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ABSTRACT 
 

This paper studies the motion control of a multiple manipulator free-flying space robot chasing a 

passive object in near proximity. Free-flyer kinematics are developed using a minimum set of body-

fixed barycentric vectors. Using a general and a quasi-coordinate Lagrangian formulation, equations of 

motion for model-based controllers are derived. Two model-based and one transposed Jacobian control 

algorithms are developed that allow coordinated tracking control of the manipulators and the 

spacecraft. In particular, an Euler parameter model-based control algorithm is presented that 

overcomes the non-physical singularities due to Euler angle representation of attitude. To ensure 

smooth operation, and reduce disturbances on the spacecraft and on the object just before grasping, 

appropriate trajectories for the motion of spacecraft/manipulators are planned. The performance of 

model-based algorithms is compared, by simulation, to that of a transposed Jacobian algorithm. 

Results show that due to the complexity of space robotic systems, a drastic deterioration in the 

performance of model-based algorithms in the presence of model uncertainties results. In such cases, a 

simple transposed Jacobian algorithm yields comparable results with much reduced computational 

burden, an issue which is very important in space. 
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I. INTRODUCTION 

As space commercialization materializes, space structures and satellites will proliferate. Extending the 

life of such systems, and therefore reducing the associated costs, will require extensive inspection, 

assembly and maintenance capabilities in orbit. Astronaut Extra Vehicular Activities (EVA) can be 

valuable in meeting these requirements. However, the cost of human life support facilities, the limited 

time available for astronaut EVA, and the high risks involved, make space robotic devices candidate 

astronaut assistants or alternatives. To increase the mobility of such devices, free-flying space robotic 

systems in which manipulators are mounted on a thruster-equipped spacecraft, have been proposed [1-

3]. 

Control schemes that allow the spacecraft to be uncontrolled (free-floating mode operation), have 

been studied to eliminate the use of reaction jet fuel [4-8]. Control schemes for the capture of targets 

within a free-floating system’s workspace were presented in [9,10]. However, the workspace of free-

floating systems is restricted by their inability to have their system Center of Mass (CM) translated, 

and by the existence of workspace dynamic singularities [11]. To achieve an unlimited workspace, a 

control scheme that treats a free-flyer as a redundant manipulator, and is based on a pseudo-inverse 

Jacobian controller has been proposed [12]. In this scheme, an operator will command the 

manipulator’s end-effector only; the spacecraft position and orientation, and the manipulator 

configuration will change in an uncontrolled way. In another study, a coordinated controller was 

designed so that both an end-effector and the spacecraft can be controlled [13]. This control scheme 

allows commanding a desirable manipulator configuration, and planning of a system’s motion. 

In this paper, the dynamics of multi-manipulator free-flying space robots are developed. The 

system CM position is used to represent the system translational Degrees-of-Freedom (DOF). The 

kinematic and dynamic quantities are expressed using a set of body-fixed barycentric vectors. As 

studied in [14, 15], this results in decoupling the total linear and angular motion from the rest of the 

equations, when no external forces/torques are applied on the system. Next, two model-based control 

algorithms, based on an Euler angle and an Euler parameter description of the orientation, and a 

transposed Jacobian control algorithm are developed. These algorithms permit control of both the 
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spacecraft and its appendages in their task space. Euler angle model-based control algorithm (MB1) 

presents the inconvenience of representational singularities, while Euler parameter model-based 

control algorithm (MB2) overcomes these non-physical singularities. To ensure smooth operation, and 

reduce disturbances on the spacecraft and also on the object just before grasping, appropriate 

trajectories for the spacecraft/manipulators motion are planned which lead to capture of moving 

objects in space. These trajectories take into account the relative target motion, and thruster/actuator 

saturation limits. The developed control laws are evaluated using a three manipulator/appendages free-

flyer example. It is found that if dynamic properties are accurately known, model-based controllers 

provide good tracking, but are computationally expensive. On the other hand, the simple Jacobian-

based algorithm, when used with appropriate gains, provides an acceptable and computationally 

inexpensive controller. 

 

II. DYNAMICS MODELLING 

In this section, the equations of motion of a rigid multiple arm free-flying space robotic system, are 

obtained. The travel of the system is assumed of relatively short length and duration and therefore 

dynamical effects due to orbital mechanics are neglected. The motion of the system CM is used to 

describe its translation with respect to an in-orbit inertial frame of reference (XYZ), and all the 

kinematic and dynamic quantities are written in terms of a set of body-fixed barycentric vectors. The 

body 0 in Figure 1 represents the spacecraft of the free-flyer, which is connected to n manipulators or 

appendages, each with Nm links. Manipulator joints are revolute and have a single DOF. The joint 

angles and rates are represented by N×1 column vectors ! , and ˙ ! . The total DOF of the system are 

N = K +6 , where K = N
m

m=1

n

! . 

The inertial position of a point P, R
P
, can be written as 

 R
P
= R

CM
+ r

P
 (1) 

 r
P
= r

Ci
+ r

P
C
i

 (2) 
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where rp  is the position vector of P with respect to the system CM, R
CM

 is the inertial position of the 

system CM, C
i  is the CM of the i-th body, r

Ci  is its position vector with respect to the system CM, 

and r
P
C
i

 is the position vector of P with respect to C
i
. Vectors r

Ci  can be written as follows 

 r
C0

= ˜ e 
0
+ ˜ l 

k

(m )

k=1

N
m

!
m=1

n

!  (3) 

 rCi

(m)
= ˜ r 

0

(m )
+ ˜ l k

( j )

k =1

N j

!
j=1

j"m

n

! + ˜ v ki
(m )

k=1

N m

!
m = 1,...,n

i = 1,...,Nm

# 
$ 
% 

 (4) 

where the superscript “m” corresponds to the m-th manipulator, the subscript “i” refers to the i-th body 

of that manipulator, and (˜ ! ) denotes body-fixed barycentric vectors defined in Appendix A. 

To obtain the inertial velocity of point P, Equation (1) is differentiated and yields 

 ˙ R p =
˙ R CM + ˙ r Ci

+! i " rP
Ci

 (5) 

Differentiation of Eqs. (3) and (4) yields 

 ˙ r 
C0

= !
0
" ˜ e 

0
+ !

k

(m)
" ˜ l 

k

(m)

k=1

N
m

#
m=1

n

#  (6a) 

 ˙ r Ci

(m)
= !

0
" ˜ r 

0

(m )
+ !k

( j)

k=1

N j

#
j=1

j$m

n

# " ˜ l k
( j )

+ !k

(m )

k=1

Nm

# " ˜ v ki
(m )

m = 1,...,n

i = 1,...,Nm

% 
& 
' 

 (6b) 

where w’s are angular velocities of individual bodies, which for single DOF joints are written as 

 
  
!

i

(m )
= !

0
+

˙ q 
k

(m)

k=1

i

" z
k

(m)
m = 1,...,n

i = 1,...,N
m

# 
$ 
% 

 (7) 

the z
k

(m )  is a unit vector along axis of rotation of the k-th joint of the m-th manipulator, and   qk
(m )  is the 

corresponding joint angle. To obtain scalar equations, appropriate transformation matrices for each 

term must be employed. 

The kinetic energy of the system, T , is found using Eqs. (5-7) as 

 T = ˙ R 
P
!

M"
˙ R 
P
dM = T

0
+ T

1
  (8a) 



5 

with 

 T
0
=

1

2
M ( ˙ R 

CM
! ˙ R 

CM
)  (8b) 

 T
1
=

1

2
{m

0
˙ r 
C0

! ˙ r 
C0

+ "
0
! I

0
! "

0
+ (m

i

(m )

i=1

N
m

#
m=1

n

# ˙ r 
Ci

(m)
! ˙ r 

Ci

(m)
+ "

i

(m)
! I

i

(m)
! "

i

(m)
)} (8c) 

where I
i

(m )  is the inertia dyadic of the i-th body of the m-th manipulator with respect to its CM. Using 

Eqs. (6-8), the kinetic energy of the system can be written as 

 T =
1

2
v
T

H(!)v  (9) 

where v = ( ˙ R 
CM

T

,
0
!

0

T

, ˙ " 
T

)
T  is the vector of generalized velocities, and H is an N×N positive definite 

mass matrix. The vector 0!
0

 is the spacecraft angular velocity expressed in its frame of reference. For 

the free-flyer, the microgravity effects compared to control forces are very small and hence they are 

neglected; the system potential energy is taken equal to zero. Using the expression for the kinetic 

energy given by Equation (9), and a quasi-Lagrangian approach [16], a set of dynamical equations is 

obtained in the form 

 H(!) ˙ v +C(
0
"

0
,!, ˙ ! ) = Q  (10) 

where C contains all the nonlinear velocity terms, and Q is the vector of generalized forces given by 

 Q =
06 !1

" K!1

# 
$ 
% 

& 
' 
( 

+ J0, p
T

p =1

i f

) F0, p + J i, p
(m) T

p=1

i f

)
i=1

N m

) Fi ,p
(m)

m=1

n

)  (11) 

The vector t contains joint torques, F
0, p  is the p-th external force/moment applied on the spacecraft, 

Fi, p
(m )  is the p-th external force/moment applied on the i-th body of the m-th manipulator, if  is the 

number of applied forces/moments on the corresponding body, and J i, p
(m)  is a Jacobian matrix 

corresponding to the point of force/moment application as 

 J i, p
(m)

=
13! 3

03!3

J1

13!3

J2

J3

" 

# 
$ 

% 

& 
' 
6 !N

 (12) 



6 

and, similarly, J
0, p  is defined for the one corresponding to the spacecraft, where 

 J
1

= ! T
0
v
0i , p + Tj

(k )
v ji, p
(k )[ ]

j=1

Nk

"
k=1

n

"
# 

$ 
% 

& 

' 
( 

)

 (13a) 

 J
2
= ! Tj

(k )
v ji ,p
(k )[ ]

j=1

Nk

"
#

E j

(k)

k =1

n

"  (13b) 

 J
3
= E

i

(m )  (13c) 

The T
0
 and Tj

(k )  are rotation matrices between body-fixed frames and the inertial frame, .[ ]!  is the 

cross product operator, and 

 v ji, p

(k)
= ˜ v ji

(k )
+ ! ji rp ci

 (13d) 

 
  
E j

(k )
= 0

3! a T
1

(k )1
z
1

(k )
! Tj

(k ) j
z j
(k )

0
3! b[ ]

3! K
 (13e) 

! ji  is Kronecker delta, a = N
l

l=1

k!1

" , and j
z j
(k )  is a unit vector along axis of rotation of the j-th joint of 

the k-th manipulator expressed in its own body-fixed frame. Equation (11) can be rearranged, so that 

actuator forces/torques are displayed explicitly. If the only external forces that act on the system are 

the net force 0 f
s

 and torque 0n
s

 applied on the spacecraft, then Q can be written as 

 Q = J
Q

T

0

f
s

0

n
s

!
K"1

# 

$ 
% 

& 
% 

' 

( 
% 

) 
% 

 (14) 

where JQ  is an N×N Jacobian matrix which can be written based on the above definition for J i, p
(m) . For 

a well designed system, JQ  is nonsingular, that is any required Q vector can be produced by the 

system’s actuators. 

The form of equations in (10) is useful in designing an Euler-parameter based control algorithm, as 

discussed in more detail in Section III. For control reasons, it is also beneficial to obtain the equations 

of motion using as the vector of generalized coordinates q = (R
CM

T

,!
T

,"
T

)
T , where !  is a set of Euler 

angles that describe the orientation of the spacecraft. The spacecraft angular velocity can be expressed 

in terms of the Euler rates as [16] 
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0
!

0
= S

0
(") ˙ 

" 

 
(15) 

where S
0
(!)  is a 3×3 matrix, function of the attitude ! . Then the kinetic energy is written as 

 T =
1

2
˙ q 
T

H
!
(!,")˙ q  (16) 

Applying Lagrange’s equations to Equation (16) 

 d

dt

!T

! ˙ q i

" 

# 
$ 

% 

& 
' (

!T

!qi

" 

# 
$ 

% 

& 
' = Q) ,i

i = 1,..., N  (17) 

results in the equations of motion  

 H
!
(!,")˙ ̇ q + C

!
(!, ˙ 

! ,", ˙ " ) = Q
!

 (18) 

The vector Q
!

 is related to Q by a simple transformation as 

 Q! =

1
3" 3 0

3" 3 0
3" K

0
3"3 S

0

T 0
3"K

0
K "3 0

K "3 1
K "K

# 

$ 

% 

% 

% 

& 

' 

( 

( 

( 

Q  (19) 

The equations of motion derived in this section will be used in designing control algorithms, the 

topic of the next section. 

 

III. CONTROL DESIGN 

Controlling a free-flying space robot requires definition of the controlled system outputs, and design of 

a control law which can guarantee that these outputs will track asymptotically desired trajectories. A 

designer is faced with many options for the controlled outputs. These include joint space variables, 

Cartesian (task) space variables, and others. The various orientation representations further increase 

the available options. In this paper, the focus is in controlling the Cartesian position/orientation of the 

spacecraft and the end-effectors of its manipulators. The coordination between the spacecraft motion 

and several end-effectors is investigated under different control laws. Two model-based control 

algorithms, based on an Euler angle and on an Euler parameter description of the orientation, and a 
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transposed Jacobian control algorithm are developed. Euler angle model-based control algorithm 

(MB1) presents the inconvenience of representational singularities, i.e. inversion of relation between 

angular velocity and Euler rates, Equation (15), is not possible at some orientations. Such inversion is 

required when actuator forces/torques Q are to be calculated from the the control command Q
!

, using 

Equation (19). As the system gets closer to these representational singularities, the orientational error 

grows, and if it passes through them, the control algorithm fails computationally, see Fig. 2. To avoid 

this situation, a different set of Euler angles must be used at such points. 

It is known that such singularities will appear whenever a three-parameter description of the 

orientation is employed. However, a great improvement can occur if a singularity appears at some 

attitude error and not at some attitude. An Euler parameter model-based control algorithm that 

achieves this condition has been presented for the attitude control of a single rigid body [17]. This 

algorithm is adapted here to the coordinated control of a multiple arm free-flyer robot, and is presented 

as the second model-based control algorithm (MB2). The simpler transposed Jacobian (TJ) controller 

can be employed, if computational power is limited. In the following, these three algorithms are 

developed and compared. 

 

1. Model-based Control Design Using Euler Angles (MB1) 

Step 1. The equations of motion (18) are rewritten in terms of the output coordinates ˆ q  given by 

 ˆ q = [R
0

T

,!
T

, x
E

(1)T
,!

E

(1)T
,…, x

E

(n) T
,!

E

(n )T
]
T  (20) 

where x
E

(m )  and !
E

(m )  correspond to the m-th end-effector position and orientation. If all manipulators 

have six DOF, then a system of n manipulators will have 6n+6 DOF, and ˆ q  will be a 6n+6 vector. The 

output velocities ˆ ˙ q  are obtained from the generalized velocities ˙ q  using a square Jacobian J ˆ q  

 
ˆ ˙ q = J ˆ q (!,") ˙ q 

 
(21) 
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The Jacobian J ˆ q  is not singular, except when a manipulator is at a singular configuration, or at a (non-

physical) representation singularity due to the use of Euler angles. The latter can be avoided by 

switching to a different set of Euler angles. The equations of motion are then 

 
ˆ H 

!
ˆ ˙ ̇ q + ˆ C 

!
= J ˆ q 

"T
Q

!

 
(22) 

where ˆ C 
!

 and ˆ H 
!

 are given by 

 
ˆ H 
!
= J ˆ q 

"T
H

!
J ˆ q 

"1

 
(23a) 

 ˆ C = J ˆ q 

!T
C ! ˆ H ˙ J ̂  q 

˙ q  (23b) 

The new inertia matrix, ˆ H 
!

, is positive definite if J ˆ q  is nonsingular. 

Step 2. The following model-based control law is used 

 
Q

!
= J ˆ q 

T
{ ˆ H 

!
u + ˆ C 

!
}

 
(24) 

where it is assumed that the system geometric and mass properties are known, and where 

u = [u
R

T

,u
!

T

,u
x

(1)T

,u
!

(1)T

,…,u
x

(n )T

,u
!

(n)T

]  is an auxiliary control signal. This control law, similar to the 

Operational Space controller [18], linearizes and decouples the system equations to a set of second 

order differential equations 
 ˆ ˙ ̇ q = u  (25) 

Step 3. If u is computed such that 
 u = Kp e + Kd

˙ e + ˆ ˙ ̇ q des  (26) 

where K p , and K
d

 are positive definite diagonal matrices, and e is the tracking error defined as 

 e = ˆ q 
des

! ˆ q  (27) 

then, the control law given by Equation (24) guarantees asymptotic convergence of the tracking error 

e. The desired trajectory, ˆ q 
des

, is provided by a trajectory planner, while ˆ q  can be obtained from 

inertial measurements of the position and orientation of the spacecraft and of the end-effectors. If no 

such measurements are available, the error e can be estimated by integrating the equations of motion in 
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real time, but then errors due to model uncertainties will be introduced. A mixed strategy can also be 

employed, e.g. inertial feedback may be available during a critical or terminal phase of a maneuver. 

 

2. Transposed Jacobian Control Design (TJ) 

If high enough gains are used, the simpler transposed Jacobian controller can be employed, [19] 

 
Q

!
= J ˆ q 

T
{K p e + Kd

˙ e }

 
(28) 

This algorithm is quite simple to use. Its action can be understood by imagining generalized springs 

and dampers connected between the bodies under control and the desired trajectories; the stiffer the 

gains are, the better the tracking should be. Note that if a physical singularity is encountered, the 

controller given by Equation (28) will result in errors but will not fail computationally. 

Table I reveals the efficiency of this algorithm, compared to the MB1 algorithm, in terms of the 

required computational operations, i.e. multiplication and summations required to follow the 

algorithm, for an N DOF system. It is assumed that the inverse of the Jacobian matrix and its time 

derivative, which are required for implementing MB algorithms, are available symbolically. Even with 

this assumption in favor of the model-based algorithm, implementation of TJ control significantly 

reduces the amount of required computations. 

Table I. Comparison of the required computational operations. 

Algorithm Multiplications Additions 
TJ 3 N2 3 N2 - 2 N 

MB1 2 N3 + 7 N2 2 N3 + 5 N2 - 4 N 

 

3. Model-based Control using Euler Parameters (MB2) 

Step 1. The equations of motion (10) are rewritten in terms of the output velocities ˆ v  given by 

 ˆ v = [ ˙ R 
0

T

,
0
!

0

T

, ˙ x 
E

(1)T
,

1
!

E

(1)T
,…, ˙ x 

E

(n)T
,
n

!
E

(n) T
]
T  (29) 

where ˙ x 
E

(m ) and m!
E

(m)T are the m-th end-effector linear and angular inertial velocity, expressed in the 

inertial and m-th body frame, respectively. If all manipulators have six DOF, then a system of n 
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manipulators will have 6n+6 DOF, and ˆ v  will be a 6n+6 vector. The output velocities ˆ v  are obtained 

from the generalized velocities v by a Jacobian J ˆ v 
 

 
ˆ v = J ˆ v 

(!,n,")v

 
(30) 

where !  and n  are the vector and scalar part of Euler parameters, representing the orientation of the 

spacecraft [20]. The equations of motion are then 

 
ˆ H ˆ ˙ v + ˆ C = J ˆ v 

!T

Q

 
(31) 

where ˆ C  contains the nonlinear terms, and ˆ H  is given by 

 
ˆ H = J ˆ v 

!T

H J ˆ v 

!1

 
(32) 

Step 2. The following model-based control law is used 

 
Q = J ˆ v 

T

{ ˆ H u + ˆ C }

 
(33) 

where u is an auxiliary control input, under the assumption of knowledge of a system’s properties. 

Applying this law to the equations of motion (31) results in the following decoupled system 

 ˆ ̇ v = u  (34) 

Note that Equation (34) is expressed in terms of linear and angular velocities, and not in terms of 

positions and Euler angles as is the case in Equation (25). 

Step 3. An auxiliary control signal u is used, and is partitioned as 

u = [u ˙ R 

T

,u
!

T

,u ˙ x 

(1)T
,u

!

(1)T
,…,u ˙ x 

(n) T
, u

!

(n)T
]
T , where the partition follows that of ˆ v . The acceleration terms 

in Equation (34) that correspond to linear motions are controlled similar to Equation (26). For 

example, u ˙ R 
 is given by 

 u ˙ R 
= K

p, ˙ R 
e ˙ R 

+ K
d, ˙ R 

˙ e ̇  R 
+ ˙ ̇ R 

0,des  (35) 

where 
 e ˙ R 

= R
0,des

! R
0
 (36) 

However, the terms that correspond to angular velocities are controlled using 
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 u
!

=Re
˙ ! des + !

"
!e # Kv!e # 2(K p # !e

T
!e / 4)$e / ne  (37) 

In the above law, subscripts e and des correspond to error and desired quantities respectively. All w’s 

are expressed in the corresponding body frame. Detailed expressions for computing Equation (37) are 

given in Appendix B. Applying the control law given by Equation (33) guarantees asymptotic 

convergence for the positional errors, and asymptotic convergence for the attitude error expressed in 

terms of Euler parameters. Note that due to the form of Equation (37), singularities occur only when 

n
e
 is zero, that is when the attitude error angle is π rad about any eigen axis. This problem can be 

tackled by a simple modification [17]. 

Note that all the above algorithms employ PD action; however, integral action can be easily 

incorporated. Also note that the above control approaches allow one to compute a set of generalized 

forces that will reduce the tracking error. The reaction jet forces and torques and the joint torques can 

be found by inverting an equation relating generalized forces to actuator forces, for example Equation 

(14).  

 

IV. SIMULATIONS & COMPARISONS 

In this section, the control algorithms developed in Section III are compared and evaluated. To this 

end, a planar free-flyer chasing a moving point target, is employed. The free-flyer includes three open 

chain appendages, two of which are two-link manipulators, while the third is a communications 

antenna, see Figure 3. 

The spacecraft is equipped with reaction jets which provide the required control forces and torques 

up to some limited values. The system geometric parameters and mass properties, and the maximum 

available actuator forces/torques are displayed in Table II. The origin of the inertial frame coincides 

with the initial position of the system CM. 

Table II-a. Spacecraft parameters and actuator limits. 
r0

(1) (m) r0
(2) (m) r0

(3) (m) m0 (kg ) I0 (kg m2) Fx (N) Fy (N) t0 (N-m) 

0.5 0.5 0.5 50.0 10.0 20.0 20.0 10.0 
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Table II-b. Manipulator parameters and joint actuator limits. 

Appendage i-th body ri
(m) (m) li

(m) (m) mi
(m) (kg) Ii

(m) (kgm2) ti
(m) (N-m) 

1 1 0.50 0.50 4.0 0.50 7.0 
1 2 0.50 0.50 3.0 0.25 5.0 
2 1 0.50 0.50 4.0 0.50 7.0 
2 2 0.50 0.50 3.0 0.25 5.0 
3 1 0.25 0.25 5.0 2.00 7.0 

 

The vector of generalized coordinates for this 8-DOF system is  

 q = [xCM , yCM ,!0 ,!1
(1)
,!

2

(1)
,!
1

(2 )
,!

2

(2)
,!
1

(3)
]
T  (38) 

while the vector of coordinates to be controlled is 

 ˆ q = [x
0
,y

0
,!

0
, xE

(1)
,yE

(1)
,xE

(2)
, yE

(2)
,"

(3)
]
T  (39) 

where x
CM  and yCM  are the inertial coordinates of the system CM, x

0  and y
0
 are the inertial 

coordinates of the spacecraft CM, !
0
 is the spacecraft attitude, ! i

( j )  is the i-th joint angle of the j-th 

manipulator, and x
E

(i ) , yE
( i ), and !( i )  are the inertial coordinates and attitude of the i-th end-effector. 

To ensure smooth operation, appropriate trajectories for the spacecraft motion are planned. It is 

assumed that the target is in the vicinity of the robotic system and it is a passive object, i.e. drifting at 

some constant speed, and that its trajectory is measured by such feedback devices as on-board 

cameras. Hence, the position and velocity of the target is available in the spacecraft frame. 

 

1. Trajectory Planning. For the spacecraft motion, in both translation and rotation, parabolic 

trajectories made of constant acceleration, constant velocity, and constant deceleration segments are 

planned. These trajectories are first planned in the spacecraft frame at initial time, 0x(t) =[0x
0
,
0
y
0
]
T , 

then will be transformed to the inertial space, x(t) = [x
0
, y
0
]
T . To plan the desired trajectories, a motion 

final time, t f , is first selected. Then, the required spacecraft position at t f  is found as follows. If 
0
xobj (0)  and 0vobj(0)  are the position and velocity of the object as measured from (with respect to) the 

spacecraft at initial time, then the final position of the spacecraft CM, 0x f , is given by 
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 0
x f =

0
xobj(0) +[

0
vobj(0)+

0
v
0
(0)] tf +

0
r  (40) 

where 0v
0
(0)  is the initial velocity of the spacecraft, and 0r  defines the relative position of the 

spacecraft CM and the object at time t f . The direction of 0r  is along the line connecting the spacecraft 

CM at initial time with the object location at t f , and its magnitude is such that the manipulators can 

reach the object. During capture, it is desired to have the object stationery in the spacecraft frame, so 

the final spacecraft velocity, 0v f , is chosen as 
 0

v f =
0
vobj(0)+

0
v
0
(0)  (41) 

Next, parabolic trajectories made of constant acceleration, constant velocity, and constant 

deceleration segments, are planned to yield final position equal to 0x f , and final velocity equal to 0v f . 

Given the maximum acceleration a
1
 and deceleration a

2
, using the above expressions yields time t

1
 at 

which the acceleration segment ends, and time t
2

 at which the deceleration segment starts, as follows 

 t
2
=

0
vobji

(0) ! a
1i
t
1

a
2i

+ tf  (42a) 

 t
1
=
!b ± b

2
! 4ac

2a
 (42b) 

where 

 a = 0.5(a1i +
a1i

2

a2i

), b = !a1i t f !

0
vobji

(0)a1i

a2i

, c=
0
xobj i

(0)+
0
vobj i

(0) t f !
0
r + 0.5

0
vobj i

(0)2

a2i

 (42c) 

Note that the off/on times, t
1
 and t

2
, are not necessarily equal for all three axes, ( i = 1,2,3), 

corresponding to the spacecraft’s position and orientation in planar motion. Also, in the case of having 

two positive solutions for t
1
, the smaller one is chosen to minimize energy consumption. Estimates for 

a
1
 and a

2
 can be obtained using thruster force capabilities and the mass properties of the system. 

After computing the desired trajectory in the spacecraft frame, 0x(t) , the trajectory in inertial space 

is computed by 
 x(t) = x(0) + T

0
(0)

0
x(t)   (43) 
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where T
0
(0)  is the transformation matrix between the spacecraft frame at initial time and the inertial 

frame, x(0)  is the inertial position of the spacecraft CM at initial time, and x(t)  is the inertial 

trajectory. In practice, the object would be under observation during the chase phase. Should its 

trajectory change significantly, a new spacecraft chase trajectory would be re-planned following the 

same procedure. 

The desired trajectory for the orientation of the spacecraft, is similarly planned. The final 

orientation is chosen so as to provide an approximately symmetric motion of the manipulators during 

capture, since this strategy can minimize spacecraft disturbances. 

The manipulators remain in their home configuration as long as the final position of the object is 

not in their fixed-base reachable workspace. During that period, a joint-space controller acting as a 

brake, is used. When the object enters the reachable workspace of an end-effector, a quintic trajectory 

[19], is planned in the task space for that end-effector. This trajectory provides position, velocity, and 

acceleration continuity throughout the motion. During this phase, a task-space control algorithm is 

applied. For the third appendage, i.e. the communications antenna, a constant attitude is commanded 

throughout the maneuver. 

 

2. Simulation Results. For the simulation results that follow, the initial values are taken as  

 0
xobj (0)  = [3.0,4.0]T (m) 

 0
vobj(0)  = [0.05,0.1]T (m/s) 

 [x
0
(0), y

0
(0),!

0
(0)]

T  = [-0.0485m, -0.0659m, -p/6 rad]T 

 [
0 ˙ x 

0
(0),

0 ˙ y 
0
(0), ˙ ! 

0
(0)]

T  = (0.01m/s, 0.01m/s, 0.001 rad/s]T 

 q(0) = [0,0,-30°,45°,90°,135°,-90°,30°]T 

The final time for the linear motion, t f , is 15.0 sec. To ensure a symmetric grasp, which causes 

minimum disturbances on the spacecraft, the final time for the rotational motion is chosen equal to 

0.7t f . Taking into account the mass properties of the system and the available thruster forces/torques, 

the maximum acceleration and deceleration was set to a
1
= [0.2, 0.2]

T

m / s
2 , a

2
= 0.2a

1
 for the linear 
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motion, and a1 = 0.05 rad/s2, a2= 0.5a1 for the rotational motion. There are two main reasons for 

taking the maximum deceleration significantly less than the maximum acceleration. First, because this 

requires smaller thruster forces before the grasp, therefore results in smaller object disturbances. 

Second, it provides a longer duration for manipulators to catch the object. This is due to the fact that in 

the above strategy, manipulators remain in their home configuration as long as the final position of the 

object is not in their fixed-base reachable workspace. Providing longer duration for manipulators 

motion reduces their speed which is desirable in space to prevent flexible mode excitations. The 

importance of symmetric grasp, and the importance of acceleration/deceleration ratio is investigated 

below, by simulation. 

Figure 4 depicts manipulator joint trajectories, and an animated view of the corresponding system 

maneuver. Note that the joint angles for the two-link manipulators remain constant during the chase 

phase (in home configuration), and that they change smoothly during the capture phase (object in 

manipulator workspace). The joint angle for the third appendage, i.e. the antenna, changes smoothly so 

that a fixed inertial orientation is maintained during the maneuver. 

For this system, the two model-based control algorithms (MB1, MB2) yield almost identical 

results, and so only those corresponding to MB1 are presented here. A comparison between these two 

laws in the 3-dimensional case has been given in [14]. Note that to compute the model based part in 

Equation (33), Equation (31) must be written in terms of Euler parameters and their rates. This can be 

done by expressing the Lagrangian in Equation (9) in terms of Euler parameters and their rates. 

However, the resulting equations of motion must be appended with algebraic constraints introduced by 

the four-parameter Euler parameter representation of rotations. A straightforward way to eliminate 

these constraints and obtain Equation (31), is to apply the so-called Natural Orthogonal Complement 

method [21]. 

To include the effects of model uncertainties in the MB laws, the mass properties of the model 

used in the control algorithm were perturbed with respect to the “true” parameters by up to 10%. The 

gains used for the MB1 controller are 
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 K p  = diag(70,70,100,100,100,100,100,70) 

 K
d

 = diag(15,15,15,15,15,15,15,15) 

while for the TJ controller these are 

 K p  = diag(100,100,80,80,80,80,80,80) 

 K
d

 = diag(150,150,100,100,100,100,100,100) 

The gain selection for the model-based control was based on error equation settling time and damping 

criteria, while for the TJ control a heuristic approach was used. 

Before going through comparisons between MB and TJ algorithms, the importance of symmetric 

grasp, and the ratio of acceleration/deceleration is investigated by simulation. To this end, the MB1 

algorithm as described above is used. Figure 5, shows the profile of applied torque on the spacecraft 

for different grasp strategies, i.e. (a) symmetric and, (b) non-symmetric grasps. In Figure 5(a), i.e. 

symmetric grasp, the final orientation is chosen so that the axis of symmetry for the spacecraft is 

aligned with the direction of the object motion, while in Figure 5(b) a misalignment of just 5.0�  

between these directions is composed. As it is seen, during capture phase, 11.0 < t < 15.0, the torque 

peak for symmetric grasp is almost half of the one for non-symmetric grasp. Therefore it can be 

concluded that a symmetric grasp reduces disturbances on the spacecraft. 

As discussed earlier, there are two main reasons for choosing the maximum deceleration less than 

maximum acceleration in an on-off strategy, where total duration of the maneuver is given. Figure 6, 

demonstrates some consequences of this choice, by comparison between the two cases of a
2
= 0.2a

1
 

and a
2
= a

1
. As shown in part (a), the former results in lower thruster forces before the grasp, therefore 

causes less disturbance on the object. This, a
2
= 0.2a

1
, also requires lower torque on the spacecraft to 

track the desired trajectory. Considering the fact that an additional reaction torque is required in 

response to the manipulators motion, due to dynamics coupling, it results in a smoother profile for the 

applied torque on the spacecraft, see Figure 6(b). Also, since this provides a longer duration for 

manipulators to catch the object, tracking errors are reduced almost 50% with respect to the ones of 

a
2
= a

1
, Figure 6(c). 
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Figure 7 can be used to compare and evaluate MB1 and TJ algorithms. Figure 7(a) displays the 

tracking error for the first manipulator end-effector in the task space. During the chase phase, this error 

is almost zero for MB1, as the manipulators are kept fixed at their home positions. When the object 

enters the manipulator workspace, the manipulators start moving, and tracking errors appear due to 

dynamic coupling and to transition to the task-space control phase. Note that in the absence of 

parameter uncertainties, i.e. for a perfect model-based control, feedback linearization results in zero 

tracking errors. However, the performance of the algorithm deteriorates if model uncertainties exist. 

These errors decrease with time and eventually vanish, in both MB and TJ algorithms. 

Comparison of the maximum values of the tracking errors for the two algorithms shows that the 

errors occurring with TJ are about forty times larger than the errors with MB1, Figure 7(a). However, 

their absolute magnitude is small enough for executing an ordinary task in space. Comparison of the 

spacecraft thruster forces, shows that the required forces are about the same for both algorithms, 

Figure 7(b). However, in most parts of the maneuver, for MB algorithm the profile is staircase, while 

TJ does not yield such a profile. This is because the TJ algorithm does not use any knowledge of the 

dynamical behavior of the system, and therefore its operation is basically quasi-static. The required 

joint torques are lower in MB1, see Figure 7(c). The variation of the applied joint torques follows the 

variation of spacecraft attitude and also tracking errors, which is due to the same reasons, as above. 

As shown by simulation, model-based algorithms result in smaller errors and required torques, and 

yield better results as long as model uncertainties are limited. Since torques are lower, smaller 

actuators are required, resulting in reduced system weight, an important issue in space. However, the 

performance of these algorithms deteriorates in the presense of larger model uncertainties. Also, im-

plementing a model-based control requires increased computational burden, which may not be 

available, while at the same time it reduces closed-loop bandwidth. On the other hand, TJ control 

yields acceptable results without requiring a dynamics model of the system, and can be considered a 

good control algorithm candidate, especially when larger bandwidths and low computational costs are 

required. 
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V. CONCLUSIONS 

In this paper, the motion control of a multiple arm free-flying space robot chasing a passive object in 

near proximity was studied. Using a minimum set of body-fixed barycentric vectors, and a general and 

a quasi-coordinate Lagrangian formulation, two dynamics models were derived. Control algorithms 

were developed that allow coordinated tracking control of the manipulators and the spacecraft. In 

particular, an Euler parameter model-based control algorithm was presented that overcomes the non-

physical singularities due to Euler angle representation of attitude. To ensure smooth operation, 

reduced disturbances on the spacecraft and also on the object just before grasp, appropriate trajectories 

for the spacecraft/manipulators motion were planned. The importance of symmetric grasp, and the 

ratio of acceleration/deceleration in an on-off strategy, were investigated by simulation. Next, the 

performance of model-based algorithms was compared, by simulation, to that of a transposed Jacobian 

algorithm. Results show that, because of the complexity involved in the space robotic systems, there is 

a significant deterioration in the performance of model-based algorithms in the presence of model 

uncertainties. In such cases a simple transposed Jacobian algorithm can yield comparable results with 

much reduced computational burden which is an important issue in space. 
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APPENDIX A 

Body-fixed barycentric vectors are given in [11], and can be written for a multiple arm free-flyer as 
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where vectors r
i

(m)  and l i
(m)  are defined in Figure 1, and e

i

(m ) are given by 

 e
i

(m )
= l

i

(m )
(1 ! µ

i

(m )
) + r

i

(m)
µ
i+1

(m )  (A2) 

 e
0
= r

0

(m )
µ
1

(m )

m=1

n

!  (A3) 

The quantity µ
i

(m)  is the outboard mass after joint i in manipulator m, and is given by 

 µ
i

(m)
=

m
k

(m)

M
i = 1,...,N

m

k =i

N
m

! and µ
Nm +1

(m )
= 0  (A4) 

Finally, M is the total mass of the system, and m
k

(m )  is the mass of the k-th body of the m-th 

manipulator. 
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APPENDIX B 

The auxiliary control u
!

 computed according to Equation (37), is repeated here for completeness 

 u
!

=Re
˙ ! des + !

"
!e # Kv!e # 2(K p # !e

T
!e / 4)$e / ne  (B1) 

The matrix R
e
is a rotation matrix expressing the error between the desired and current attitude and 

is defined as 
 R

e
=RR

des

T  (B2) 

The matrix R is the rotation matrix which corresponds to the orientation of a body with respect to 

the inertial frame, and R
des

 corresponds to the desired orientation. Similarly, the angular velocity !
e
 is 

the error in angular velocities, expressed in the body-fixed frame 

 !
e
= ! "R

e
!

des
 (B3) 

where !  is the body angular velocity and !
des

 the desired one, expressed in the desired 

orientation frame. Finally, !
e
 and n

e
 correspond to the error in attitude as expressed by Euler 

parameters 

 !
e
= T

des

T
! " !

des
n  (B4) 

 n
e
= !

des

T
! + n

des
n  (B5) 

with 
 T = nI + !

"  (B6) 

where I is a 3×3 unit matrix, and n  and !  are the current Euler parameters [17]. 

As shown in [16], applying the control law given by Equation (37), the attitude error is governed by an 

homogeneous linear second order differential equation, which guarantees that the error will converge 

to zero asymptotically 
 ˙ ̇ ! e + Kd

˙ ! e + Kp !e = 0  (B7) 
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Figure 1. A free-flying space robotic system with n manipulators. 
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Figure 2. Errors in spacecraft orientation during a 3-d maneuver passing through a non-

physical representational singularity at time = 4.75 sec. 
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Figure 3. A planar three manipulator / appendage free-flyer. 
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Figure 4. (a) Joint angle histories for the two manipulators and the antenna, (b) Animated view 

of the maneuver. 
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Figure 5. Applied torque on the spacecraft, (a) Symmetric grasp, (b) Non-symmetric grasp. 
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Figure 6. The effect of acceleration/deceleration ratio, (a) Thruster forces, (b) Applied torque 

on the spacecraft, (c) First end-effector positioning error. 
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Figure 7. Transposed Jacobian compared to Model-Based Control. (a) Tracking position 

errors for the first end-effector, (b) Thruster forces on the spacecraft, (c) Joint 

torques for the first manipulator. 
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Table I. Comparison of the required computational operations. 

Algorithm Multiplications Additions 
TJ 3 N2 3 N2 - 2 N 

MB1 2 N3 + 7 N2 2 N3 + 5 N2 - 4 N 

 

 

Table II-a. Spacecraft parameters and actuator limits. 
r0

(1) (m) r0
(2) (m) r0

(3) (m) m0 (kg ) I0 (kg m2) Fx (N) Fy (N) t0 (N-m) 

0.5 0.5 0.5 50.0 10.0 20.0 20.0 10.0 

 

 

Table II-b. Manipulator parameters and joint actuator limits. 

Appendage i-th body ri
(m) (m) li

(m) (m) mi
(m) (kg) Ii

(m) (kgm2) ti
(m) (N-m) 

1 1 0.50 0.50 4.0 0.50 7.0 
1 2 0.50 0.50 3.0 0.25 5.0 
2 1 0.50 0.50 4.0 0.50 7.0 
2 2 0.50 0.50 3.0 0.25 5.0 
3 1 0.25 0.25 5.0 2.00 7.0 
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the maneuver. 

 

Figure 5. Applied torque on the spacecraft, (a) Symmetric grasp, (b) Non-symmetric grasp. 

 

Figure 6. The effect of acceleration/deceleration ratio, (a) Thruster forces, (b) Applied torque on the 

spacecraft, (c) First end-effector positioning error. 

 

Figure 7. Transposed Jacobian compared to Model-Based Control. (a) Tracking position errors for 

the first end-effector, (b) Thruster forces on the spacecraft, (c) Joint torques for the first 

manipulator. 
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