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A Generalized Model for
Compliant Passive Bipedal
Walking: Sensitivity Analysis
and Implications on Bionic
Leg Design
The passive behavior of a compliant biped walking model, subject to variations in its
design, is investigated. A biped gait model is developed that allows for studying the
effects of leg impedance, geometry, foot curvature, and inertial properties on the stable
gait performed passively. A set of nondimensional parameters has been produced that
fully defines the compass gait behavior, eliminating the dependence of our results on
scale. Models emerging from parameter combinations were tested on their ability to per-
form stable passive walking on slope, and the characteristics of the gait performed in
each case were recorded. Investigation of parameter ranges allowed us to draw relation-
ships between various gait characteristics and specific, nondimensional parameter selec-
tions. By mapping the changes in system behavior under simple design variations, this
work facilitates the selection of design parameters at an early stage of designing bionic
walking equipment, including prostheses and exoskeletons. [DOI: 10.1115/1.4051232]

1 Introduction

The study of bipedal locomotion has been a key point of inter-
est during the past decades. To accompany clinical research per-
formed on human subjects, a number of mechanical biped models
describing walking dynamics have been produced to date, all of
which resemble human lower limb anatomy, and simplify the
complex task of analyzing human gait mechanics.

Clinical research has focused on quantifying the effect of
parameter variations in human walking. Parameters such as the
type of walking surface [1], the weight distribution [2,3], and sub-
ject health [4] have been studied to draw cause-and-effect rela-
tionships between them and gait characteristics. Various studies
have drawn parallels between results from clinical trials and sim-
ple walking models [5–7].

Simple dynamics models have greatly assisted the study of
human gait from a theoretical standpoint. Mochon and McMahon
showcased the passive nature of the swing phase of walking for a
biped model with knees [8]. McGeer first introduced the notion of
passive walking (i.e., without any actuation), which is achievable
by some bipedal machines, and conducted a detailed study on
their gait characteristics [9]. Passive bipedal walking was soon
linked to energetically efficient human walking, suggesting that
the human lower limb structure facilitates this mode of locomo-
tion due to its passive dynamics [10].

A number of different models have been employed for the study
of gait mechanics. Garcia et al. introduced a simple double pendu-
lum model of massless, rigid legs [11] that has been widely used
in many subsequent studies for its simplicity [10,12]. McGeer’s
bipeds incorporated rigid legs, hip friction, and foot curvature [9]:
his papers have inspired and influenced many future works [13],
but the effects of compliance and therefore the double stance
phase of walking were not studied. Alexander first introduced leg
compliance to a simple biped model [14], which enabled a unifica-
tion of walking and running biomechanics models [15,16] but did
not study the effects of foot curvature on the gait produced.

Gard et al. developed a rigid-leg, rocker-based, inverted pendulum
model for the prediction of hip movement during human walking
[17]. Kuo studied the lateral hip motion and resulting gait stability
with a three-dimensional model of passive walking [18]. These
studies have greatly contributed to the advancement of bipeds’
understanding and allow us to match dynamic behaviors with the
presence of abstract mechanical elements. However, elements can
often work with or against one another, and their combination
must also be studied for its dynamic behavior. As the biped’s
dynamics are nonlinear and include phase shifts, knowledge of the
simpler models’ dynamic behavior does not suffice to extract
results for their combination in a single model, as the superposi-
tion principle is not valid for this type of systems: a unifying biped
model is needed for this purpose.

Based on the present models, there have been some notable
studies on the investigation of model parameter values with
respect to gait characteristics. McGeer first studied the effect of
parameter variations on his models [9]. Asano et al. studied the
effect of foot curvature on walking speed and stability [19], as
well as on energy dissipation [20]. They have proposed that semi-
circular feet profiles act as actuated joints, enabling the forward
advancement of the biped [19]. Our team has also performed stud-
ies on the effects of various foot shapes in passive walking robots
[21,22]. Van der Linde studied the effect of active leg compliance
on hip trajectory for a passive walker with round feet [23].
Bertos et al. employed sinusoidal analysis [7] to identify the verti-
cal mechanical impedance of the human locomotor [24], enhanc-
ing Gard’s model with elastic and damping elements.

Parameter investigations have been conducted for other types
of locomotion machines. Mombaur performed parameter optimi-
zation for open-loop stability in an actuated full-body model of
human running [25]. Cherouvim et al. studied the effect of
parameter variations in the hopping motion of a monopod [26].
Chatzakos et al. studied how the bounding motion of a quadruped
robot is affected by parameter selection [27]. Myrisiotis et al.
linked quadruped design parameters to locomotion patterns [28].

Recent interest in bionic gait-assisting equipment such as active
prostheses and exoskeletal devices has driven researchers to
investigate human–device interaction schemes. In these works,
the energetic cost is the most common evaluation parameter
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[29,30], followed by trajectory tracking [31], locomotion speed,
gait stability, and muscle fatigue [32]. Preliminary results on the
passive behavior of the proposed biped model have been pre-
sented in Ref. [33]; that study focused on actively controlling a
biped robot toward an efficient gait on level ground but did not
investigate passive behavior thoroughly, apart from the biped’s
stability.

In this work, the passive gait performed on a negative slope by
a biped model with compliant legs on semicircular feet is investi-
gated. The biped’s legs incorporate inertial elements. The
mechanical losses are due to the axial leg dampers, as well as due
to the impacts with the ground. To the best of our knowledge, no
passive walking model simultaneously incorporating all these ele-
ments has been studied to date. This type of model allows us to
determine the effects of design options, such as leg impedance,
leg and foot geometric design, and mass distribution, and of their
interactions, on the passive gait of the biped. A set of nondimen-
sional parameters that describe the biped design—and conse-
quently govern the gait characteristics—is identified, and a
relationship between model scale-independent parameter selection
and intrinsic gait characteristics such as passive stability, step fre-
quency, speed, hip displacement and loading, and energetic effi-
ciency is provided. Our intention is to develop a gait model that
will provide assistance in the design of efficient bionic prostheses,
exoskeletal devices, and biologically inspired walking robots. We
believe that the proposed model’s generalized design provides
detailed and reliable results, and that the presented dimensional
analysis approach will ease the implementation of our findings in
real-world applications.

2 Methods

To investigate the effects of design choices in the characteris-
tics of passive walking achieved by biped machines, a detailed
model of the biped’s passive dynamics is constructed first.

2.1 Model Structure and Parameters. The model studied
(Fig. 1) is a rocker-based double-pendulum biped that performs
passive walking in the x-direction of the x-y plane defined in
Fig. 1. The biped is composed of deformable legs of uncom-
pressed length Lnat that contain axial elastic and damping
elements.

A key design parameter in this study is the legs’ axial imped-
ance. Elastic legs allow for smoother hip movements, modeling
the compliance that knees normally introduce. The elastic
degrees-of-freedom allow the inclusion of the walking double
stance phase, where both legs are in contact with the ground.
Damping elements along these elastic legs are responsible for

energy losses during the biped’s gait as well as for the subsequent
decay in the legs’ axial oscillations. We define the impedance
constants of elasticity and damping as k and b, respectively. Vary-
ing values of k and b have been associated with changes in walk-
ing patterns [24].

The rockers used as the biped’s feet simulate the rocking
motion of the heel, ankle and forefoot complex [17,33]. Here, we
assume semicircular, nondeformable feet of radius r that perform
rolling without slipping on the ground.

The model’s inertial properties are mainly due to the hip point
mass M, which is fixed at the hip joint. Swing leg dynamics heav-
ily depend on the foot point mass m. There are two such point
masses in our biped, each fixed to one of the biped’s feet, at a dis-
tance l from the foot bottom, see Fig. 1.

2.2 Foot-to-Ground Contact. To describe the motion of the
biped mathematically, a set of assumptions is made, defining the
foot-to-ground contact: (i) the contact is inelastic, and the contact
surfaces are noncompliant, (ii) during the contact periods, the feet per-
form rolling without slipping, and (iii) any contact of the swing foot
with the ground during its forward motion is ignored. Assumption (i)
is possible due to the elasticity of the legs, and (ii) is confirmed by the
simulation results by calculating the contact’s friction coefficient. The
latter assumption (iii) is due to the lack of knees that would allow the
swing leg to clear the floor. However, this can be bypassed in the
design of a physical prototype easily [9], without significantly affect-
ing the passive dynamics, in which we are interested here.

Because of the model’s plane formulation, (iv) we do not distin-
guish between a left and a right foot. For the leg angle variables to
increase during each step, (v) h and w are defined in opposite
directions.

2.3 Walking Phases and Events. Walking is characterized
by two distinct phases: the single stance phase (SSP) and the dou-
ble stance phase (DSP). During the SSP, the stance leg supports
the biped, while the swing leg advances forward.

The SSP ends with a heel strike (HS), when the swing leg
touches the ground. The HS event initializes the DSP, where both
legs are in contact with the ground. The DSP ends when the trail-
ing leg leaves the ground during the toe-off (TO) event, initializ-
ing the next step’s swing phase.

As can be observed from Fig. 1, in the SSP, the model has four
degrees-of-freedom (DOFs). These are the two leg angles, defined
with respect to the ground normal, h for the stance leg, and w for
the swing leg, and the two leg length variables, L1 and L2, respec-
tively. The generalized variable vector q fully describes the
biped’s configuration

q ¼ ½h;L1;w; L2�T (1)

whereas the state vector x, which includes both the elements of q
and their speeds q_, describes the state of the model

x ¼ ½h; _h;L1; _L1;w; _w;L2; _L2�T (2)

The biped’s dynamic behavior during SSP is governed by a set
of four nonlinear second-degree equations of motion: two of
which govern the stance leg, while the other two determine the
swing (contralateral) leg dynamics. The dynamics can be derived
in matrix form as

MðqÞ€q þ Cðq; _qÞ _q þKðqÞ þGðqÞ ¼ 0 (3)

where M4� 4 is the system inertia matrix; C4� 4 is a matrix due to
centrifugal, Coriolis, and damping terms; K4� 1 is the stiffness
vector; and G4� 1 is the gravity vector. Their elements are given
in the Appendix.

As there are no inputs in the right-hand side of Eq. (3), the SSP
equations of motion for the nth step are solved for their response

Fig. 1 The biped model during the single stance phase

101008-2 / Vol. 143, OCTOBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/biom

echanical/article-pdf/143/10/101008/6713527/bio_143_10_101008.pdf by N
ational Technical U

niversity of Athens user on 18 June 2021



to the initial step conditions xn. The SSP ends at HS of the swing
leg, where the state vector xn,HS is appointed as initial conditions
to the next phase of walking.

During the DSP, model assumptions (i) and (ii), i.e., inelastic
contact and rolling without slipping, define two separate geomet-
ric constraints that must be met by the model, also see Fig. 2.
Using the subscript HS to denote variable values at HS, these two
constraints are expressed as

s1ðqÞ ¼ ðL1 � rÞcos h� ðL2 � rÞcos w ¼ 0 (4)

s2ðqÞ ¼ dHS � d þ rðhHS � hþ wHS � wÞ ¼ 0 (5)

where d is the distance between the two semicircular feet’s geo-
metric centers, as shown in Fig. 2, and is defined in Eq. (6)

d ¼ ðL1 � rÞsin hþ ðL2 � rÞsin w (6)

To satisfy these constraints during DSP, Eq. (3) is extended
with the addition of the generalized constraint force vector f4� 1

and Eqs. (4) and (5) are required to be satisfied by the system sol-
utions, thus limiting the DOFs to only two. Then, the constraint-
appended biped dynamics during the DSP are described by

MðqÞ€q þ Cðq; _qÞ _q þKðqÞ þGðqÞ � f ¼ 0

sðqÞ ¼ 0
(7)

where s2� 1=[s1,s2]T is the constraint vector and the rest of the
terms have been defined in Eq. (3).

The generalized constraint force vector f is calculated via the
multiplication of the constraint matrix P2� 4 with the Lagrange
multiplier vectors k1 and k2, corresponding to constraints s1 and
s2, respectively, and composing the vector k2� 1

f ¼ PTðqÞk (8)

The elements of the constraint matrix P are listed in the Appen-
dix, and given by

pjk ¼
@sj

@qk
; j ¼ 1…2; k ¼ 1…4 (9)

The dynamics of Eq. (7) are solved for their response to DSP’s
initial conditions xn,HS when there exists a small relative velocity
between the swing foot and the ground. At that instant, the con-
straint forces f decelerate the swing foot to conform its velocity

with the constraints in s 5 0, resulting in a HS impact, see Fig. 3.
The DSP dynamics are solved until the event TO, at which point
the state vector is xn,TO.

The integration of the SSP dynamics (3) starts at the beginning
of each step and ends at HS. According to assumption (iii), the
event HS is defined so that any contact of the swing foot with the
ground during the foot’s forward advancement is ignored. To
achieve this, three conditions must be met simultaneously

ðL1 � rÞcos h� ðL2 � rÞcos w ¼ 0 (10)

w > 0 (11)

d

dt
L1 � rð Þcos h� L2 � rð Þcos w½ � < 0 (12)

Conditions (10)–(12) are identified as the foot-on-ground condi-
tion, swing leg advancement condition, and swing leg retraction
condition, respectively, Eq. (10) defines the stance foot’s contact
with the ground, Eq. (11) is satisfied when the swing leg has
advanced forward of the hip joint, and Eq. (12) translates to the
swing foot descending toward the ground. The termination of the
DSP is defined to occur when the trailing leg foot mass weight is
lifted from the ground, when the ground reaction force on the foot
becomes zero.

2.4 Gait Function Definition. Up to this point, a single step
of the biped model has been defined fully; still the gait dynamics
must be expressed in a compact way. This will allow solving for
repetitive gait cycles and determining the parameters that define
gait dynamics.

We define as f1 the dynamic process governed by the SSP
dynamics (3) that maps the state vector xn at the beginning of the
nth step to the state vector xn,HS at HS

xn;HS ¼ f1ðxnÞ (13)

Similarly, f2 denotes the process of mapping the state vector
xn,HS at HS to the state vector xn,TO at TO, through the integration
of DSP dynamics (7)

xn;TO ¼ f2ðxn;HSÞ ¼ f2ðf1ðxnÞÞ (14)

Because of assumptions (iv) and (v), the elements of xn,TO are
transformed to obtain the initial state of the (nþ 1)th step

hnþ1 ¼ �wn;TO; wnþ1 ¼ �hn;TO

_hnþ1 ¼ � _wn;TO;
_wnþ1 ¼ � _hn;TO

L1;nþ1 ¼ L2;n;TO; L2;nþ1 ¼ L1;n;TO

_L1;nþ1 ¼ _L2;n;TO; _L2;nþ1 ¼ _L1;n;TO

(15)

The variables on the left-hand side of Eq. (15) are the elements
of the initial condition state vector xnþ1. Using Eq. (15), this trans-
formation can be written in matrix form as

xnþ1 ¼ Txn;TO (16)

where T8� 8 is a transformation matrix, whose sole nonzero ele-
ments are t15¼ t26¼ t51¼ t62¼�1, t37¼ t48¼ t73¼ t84¼ 1.

Combining Eqs. (14) and (16) results in expressing the initial
conditions of the (nþ 1)th step as a function of the initial condi-
tions of the nth step. We call this gait function p

xnþ1 ¼ Tf2ðf1ðxnÞÞ¢pðxnÞ (17)

2.5 Model-Defining Parameters. Expressing each stage of
Eq. (17) in nondimensional form allows for isolation of a set of
six nondimensional parameters that fully define p. To derive the
dimensionless model, the Lnat, M and the acceleration of gravity,

Fig. 2 The model during the double stance phase

Journal of Biomechanical Engineering OCTOBER 2021, Vol. 143 / 101008-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/biom

echanical/article-pdf/143/10/101008/6713527/bio_143_10_101008.pdf by N
ational Technical U

niversity of Athens user on 18 June 2021



g, are selected as the characteristic parameters for length, mass,
and acceleration, respectively. The resulting nondimensional
model-defining parameters are the slope angle a, the damping
parameter b, the elasticity parameter j, the foot mass distribution
parameter k, the foot-to-hip mass ratio l, and the rolling factor q.
The analytical expression for these parameters can be found in
Table 1.

Different parameter combinations lead to different gait func-
tions. Therefore, we select a range of values for each parameter
and focus on values that correspond to physically achievable mod-
els that are passively stable due to their design. This value range
for each of the six parameters has been empirically selected to
enclose the region of optimally stable designs, and is presented in
Table 1, as well.

2.6 Repetitive Passive Gait and Fixed Points. To study pas-
sive walking, it is essential to identify repetitive passive gaits per-
formed by the biped and to assess its ability to sustain them in the
case of small perturbations.

Following Eq. (17), to identify states that can lead to passive
walking, Eq. (18) must be solved for x

x ¼ pðxÞ (18)

Because of the nonlinearity of the problem, no analytical solu-
tion can be derived. Instead, a Newton–Raphson numerical
method is employed kþ 1 times

xhkþ1i
n ¼ xhkin þ ðI8x8 �rpðxhkin ÞÞ

�1½pðxhkin Þ � xhkin � (19)

which is solved repetitively until convergence, using the follow-
ing termination criterion:

maxi

���� xi;n
hkþ1i � xi;n

hki

xi;n
hki

���� < 10�6 (20)

where xi is the ith element of x. The state vector x* resulting from
this process satisfies (18) and is called a fixed point of p. It corre-
sponds to states that, following a full cycle, return to themselves.

As has been discussed previously, different combinations of
nonlinear model parameters (see Table 1) result in different gait
functions p, which in turn have different fixed points. Here, we
attempt to make an optimal selection for our model’s parameters,
in terms of gait stability.

Fixed points x* can be assessed regarding their stability,
through the linearization of p around x*

Dx�nþ1 ¼
@p x�ð Þ
@x

����
x 5 x�

Dx�n¢ADx�n (21)

In Eq. (21), Dx* 5 x – x* is a small deviation of the state vector
from its fixed point value. The eigenvalues of A8� 8 determine the
stability of the discrete, linearized system (21): if all eigenvalues
have a magnitude less than 1, then the linearized system and the
fixed point x* are considered to be stable.

It is important to note that due to the use of a linear stability cri-
terion for a nonlinear system, the characterization of a fixed point
as per its stability might be subject to inaccuracies. For this rea-
son, every fixed point that has been found by Eq. (19) and charac-
terized as stable using the linearized evaluation method described
above is also tested for its ability to converge stably toward its
fixed point, starting from initial conditions outside the fixed-point
trajectory, see Fig. 3.

3 Results

3.1 Nominal Biped Model for Optimal Stability. System
stability was evaluated for different parameter combinations start-
ing from a reasonable set where the existence of a stable passive
gait was found, and a nominal parameter set, resulting in an opti-
mally stable gait, was numerically found via a cyclic coordinate
descent optimization algorithm. The maximum eigenvalue magni-
tude, jejmax, of A resulting from parameter sweeps is presented in
Fig. 4, where each point corresponds to results obtained when one
of the parameters is altered from its nominal value. Nominal
parameter values have been marked in the same plot by an
inverted triangle (r). The sweeping range for each parameter has
been defined in Table 1. The effectiveness of the optimization pro-
cess is evident in Fig. 4, as nominal values correspond to a mini-
mum in jejmax. This optimal set defines the nominal biped; its
parameters are given in Table 1.

As can be seen in Fig. 4, the range of values that lead to a stable
gait differs qualitatively amongst the six parameters. The graphs
corresponding to parameters a and b present a basin of stable gaits

Fig. 3 Convergence to stable gait for 10 steps, demonstrates fixed point stability.
The chart should be read in a clockwise direction. Initial conditions, HS and TO
events are marked in the graph. Initial conditions are outside the fixed-point phase
plot. Note the velocity spike due to the impact at HS, and the curvature change after
the HS and TO events of both legs.

Table 1 Nondimensional model parameters

Parameter,
name Definition

Minimum
value

Nominal
value

Maximum
value

a, slope angle a �3.5 deg �2 deg 0 deg

b, damping parameter b
ffiffiffiffiffiffiffiffi
Lnat

p
=ðM ffiffiffi

g
p Þ 0 3.5 5

j, elasticity parameter kLnat=ðMgÞ 10 29.7 70

k, foot mass distribution l=Lnat 0 0.15 1

l, hip-to-foot mass ratio m=M 0.001 0.02 0.1

q, rolling factor r=Lnat 0 0.25 0.8
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around their corresponding minima, while values that lay further
away from the nominal points are unstable. This is a result of the
energetic equilibrium of stable gaits: as evidenced by the dynamic
Eqs. (3) and (7), the energetic input depends on a while the ener-
getic output on b; these must be matched to equate power input
and loss and maintain the kinetic energy level of the system.

Intermediate values of j and q facilitate step-to-step transitions
by introducing compliance in the DSP. Very small values of j
lead to very compliant legs that are unable to support the biped’s
weight. On the other hand, very large values of j introduce
extreme rigidity and lead to asymptotically unstable gaits. Simi-
larly, very small values of q do not facilitate rollover, while for
values of q close to 1, the biped converges toward a rolling disk
accelerating down a slope. Finally, l and k also present basin-
type, complementary stability diagrams, implying that there exists
an optimal weight distribution that presents optimal gait stability.

Comparing the stability range among the model’s parameters
leads to the observation that the system is not uniformly sensitive
to variations of its nondimensional parameters. Specifically, the
mass ratio l and mass distribution k present a narrow stability
range, indicating that the swing leg pendulum dynamics heavily
influence the biped’s ability to perform passive gaits. On the other
hand, the elasticity parameter j presents a wide range of stable
values, which is attributed to the system’s gradual convergence to
a stiff-legged walker as j increases.

Moreover, we can draw positive results concerning the robust-
ness of the passive gait, as the system appears to be stable for
small parameter variations from the nominal point, along all six
parameters. This observation is very important for our nominal
model selection since our goal is to study passive gait characteris-
tics for a broad range of parameter values, which introduces the
need for stability robustness.

To demonstrate the stability of the nominal gait, Fig. 3 presents
the phase space of the nominal biped, initiating gait with initial
conditions outside its fixed-point trajectory. It can be observed
that, after two steps, the passive gait converges to the trajectory
corresponding to its stable fixed point.

3.2 Effect of Parameter Variations. To better study the
behavior of the biped model and to link gait characteristics to
model parameters, the gait performed by bipeds whose dimension-
less parameters vary from the nominal set by a single parameter
each time is studied. Here, gaits are evaluated based on their step
frequency, hip vertical displacement, forward walking speed, hip
accelerations, and energetic consumption. In the following plots,
larger circles correspond to larger values for the investigated
parameter. To allow model verification and investigate design
suitability, the results presented correspond to human-compatible
values of leg length Lnat¼ 1 m and hip mass M¼ 80 kg.

Subject to its passive dynamics, the biped tends toward per-
forming steps at a specific frequency. Since there is no external
input, this frequency must be determined by model parameters.
To this end, an investigation was performed to identify the system
parameters that affect step frequency.

Figure 5 provides a graphic interpretation of step frequency, by
plotting simulation results on axes of step length, Sl, versus mean
velocity in the x-direction, vx. According to the laws of dimen-
sional analysis and simple physics, step frequency is obtained as
the ratio of vx over Sl; this indicates that gaits with the same fre-
quency yield pairs (Sl, vx) that lie on a single line that intersects
the origin. While this is true for most of the simulations plotted in
Fig. 5, gaits that result from variations of parameters a, j, and k
appear to have different step frequencies. Points that lay under the
shaded region of Fig. 5 correspond to gaits that have a lower step
frequency, whereas the opposite holds for points plotted above it.

In more detail, the slope angle a shapes the geometry of the
biped’s surroundings, affecting the frequency of HS events, and
defines the effect of gravity, which has the biggest impact on pas-
sive walking. Smaller slope angles fail to accelerate the biped for-
ward and result in smaller step frequencies. While increasing the
value of a (larger circles) initially increases step frequency; once
a certain value is reached, further increasing a has no effect on the
frequency’s value. This is because even though gravity increas-
ingly facilitates forward advancement, HS occurs later in the step
cycle.

Fig. 4 Gait stability, sensitivity to nondimensional model parameters. For stability, jejmax < 1.
Nominal design is marked with a white triangle. Biped design variations are investigated for
their stability by changing the value one parameter at a time from its nominal value.
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Our model is composed of two discrete subsystems: the pendula
and the mass-spring-dampers. The effect of each of these on the
step frequency of the biped is analyzed below.

We denote the subsystem frequency component that depends
on parameter p by fp. Elasticity parameter j defines the resonance
frequency fj of the model elastic legs, while foot mass distribution
parameter k defines the swing leg’s pendulum resonance fre-
quency fk. Using the parameter expressions of Table 1, we can
observe from Eqs. (22) and (23) that fj and fk increase with j and
k, respectively,

fj ¼
ffiffiffiffiffi
k

M

r
¼

ffiffiffiffiffiffiffiffi
jg

Lnat

r
(22)

fk ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

Lnat � l

r
¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

Lnat 1� kð Þ

r
(23)

Swing leg dynamics evolve over half the period of a free pendu-
lum, ending at HS; we thus expect to observe double the fre-
quency calculated in Eq. (23), defined as fk

*

f �k ¼ 2fk (24)

To determine the effect of each subsystem’s resonance frequencies
on the step frequency of the biped, we plot the step frequency obtained
by varying j and k from their nominal values, together with the plots
of spring and pendulum natural frequencies calculated by Eqs. (22)
and (24). Figure 6 presents this comparison. Step frequencies remain
closer to fk

*, i.e., the pendulum frequency that primarily affects step
dynamics. This points out that the leg compliance dynamics are sec-
ondary to the pendulum motion in determining step frequency. This
can be explained by the fact that the step frequency depends on vx and
Sl, which are both associated with the pendulum motion.

The reason for our model’s passive step frequency being
smaller than its theoretical value calculated as fk

* as seen in Fig. 6

Fig. 5 Step frequency as the ratio of gait velocity over step length. Most points lie
around a single line of constant frequency f�0.8 Hz; points corresponding to varia-
tions of k, a, and j present a notable exception.

Fig. 6 Model simulated step frequency in comparison to resonance frequencies of
elastic legs fj and swing leg pendulum motion, fk*. Gait step frequency remains
close to pendulum-related fk*.
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is that Eq. (23) is an approximation valid for small angular devia-
tions of the pendulum from its equilibrium position (less than 4
deg). For larger angle values, as are observed in the steps of the
biped, the resonance frequency of the pendulum motion decreases,
resulting in smaller step frequencies.

Typical human walking step frequencies are in the range
1.4–2.5 Hz [34]. The passive pendulum dynamics lead to smaller
step frequencies for a given velocity in our nonactuated model
than is observed in human walking.

The vertical displacement of the hip Dy should be limited dur-
ing walking, to minimize the displacement enforced on the human
torso or on a robot’s electronics. In humans, Dy values are in the
range from 20 to 80 mm [17]. It is therefore interesting to study
the effect of varying the elastic constant j on the simulated value
of this vertical displacement, Dy.

The displacement, Dy, is plotted in Fig. 7 for deviations of j
from its nominal value. This figure shows that the predicted

displacements Dy are within the range of 20–80 mm, as noted ear-
lier, with the smaller displacements occurring for low j. Figure 7
also shows that for smaller j values, the hip displacement is con-
siderably lower than for stiffer legs. Therefore, a careful selection
of j can reduce Dy to 20 mm (j� 20). This is an interesting
design characteristic that can be used to minimize hip oscillatory
movements without the need for active control. Very soft legs
(j< 20) fail to support the body and result in unstable passive
gaits, while with very stiff legs, (j> 50), the biped converges to a
rigid-legged walking pattern.

The elastic elements introduced by j affect not only the hip dis-
placement but also its rate of change. Elastic legs of smaller j
enable the biped to achieve a smoother transition during the DSP,
minimizing the accelerations acting on the hip. Figure 8 presents
the trajectory achieved by the nominal biped’s hip, comparing it
to the hip trajectory of a biped with fully stiff legs. It is evident
that the elastic legs smoothen the hip’s trajectory, reducing its
inertial accelerations.

Generally, the hip inertial acceleration in the y-direction is pro-
portional to inertial loads applied at the hip. Consequently, we
study the relationship between mean forward gait velocity vx and
hip RMS vertical accelerations ay, with the goal of identifying
parameter combinations that satisfy speed and loading criteria for
a given application.

In Fig. 9, the procedure described in Section A was followed,
this time plotting results on a velocity-acceleration plane (in
Fig. 9, larger circles mark larger parameter values). A quick
observation of the graph suggests that the values of velocity and
acceleration are mostly proportional, with faster gaits often trans-
lating to larger hip inertial loads.

In general, both vx and ay increase when a, j, and q take greater
values, while larger b values lead to slower gait paces and smaller
hip accelerations. This is due to the mass-spring-damper system,
where RMS accelerations increase with spring rigidity, here

Fig. 7 Vertical hip displacement Dy for various leg elastic constants j. Compliant
legs allow for minimization of hip displacement.

Fig. 8 Hip trajectory of our nominal biped during its stable
fixed-point gait. The presence of elastic elements along the
legs results in a smoother hip trajectory in comparison to a
stiff-legged model, reducing the hip’s inertial accelerations.

Fig. 9 Mean forward velocity plotted against hip RMS vertical acceleration for vari-
ous parameter variations from nominal model. Inertia-related parameters can lead
to smaller hip loads for large walking velocities.
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proportional to j, and decrease with the damping constant, which
is proportional to b. A further increase of j with respect to its
nominal value would result to a vertical asymptote in the diagram,
implying infinitely large hip loads for a finite speed.

It is also expected that an increase in slope angle a will lead to
a faster gait and that steeper descents cause greater inertial loads.
The effect of increasing the rolling factor q is to increase the
biped’s forward velocity, introducing a small but increasing
amount of hip loads in doing so. However, for a given forward
velocity, gaits obtained by varying q achieve lower vertical accel-
erations than those resulting from varying a, j, or b.

However, the effect of parameters l and k is significantly dif-
ferent: legs of larger moment of inertia, indicated by larger l and
smaller k, result in larger impact during HS, and they are also
slower to bring forward, due to their smaller fk

*, resulting in
smaller forward gait velocity. The opposite holds for legs of
smaller moment of inertia, of small l and large k.

Typical RMS values for the vertical hip acceleration during
human walking are in the range 0.49–4.91 m/s2 [35], again match-
ing our model’s predictions.

Faster locomotion is often associated with greater energy
losses; however, this is not always the case in passive walking.
Figure 10 presents the biped’s cost of transport (COT) as a func-
tion of mean forward velocity vx. The COT is

COT ¼
�Ploss

M þ 2mð Þgvx
(25)

where �Ploss is the average power loss of the system, calculated as
the sum of damping and ground impact losses: the latter are calcu-
lated as the change in kinetic energy just before and after the
impact. It can be observed that COT values do not depend on for-
ward velocity vx, but instead they directly relate to the slope angle
a. For stable passive gaits, the COT is equal exactly to sina [9],
while deviations occur for some unstable gaits; this relationship is
plotted in Fig. 10. This equality is attributed to the conservation of
system kinetic energy during a stable gait.

It can be observed from Fig. 10 that greater values of the rolling
factor q lead to stable passive walking with larger walking veloc-
ities without any increase in the energetic expense required for the
gait. Therefore, in this case, the biped achieves higher velocities
without an increase in the associated losses. However, it should be
taken into consideration that very large values of q might result in
impractical designs. Figure 10 shows also that the rest of the mod-
el’s parameter variations lead to unstable gaits for velocities
smaller than those achieved through q and are therefore less effi-
cient in increasing the biped’s velocity while preserving gait
stability.

The energy input in this study has been provided by the biped’s
descent in the gravity field: this is a simplified way to perform

simulations without an active energy input. The gait produced can
be replicated on level ground with a model-based actuation
scheme, without a significant increase in COT [33]. In humans
and bionic devices, the energy input is provided by actuated joints
in the hip, knees, and ankles.

Human metabolic costs during walking are above 0.26 J N�1

m�1 [36]. However, note that this figure differs from COT as it
includes various vital metabolic functions that our model does not
account for. An estimate for the human COT is 0.03–0.08 [37],
while bipedal robots have reported COT in the range 0.04–0.08
[38], both matching our model’s predictions.

4 Discussion

Our investigation highlights the dependence of lower limb pas-
sive behavior on design choices that are usually made early during
the first stages of any gait-assisting system development. We have
established relations between leg design and walking stability,
step frequency, speed, hip vertical displacement and loading, and
energetic efficiency.

The results show that different sets of design parameters satisfy
different criteria; to avoid conflicts, the application aims and the
appropriate evaluation criterion must be selected early on. The
process of selecting a design for optimized gait stability has been
presented here (Fig. 4).

With a goal of achieving more frequent steps, it is required to
position the legs’ center of mass closer to the hip. The opposite
holds if aiming at a lower frequency gait (Figs. 5 and 6). The elas-
ticity of the legs also changes gait frequency, but to a smaller
extent (Fig. 6).

Hip displacement, an important value indicating comfort in
walking, can be minimized by fine-tuning leg elasticity. Very stiff
leg designs do not benefit from the effects of compliance and lead
to hip displacements identical to the ones observed in rigid leg
designs. Instead, hip movement is smoothened by selecting a
more compliant design, resulting in minimal hip displacement
(Figs. 7 and 8).

Decreasing the legs’ moment of inertia, i.e., moving the legs’
center of mass closer to the hip, significantly reduces hip loading
while also increasing gait velocity. For a given leg mass distribu-
tion, the presence of damping elements can decrease the load at
the hip at the cost of decelerating the walker. The opposite holds
for large values of leg stiffness. Faster gaits with a low level of
hip loading can be achieved by increasing foot curvature (Fig. 9).

An increased foot curvature also benefits leg designs by allow-
ing larger gait velocities for a given energy consumption rate. In
fact, it appears to be the only parameter able to result in high
speeds without simultaneously compromising gait stability for a
given COT (Fig. 10). This is very important in the design of pros-
thetic or exoskeletal devices, as the COT is a measure of the

Fig. 10 COT only depends on slope a. Foot curvature-defining q leads to larger velocity for the
same energy level, maintaining gait stability.
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metabolic cost of walking: small COT allows for effortless move-
ment. Variable-curvature foot designs, as is observed during
human foot-rolling progression, might be a practical solution.

The biped studied here combines some key elements present in
human walking in an abstract form, such as walking compliance,
foot rollover, and leg inertia. However, it does not describe the
detailed human design: there is no supporting torso or swinging
arms, actuated knees, or ankles: all these have been shown to
affect the dynamics and energetics of walking [39–41]. Despite its
limitations, the biped’s behavior has been found to highly resem-
ble human walking characteristics, implying a high level of com-
patibility between assistive bionic devices dynamically
resembling the presented design and human subjects.

More complex models would allow a more detailed comparison
between the biped’s dynamics and human gait. However, the
abstract nature of this model includes the salient features of walk-
ing and allows for many design interpretations, to work around
individual needs. To investigate the generalization capabilities of
the abstract modeling approach, several passive biped variations
can be studied and compared. For example, relocating the biped’s
damping elements at the hip joint, or substituting leg compliance
with passive knee joints, would result in passive bipeds of similar
structure, yielding results comparable to the ones obtained here.

In conclusion, the simulation and study of this model’s passive
dynamic behavior employing nondimensional parameters can
help in a systematic, case-specific design investigation of gait-
related questions, including lower limb prosthetic and orthotic
devices’ design options, at an early stage before manufacture and
implementation. Our next plan is to build a walking machine to
validate the proposed model and to develop and test bionic leg
designs suitable for gait assistance based on the conclusions of
this study.

5 Conclusion

This paper provides a design investigation of a biped model
that can facilitate the understanding of efficient walking mecha-
nisms in humans. We extracted this information by studying the
characteristics of the biped’s passive gait, when design parameters
such as leg impedance, mass distribution, and foot curvature are
altered. We obtained a set of design parameters that fully describe
a nondimensional walking model. The focus of this work has been
the study of the effect of parameter variations on the characteris-
tics of the gait produced. We believe that a careful parameter
selection can lead to an optimal design that will facilitate the effi-
cient operation of gait-assisting bionic devices.

Nomenclature

A ¼ matrix for the linearization of p
ay ¼ rms vertical hip acceleration
b ¼ axial leg damping
C ¼ matrix for centrifugal, Coriolis, damping terms

COT ¼ cost of transport of gait
d ¼ distance between the two semicircular feet’s geometric

centers
DSP ¼ double stance phase
jejmax ¼ maximum magnitude of A’s eigenvalues

f ¼ generalized constraint force vector
fj ¼ resonance frequency of elastic legs
fk ¼ resonance frequency of pendulum

fk
* ¼ double the resonance frequency of pendulum
g ¼ acceleration of gravity

G ¼ gravity vector
HS ¼ heel strike

k ¼ axial leg elasticity constant
K ¼ stiffness vector
l ¼ distance of foot point mass from leg bottom

L1 ¼ stance foot leg length, generalized variable
L2 ¼ swing foot leg length, generalized variable

Lnat ¼ uncompressed leg length
m ¼ foot point mass
M ¼ hip point mass
M ¼ system inertia matrix
p ¼ gait function

�P loss ¼ average power loss of the system
q ¼ generalized variable vector
r ¼ circular foot radius
s ¼ constraint vector during DSP

Sl ¼ step length
SSP ¼ single stance phase

T ¼ end of step transformation matrix
TO ¼ toe off

vx ¼ mean forward gait velocity
x ¼ state vector

x* ¼ fixed point of p
xn ¼ state at the beginning of nth step

xn,HS ¼ state at HS of nth step
xn,TO ¼ state at TO of nth step

a ¼ slope angle
b ¼ dimensionless damping parameter

Dy ¼ maximum vertical displacement of the hip
h ¼ stance foot leg angle, generalized variable
j ¼ dimensionless elasticity parameter
k ¼ dimensionless foot mass distribution parameter
k ¼ Lagrange multiplier vector
l ¼ dimensionless hip to foot mass ratio
P ¼ constraint Jacobian
q ¼ dimensionless rolling factor
w ¼ swing foot leg angle, generalized variable

Appendix

The elements of the matrices M, C, K, G, and P are

m11 ¼ M½ðL1 � rÞ2 þ r2 þ 2rðL1 � rÞcos h�

þ mfðL1 � rÞ2 þ ðL1 � lÞ2 þ 2r2

þ 2r½ðL1 � rÞ þ ðl� rÞ�cos hg

m12 ¼ m21 ¼ ðM þ mÞr sin h

m13 ¼ m31 ¼ mðL2 � lÞ½ðL1 � rÞcosðwþ hÞ þ r cos w�

m14 ¼ m41 ¼ m½ðL1 � rÞsinðwþ hÞ þ r sin w�

m22 ¼ M þ m; m23 ¼ m32 ¼ mðL2 � lÞsinðwþ hÞ

m24 ¼ m42 ¼ �m cosðwþ hÞ; m33 ¼ mðL2 � lÞ2

m34 ¼ m43 ¼ 0; m44 ¼ m

(A1)

c11 ¼ �f½MðL1 � rÞ þ m½ðL1 � rÞ þ ðl� rÞ�r sin hg _h

c12 ¼ 2ðM þ mÞðL1 � r þ r cos hÞ _h
c13 ¼ �m½ðL2 � lÞr sin wþ ðL1 � rÞðL2 � lÞsinðwþ hÞ� _w
c14 ¼ 2m½ðL1 � rÞcosðwþ hÞ þ r cos w� _w
c21 ¼ �ðM þ mÞðL1 � rÞ _h; c22 ¼ b

c23 ¼ mðL2 � lÞcosðwþ hÞ _w; c24 ¼ 2m sinðwþ hÞ _w
c31 ¼ �mðL1 � rÞðL2 � lÞsinðwþ hÞ _h
c32 ¼ 2mðL2 � lÞcosðwþ hÞ _h; c33 ¼ 0

c34 ¼ 2mðL2 � lÞ _w; c41 ¼ mðL1 � rÞcosðwþ hÞ _h
c42 ¼ 2m sinðwþ hÞ _h; c43 ¼ �mðL2 � lÞ _w; c44 ¼ B

(A-2)

k1 ¼ 0; k2 ¼ kðL1 � LnatÞ; k3 ¼ 0; k4 ¼ kðL2 � LnatÞ (A-3)
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g1 ¼ gfðM þ mÞ½r sin aþ ðL1 � rÞsinða� hÞ�
þ m½r sin aþ ðl� rÞsinða� hÞ�g

g2 ¼ gðM þ mÞcosða� hÞ
g3 ¼ gmðL2 � lÞsinðaþ wÞ; g4 ¼ �gm cosðaþ wÞ

(A-4)

p11 ¼ ðL1 � rÞsin h; p21 ¼ r þ ðL1 � rÞcos h

p12 ¼ �cos h; p22 ¼ sin h; p13 ¼ �ðL2 � rÞsin w

p23 ¼ r þ ðL2 � rÞcos w; p14 ¼ cos w; p24 ¼ sin w

(A-5)
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