm, respectively. Figure 14�a�
depicts the accelerations ax and ay of CM. Figure 14�b� presents
the velocities vx and vy of CM, and Fig. 14�c� presents positions x
and y of CM. From Fig. 14�c�, it is evident that the platform
exhibits a net displacement, and hence, it operates in the locomo-
tion mode. It can be observed that the displacement wave form
does not exhibit flat peaks. This stems from the fact that �2=�3
�see Fig. 9�, i.e., the platform goes directly from the forward mo-
tion to the reverse motion without stopping in between. Finally, in
Fig. 14�d�, the path of the platform in the x-y plane is presented.

In the third example, the platform performs a pure rotation. All
motors spin at �=9740 rpm. Figure 15�a� depicts the angular dis-
placement � of the platform, whereas Fig. 15�b� presents the plat-
form angular velocity.

The fourth example again demonstrates pure translation along
the x-axis, but this time the rotating masses of motors D and F
exhibit a small phase difference of 5 deg; see Fig. 16. Because of
this difference, the resultant moments about the CM of the plat-
form and the resultant forces along the y direction are not zero.
Consequently, motion along the y-axis and rotation about plat-
form’s CM is induced; see Figs. 16�b� and 16�c�. However, it is
observed that these parasitic motions have small magnitude, and

Fig. 11 Program flowchart
most importantly, the motion along the x-axis is almost preserved;

MARCH 2006, Vol. 128 / 129



o

see Fig. 16�a�. If the phase difference of the spinning masses
increases, the efficiency of the motion mechanism is reduced, i.e.,
the desired displacement is reduced while the parasitic motions
grow bigger. The worst case appears when the masses operate at
180 deg out of phase, where the actuation forces cancel each other
and no translational motion is induced. In this case, the platform
exhibits rotational motion. Simple electromechanical means shall
be used so that the actuators start rotating in phase. This mecha-
nism stalls the actuators at the same angle, thus eliminating the

Fig. 12 Closed
Fig. 13 Friction forces app

130 / Vol. 128, MARCH 2006
phase difference.
The synchronization assumption, i.e., same spin speed, does not

have to be strictly satisfied. Nonsynchronized actuators generate
resultant actuator forces with sinusoidal beat wave forms that give
rise to motions other than those desired. Similarly to the out-of-
phase situation, if the asynchronies are limited, they will almost
preserve the desired motion and induce limited parasitic motion.
However, if the actuator open-loop rotational speeds differ con-
siderably, then the platform’s velocity error will be prohibitively

rbit simulation
lied on legs A, B, and C
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large. It is expected that the platform’s actuation will suffer from
some asynchronous operation, leading to a less predictable behav-
ior. Hence, a closed-loop control strategy is required to obtain
desired motion patterns. The loop can be closed either at the ac-
tuators rotational speed or at platform position. A less attractive,
open-loop, alternative solution is the use of stepper, instead of
DC, motor �19�. Overall, the closed-loop solution is preferable
because, in addition to eliminating asynchronous operation, it can
compensate for external disturbances. Another drawback of using
stepper motors is their large dimensions compared to those of
micro DC motors.

This final example examines the case where the rotating mass is
accelerated and analyzes the transient effects that the platform
exhibits. Taking into account rotating mass accelerations, and ne-
glecting the torque due to the rotating mass, Eqs. �6� become

bf ix = − �− mr� cos � + mr�2 sin ��sin �i

bf iy = �− mr� cos � + mr�2 sin ��cos �i

�40�
bf iz = − mg − mr� sin � − mr�2 cos �

i = �d,e, f	, �i = �60 deg,180 deg,− 60 deg	

where �= �̇= �̈. The acceleration �̈ is generated by the micromo-

Fig. 14 Pure translation at an angle of 120 deg with respect to
the x-axis
Fig. 15 Pure rotation about the z-axis
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tor that is governed by Eq. �11�.
Most of the parameters of Eq. �11� are provided by Table 2. The

torque constant may be calculated by the nominal values of Table
1, according to Eqs. �10�. The Coulomb level C of the micromotor
can be calculated by the starting voltage given in Table 1. Finally,
the viscous friction coefficient b is calculated by considering the
steady state of Eq. �11�. The simulation scenario is as follows: The
rotating mass m accelerates for a duration of 0.52 s, from
0 rpm to 10,000 rpm, during this period, the platform passes from
static mode to closed orbit mode and then to locomotion mode. At
t=0.52 s, the acceleration of the rotating mass m reduces to 0 for
a period of t=0.6 s. During this period, the platform is in steady-
state operation in the locomotion mode. Finally, at t=1.12 s, the
rotating mass m decelerates for another 0.52 s until the rotational
speed becomes 0 again. During the declaration period, the plat-
form gradually sweeps from locomotion mode to static mode.
Figure 17�a� depicts the entire response of the platform displace-
ment. Figure 17�b� and 17�c� depict the transient response of the
platform, during acceleration and deceleration of the rotating mass
m. From Fig. 17�b�, one can identify the existence of all three
modes of operation. First, from 0 s until 0.45 s, the platform is in
static mode. From 0.45 s to �0.52 s, the platform exhibits a tran-
sient response. Within this transient interval, first the closed orbit

Fig. 16 Displacement when motors rotate at a phase differ-
ence of 5 deg

Fig. 17 Transient response of the platform during transla-

tional motion
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modes and then the locomotion mode can be identified by deter-
mining whether the upper peaks of the displacement wave form
are flat or not. Similar observations can be made for the decelera-
tion region; see Fig. 17�c�. By comparing the two transient re-
gions, it can be argued that the reverse displacement that takes
place during acceleration transients is compensated by the forward
displacement that occurs during deceleration transients. Hence,
the undesired displacement during the transient motion can be
considered negligible. Of course, this assumption holds only in
the case where the magnitude and duration of acceleration is equal
to that of deceleration. Furthermore, it can be seen that even at an
open-loop response, the transient duration that affects the motion
state of the platform is limited to a few steps. This is an indication
that the platform’s motion resolution is slightly reduced by the
transient effects.

8 Open-Loop Control
It is important to derive an open-loop control of the platform in

order to be in position to specify the required � �control input�
that results to the desired displacement per cycle �input com-
mand�. To this aim, the inverse function �= f−1�xtotal� is calculated
numerically, where � is the motor angular speed and xtotal is the
net displacement produced during a cycle. Only the locomotion
mode of operation is of interest. The determination of the inverse
function requires the solution of a nonlinear system of four equa-
tions, which is formed by Eq. �13�, vforward��2�=0, vreverse��4�=0,
and Eq. �38� expressed in the following functional form

f1��1,�� = 0

f2��1,�2,�� = 0
�41�

f3��2,�4,�� = 0

f4��1,�2,�4,�� = 0

Given the desired xtotal, the system is numerically solved for �.
Following the same reasoning, a set of similar equations is gen-
erated for the rotational motion.

The numerical solution procedure uses an improved Newton-
Raphson algorithm and requires good initial guesses of the four
unknown variables: �1 ,�2 ,�4 ,�. The initial guess for the three
angles is provided by the physics of the motion mechanism, which
determines the region of each angle �this applies to the entire
locomotion range�. For the initial guess of the rotating mass an-
gular speed �, a sparse look-up table suffices. Hence, the numeri-
cal solution procedure can be automated so that open-loop control
requires only a sequence of input commands.

As an example of the open-loop control efficacy, consider the
case where it is desired to perform a path that comprises three
parts: �i� 1000 �m along the positive x-axis implemented through
200 steps of 5 �m, �ii� 20 mrad clockwise about the z-axis imple-
mented through 100 steps of 0.2 mrad, and, finally, �iii� the plat-
form performs a translation of 10 �m at an angle of 20 mrad with
respect to the x-axis, implemented through 20 steps of 0.5 �m.
The step length values are such that they can be achieved by a
range of speeds � close to the nominal speed; see Table 1.

Figure 18�a� presents the trajectory of the platform along the
x-axis. Figure 18�b� depicts the trajectory along the x-axis only for
part �iii� of the motion. Figure 18�c� amplifies a small region of
Fig. 18�b� and demonstrates the high motion resolution of the
platform, showing that the step size is 0.5 �m. Hence, from Fig.
18, it can be seen that the platform is able to travel distances of
the order of millimeters in a reasonable amount of time, but is also
capable of performing motion of high resolution. Figure 19�a�
shows the angular displacement of the platform. As expected the
angular displacement occurs only during part �ii� of the path. Fig-
ure 19�b� amplifies a small region of Fig. 19�a� and demonstrates

the resolution of the angular motion, showing that it is 0.2 mrad.
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Inertia of the spinning mass was neglected in this example. In a
hardware experiment, however, inertia will be present and the
platform will exhibit transient regions during acceleration or dec-
laration. As it was presented in Sec. 7, even for the case of open-
loop control commands, the accelerations of the micromotor are
large enough so that transients do not last for more than four to
five steps, and they have small effect on the platform resolution.
Even more, in a closed-loop operation, the micromotor’s time
constant � will be reduced to about one cycle, leading to a prac-
tically negligible small duration of the transients.

9 Future Work
Future work includes the construction of the microrobotic plat-

form, the experimental evaluation of its capabilities, and the de-
velopment of closed-loop control algorithms that will compensate
for parasitic motions induced due to phase differences, nonsym-
metric inertial distribution, and friction nonuniformities. Further-
more, extensive analysis will be performed on the platform’s be-
havior under asynchronous motor operation. The authors intend to
study the navigation of the platform in the x-y plane by exploiting
such asynchronous operation under closed-loop position control.
Also, of great importance is the development of a high-accuracy
position feedback system. To this aim, the authors are currently
working on the construction and setup of an interferometric sensor
for measuring the displacement of the microrobotic platform.

Fig. 18 Plots of the displacement along the x-axis
Fig. 19 Plot of the angle of the platform
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10 Conclusions
The paper presented the dynamic analysis, design, and simula-

tion of a novel microrobotic platform that is able to perform x, y,
and � motion, composed by a sequence of pure translational and
rotational paths. Theoretical results suggested that the platform is
capable for submicrometer position accuracy and for developing
speeds up to �1.5 mm/s. The assertions of submicrometer posi-
tioning accuracy of the platform were based entirely on theoretical
results. Nevertheless, experimental validation is certainly neces-
sary and will be performed to provide full proof of concept. The
novel motion mechanism was described and explained in detail. A
nontrivial dynamic model, which comprises the rigid and deform-
able body of the platform, was derived. The operation modes of
the platform were defined, and, accordingly, design guidelines
were derived. Several design parameters, such as dimensions and
weight, were specified, and a DC vibration motor adequate for
inducing the desired motion to the platform was selected. All plat-
form elements are of low cost and readily available. The power
requirements of the DC vibration micromotors demand a single-
cell battery of 1.5 V. The platform’s motion capabilities were
demonstrated and evaluated by a set of simulations. The obtained
results indicate that for efficient open-loop operation of the plat-
tiple Micro Robots in SEM,” Proc. 2001 IEEE International Conference on
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form, the phase difference among the rotated eccentric masses
should be small. This may be achieved using mechanical contacts
that stall the actuators at the same angle, thus, eliminating the
phase difference. Similarly, for efficient open-loop operation, ac-
tuators should operate synchronously. In practice, the actuators
will exhibit asynchronous operation that will affect the platform
motion. Hence, the desired motion response necessitates for
closed-loop control of the platform’s position. Furthermore, simu-
lations demonstrated that, in general, the transient effects due to
acceleration of the rotating masses result to a reduction of plat-
form’s motion resolution to about five steps. However, this reso-
lution deterioration might be practically eliminated using a closed-
loop operation of the DC vibration micromotors.
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Appendix
The mass matrix M in Eq. �9� is given by

M = diag�M1,M2,M3,M4,M5,M6� �A1�
while the stiffness matrix in Eq. �9� is given by
A =�
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