
 
 

 

  

Abstract— A planning and control methodology for 
manipulating passive objects using orbital servicers in zero 
gravity has been developed by the authors. In this work, a 
parametric sensitivity analysis of the proposed model-based 
control for the motion of the passive object, in terms of 
parametric uncertainties, is presented. A linearization 
methodology is used to provide a scheme with which the 
controller robust behavior, in terms of parametric uncertainty, 
can be ascertained a-priori, without the need of running 
experiments. The system robust performance is illustrated in 
realistic 3D scenarios and verified via simulations. 
 

Index Terms—Space robotics, free-flying cooperative robots, 
object manipulation on orbit, controller parameter sensitivity. 

I. INTRODUCTION 
The commercialization of space and the proliferation of 
activities in space require systems capable of fulfilling tasks 
such as construction, maintenance, astronaut assistance, 
docking and inspection, or even orbital debris handling and 
disposal, that fall under the theme of On-Orbit Servicing 
(OOS). Some of these tasks can be performed by astronaut 
Extra Vehicular Activities (EVA) which are not only 
dangerous, but also subject to limitations such as the force/ 
torque an astronaut can apply, the motions that can be 
performed or even EVA temporal constraints. To relieve 
astronauts from EVA, enhance performance and extend the 
range of feasible tasks, robotic servicers will be required. 

Robotic OOS has been discussed in the last twenty years 
and a number of architectures have been proposed [1]. 
Important robotic tasks, such as orbital-construction parts 
handling, handling of fuel-less satellites, or tumbling debris 
handling and deorbiting, require passive object handling 
capabilities, a procedure in which the first step is the passive 
object secure grasp. Studies in this field provided several 
theoretical approaches [2], [3] some of which resulted in 
experimental servicers [4], [5]. However, actual handling of 
a secured passive object has not been studied adequately and 
issues such as large object handling remain open. 

Although several prototype robotic servicers have been 
proposed and studied, [2]-[6], only a few studies exist 
concerning the dynamics and control during the autonomous 
handling of a secured object. Dubowsky et al. proposed a 
control method aiming at reduction of flexibility-induced 
vibrations [7]. Nevertheless, in several cases, due to size and 
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low accelerations, the object flexibilities can be neglected, 
while both in orbital debris handling and construction, a 
wide variety of rigid bodies that must be handled, exists. 
Other methods were proposed to maintain firm grasp [8], or 
to secure contact with the environment [9]. Everist et al. 
proposed a free-flying servicer concept for handling and 
assembling space construction rods, using proportional 
thrusters under PD control [10]. Orbital system thrusters, 
though, are on-off devices, leading to limit cycles that 
reduce positioning accuracy and increase fuel consumption, 
compared to continuous control. To tackle this problem, 
Rekleitis and Papadopoulos proposed the use of a number of 
manipulator-equipped servicers, where both on-off thruster 
propulsion and manipulator continuous forces/ torques are 
used in object handling, [11], [12], see Fig. 1. It was shown 
that this approach leads to smaller tracking errors and less 
fuel consumption, while the object error tracking under a 
model based PD control was shown to be asymptotically 
stable [12]. However, the main drawback of this method is 
that, like all model-based controllers, it can be sensitive to 
parameter variation issues, a subject that remains open. 

 
Figure 1. Concept of non-operational satellite handling, by a number of 
manipulator equipped cooperating free-flyers, in active debris removal task. 

Parametric uncertainty can be treated with two main 
approaches; adaptation and robustness. In adaptive control, 
controller parameters are adapted so that the desired 
response is obtained despite parameter variations [13], [14], 
[15]. However, they are subject to limitations [16]. Robust 
methods ensure controller robustness, or bounded sensitivity 
to parametric uncertainty resulting in bounded errors, a 
priori known. The nonlinear robustness and parameter 
sensitivity field is rather limited, [17]. Most works focus on 
systems with special features, using them to prove stability 
under uncertainty (e.g. [18], [19]). Linearization can be 
employed so that linear system robustness and parametric 
sensitivity tools can be used, [20]. 

In this paper, we address the question of model-based PD 
control parametric uncertainty sensitivity and its effects on 
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the response of the controller in [12], during passive object 
controlled motion, is studied via a linearization 
methodology. Assuming that parameters of the man-made 
servicers are adequately known, we focus on the passive 
object inertial properties (mass and inertia matrix), required 
for the chosen model-based PD control, [12]. Note that, even 
man-made passive objects can have uncertain inertial 
parameters, as in the case of satellite handling (active debris 
removal), damaged to unknown extent. It is shown that the 
passive object motion tracking errors vary within bounded 
values that can be obtained a-priori by knowing the desired 
trajectory and a bound in parameter uncertainty. This 
behavior is also demonstrated by simulations. 

II. SPATIAL SYSTEM DYNAMICS AND CONTROL 
Assume a passive object of mass m0 and inertia matrix 0I0, 
where the subscript zero refers to the passive object. The 
zero superscript in 0I0 indicates that the inertia matrix is 
defined at the passive object body-fixed frame. A missing 
superscript indicates the inertial coordinate frame. On the 
object, a generalized force Q0 is applied by the end-effectors 
of a number of robotic servicers, see also [12]. Then, the 
equation of motion of the object, is 
 

   
H0q0 +C0 q0 ,q0( ) = Q0  (1) 

where q0 are the passive object generalized coordinates  

 
   
q0

T = r0
T , θ0

T⎡⎣ ⎤⎦
T
= x0 ,  y0 ,  z0 ,  θ0 ,  ϕ0 ,  ψ 0⎡⎣ ⎤⎦

T
 (2) 

where, [x0 y0 z0]T is the position vector r0 and [θ0 φ0 ψ0] T 
denote the Euler angles θ0 of the passive object.  H0 is the 
6×6 mass matrix of the passive object, with 

 
   
H0 =

diag(m0 ,m0 ,m0 )
    03x3

⎡

⎣
⎢
⎢

    03x3

E0
T R0

0I0R0
TE0

⎤

⎦
⎥
⎥

 (3) 

where I3x3 is the 3×3 identity matrix, R0 is the rotation 
matrix transforming vectors from the passive object frame to 
the inertial frame and E0 is a 3×3 matrix mapping the 
passive object Euler rates  θ0 to its angular velocity ω0: 
    ω0 = E0θ0  (4) 

C0 is a 6×1 vector containing the nonlinear velocity terms, 

 
    
C0 = 01x3, E0

T R0
0I0R0

TE0θ0+E0θ0×R0
0I0R0

TE0θ0( )( )T⎡
⎣⎢

⎤
⎦⎥

T

 (5) 

The model based PD controller for the passive object is 
 

    
Q0 = C0 + H0 q0d +K P0e0 +K D0e0( )  (6) 

where e0 = q0d – q0 and q0d is the desired trajectory for the 
passive object, and KP0 and KD0 are control gains. Assuming 
perfect knowledge of the system parameters, use of the 
controller (6) leads to passive object asymptotically stable 
motion, as can be proven by Lyapunov stability theory [12]. 

III. PARAMETRIC SENSITIVITY ANALYSIS 
Assume now that there is some uncertainty in the estimation 
of the passive object mass m0 and inertia matrix 0I0 and that 

the estimates of the uncertain quantities used in the 
controller (6) are denoted by   m̂0  and  

0 Ι̂0  respectively, 
where (*̂) is the estimated value of (*). The corresponding 
matrices C0 and H0 become   Ĉ0  and  Η̂0  respectively. Thus, 
(6) becomes: 
 

    
Q0 = Ĉ0 + Ĥ0 q0d +K P0e0 +K D0e0( )  (7) 

Uncertain matrices  Η̂0  and   Ĉ0  can also be written as: 

 

  Ĥ0 =H0 +δH  (8) 

and 

 

  Ĉ0 =C0 +δC  (9) 

Eqs. (1) and (7), provide the passive object equations of 
motion, in the case of uncertain parameter estimations: 
 

    
H0q0 +C0 = Ĉ0 + Ĥ0 q0d +K P0e0 +K D0e0( )  (10) 

or equally 

 

    

q0 = g q0 ,q0( ) =
    = H0

−1 Ĉ0 −C0( ) + H0
−1Ĥ0 q0d +K P0e0 +K D0e0( )  (11) 

Since e0 = q0d – q0, we have 

 

    

q0 = q0d − e0 = q0d +δq0

q0 = q0d − e0 = q0d +δq0

q0 = q0d − e0 = q0d +δq0

 (12) 

Using (12) on the left-hand side of (11) and linearizing 
the right-hand side of (11) at the desired point q0d, we have: 

 

    

q0d
+δq0=

= H0
−1 Ĉ0−C0( )+H0

−1Ĥ0 q0d
+K

P0e0+K
D0e0( )

f q0 ,q0( ) q0 d
q0 d

+

    + ∂ f

∂q0 q0 d
q0 d

δq0+
∂ f

∂q0 q0 d
q0 d

δq0+HOT

 (13) 

where HOT stands for Higher Order Terms. Using (8) and 
(9), we obtain 
 

    
f q0d ,q0d( )=H0

−1δC+H0
−1δHq0d +q0d  (14) 

Thus, (13) becomes 

 

    

δq0 = H0
−1δC+H0

−1δHq0d( )q0 d
q0 d

+

      + ∂ f

∂q0 q0 d
q0 d

δq0+
∂ f

∂q0 q0 d
q0 d

δq0+HOT
 (15) 

We define the following 

 

    

∂ f
∂q0 q0 d

q0 d

=Fd D , ∂ f
∂q0 q0 d

q0 d

=Fd P  (16) 

Assuming we are close enough to the desired trajectory, 
the HOT of (15) become insignificant. Thus, (15) becomes 

 
    
δq0 −Fd Dδq0 −Fd Pδq0 = H0

−1δC+H0
−1δHq0d( )q0 d

q0 d

 (17) 
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The right-hand side of (17) depends on the desired trajectory 
and on the small uncertainty terms δC and δΗ, Therefore, it 
is a small, bounded term that drives the second order system 
of the left-hand side, which is essentially a passive second-
order system. Differentiating f, given in (13), according to 
(16), we have 

 

    

Fd D=−K D0+ −H0
−1δHK D0+δT1( )

ED q0 d
q0 d

,

δT1=H0
−1∂δC

∂q0

 (18) 

Note that, for no uncertainty (δΗ =δC =0), the right-hand 
side of (18) becomes equal to –KD0 and thus negative 
definite. For large enough gains KD0 and small enough, but 
not negligible, uncertainty, the term –H0

-1δHKD0 is 
dominated by the –KD0 term. This, in fact, is true for the 
whole ED term, since δΤ1 is a small term depending only on 
the desired trajectory and the uncertainty. Thus, in this 
uncertainty area, with large enough control gains, FdD is 
negative definite. The same method can be used in order to 
show that FdP is also negative definite, since the term FdP is 

 

    

FdP=−K P0+ −H0
−1δHK P0+δT2( )

EP q0 d
q0 d

,

δT2 =
∂H0

−1

∂q0

δC+H0
−1∂δC

∂q0

+
∂H0

−1

∂q0

δH+H0
−1∂δH

∂q0

⎛

⎝⎜
⎞

⎠⎟
q0d

 (19) 

The need for negative definite matrices FdD and FdP can 
be used as a design tool. For a class of desired trajectories 
and a bounded range of expected uncertainty, a range of 
matrices ED and EP can be found and thus the minimum 
required control gains KD0 and KP0 can be obtained. 

With negative definite matrices FdD and FdP, the second 
order system of (17) is stable. If there was a steady-state, the 
first and second derivatives of δq0 would be zero. However, 
the small, bounded term on the right-hand side of (17), is not 
constant during the trajectory tracking motion. Nevertheless, 
the closed-loop frequency of the controller (and the resulting 
bandwidth) can be high enough by design, so that the fastest 
frequency of the desired motion is far lower than the closed-
loop frequency. This is a realistic practice for controller 
design, especially for motions in space, in which the desired 
trajectories are quite slow by design. Thus, the second order 
system of (17) responds as if the right-hand side is a quasi-
constant driving term, as will be seen in Section IV. Then, 
the acceleration and velocity errors (δ   q0 and δ   q0 ) tend to 
zero and position/orientation errors tend to 

 
    
δq0→−FdP

−1 H0
−1δC+H0

−1δHq0d( )q0 d
q0 d

 (20) 

Note that the vector on which the position/ orientation 
error is attracted is a-priori known, since it depends on the 
desired trajectory and on the uncertainty, for which we can 

estimate its expected maximum range. Thus, if the following 
hypotheses apply: 

1. The initial errors as well as the known vector on which 
the position/ orientation error is attracted are close 
enough to zero, so that the linearization that led to (17) 
is still valid (both valid assumptions for a trajectory 
tracking problem such as the one at hand, especially 
when using standard parameter identification methods 
[21]-[22], to lower the parametric uncertainty), 

2. The control gains KP0 and KP0 are high enough that the 
claim for negative definite FdD and FdP is still valid, as 
discussed in conjunction to (18) and (19), 

3. The controller bandwidth is high compared to the 
bandwidth of the desired motions, so that a quasi-
steady-state response can be obtained. 

then the original non-linear system of (1), with a control 
generalized force as in (7), is stable with tracking error: 

 

    

eT eT⎡⎣ ⎤⎦
T

=− δq0
T  δq0

T⎡⎣ ⎤⎦
T
→

→ F
dP
−1 H0

−1δC+H0
−1δHq0des( )q0 d

q0 d

0⎡

⎣
⎢

⎤

⎦
⎥=ε0

 (21) 

where δq0 is defined in (12). Moreover, the system is 
immune to small disturbances that do not increase the 
tracking errors to values that invalidate the above 
hypotheses. Summing up, if the tracking errors are small and 
the disturbances are not severe, then the passive object 
motion is stable, provided that the above hypotheses, whose 
validity can be determined a-priori, hold.  

Note that during its motion, the passive object passes 
alternatively through steady-state phases and phases of 
transient response to disturbances. These disturbances are of 
two main types. The first type is due to possible 
discontinuities in the desired accelerations of the passive 
object, which result in tracking errors. 

The second type is a result of the fact that in the analysis, 
we have assumed smooth application of the required Q0 as 
shown in (7). During the development of the controller (see 
[12]), we require that for safety reasons the thrusters facing 
the passive object are turned off and that any force required 
to push a servicer away from the passive object, will be 
provided by its manipulator as an additional force. 
Moreover, for this repulsive force to act without disturbing 
the passive object motion, it must be compensated by 
adequate additional manipulator forces provided by the other 
servicers. To reduce the computational requirements of the 
calculation of these additional manipulator forces during the 
simulations, we allowed the total additional force to the 
object to be non-zero (but very small). Thus, every time this 
repulsive force is needed, a small but predictable disturbance 
acts of the passive object motion. Nevertheless, if the motion 
is slow enough (a realistic assumption, especially in space), 
the controller can overcome these small disturbances, with 
the tracking errors returning again to the pre-estimated 
values of (21), as will also be shown in Section IV. 

For a system without uncertainty, then (8) and (9) yield 
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   δC=δH=0  (22) 
Thus, from (21), we obtain 

 
    eT eT⎡⎣ ⎤⎦

T

→06x1  (23) 

This response is the expected one, since the system 
without uncertainty is asymptotically stable, as has been 
shown in [12]. This can also be seen by assuming no 
uncertainty on the linearized system described by (16), in 
which case it leads to 
 

    
δq0+K D0δq0+K P0δq0 =− e+K D0e+K P0e( )=0  (24) 

which is equal to the undriven error-dynamics of the passive 
object, under the model-based controller of (6), in the case 
of no uncertainty. The second order (24) can be shown easily 
to be asymptotically stable, by Lyapunov stability theory. 

Using an analytical form for the passive object inertia 
matrix, the above analysis can be further developed. The 
general form of the inertia matrix 0I0 is given by (25): 

 

   

0I0 =

y2 + z2( )ρ dV
V
∫ xyρ dV

V
∫ xzρ dV

V
∫

xyρ dV
V
∫ x2 + z2( )ρ dV

V
∫ yzρ dV

V
∫

xzρ dV
V
∫ yzρ dV

V
∫ x2 + y2( )ρ dV

V
∫

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

(25) 

where V is the passive object volume and ρ is its density. 
Assuming that the uncertainty is in the measurement of V 
and ρ and the distribution of ρ, the estimated   V̂  and ρ̂ are: 

 
  

V̂ =V +δV
ρ̂ = ρ +δρ

 (26) 

The uncertainties in (26) also affect the passive object center 
of mass position and its size estimates, due to the integrals in 
(25). By defining the top-left element of 0I0 as 0I0,xx, then the 
estimated top-left element of   

0 Î0  is: 

 
  

0 Î0,xx = y2 + z2( )ρ̂ dV
V̂
∫  (27) 

Eq. (27) can be written as: 

 

  

y2+ z2( )ρ̂dV
V̂
∫ = y2+ z2( )ρdV

V
∫ + y2+ z2( )δρdV

V
∫ +

+ y2+ z2( )ρdV
δ V
∫ + y2+ z2( )δρdV

δ V
∫

 (28) 

Note that all terms of (28) are elements of appropriate 
inertia matrices. The last term on the right-hand side of (28) 
is an integration over a very small volume δV, of a term that 
is proportional to the very small term δρ. This means that the 
last integral term is negligible, compared to the other three 
terms. Then, (28) becomes: 

 

   

y2+ z2( )ρ̂dV
V̂
∫ = y2+ z2( )ρdV

V
∫

0 I0_xx

+ y2+ z2( )δρdV
V
∫ +

+ y2+ z2( )ρdV
δ V
∫

 (29) 

Thus, from (27) and (29), we obtain: 

 

   

0 Î0,xx = y2 + z2( )ρ dV
V
∫

0 I0,xx

+

+ y2 + z2( )δρ dV
V
∫ + y2 + z2( )ρ dV

δ V
∫

δ I0,xx

 (30) 

Using the same method, we also obtain the remaining 
estimated elements of   

0 Î0 . Thus, the estimated   
0 Î0 becomes: 

   
0 Î0 =

0I0 +δI  (31) 

where the δI matrix also has inertia properties. Matrices δH 
and δC of (8) and (9), based on (3), (5) and (31), become 

 

   
δH =

diag(δm0 ,δm0 ,δm0 )
    03x3

⎡

⎣
⎢
⎢

    03x3

E0
T R0δIR0

TE0

⎤

⎦
⎥
⎥

 (32) 

and 

     
δC= 01x3, E0

T R0δIR0
TE0θ0+E0θ0×R0δIR0

TE0θ0( )( )T⎡
⎣⎢

⎤
⎦⎥

T

 (33) 

where δm0 in (32), is given by 

 

  δm0 = ρδV +δρV  (34) 

Thus, (32) and (33) can be used directly in (21), to obtain 
the steady state error. 

IV. SIMULATIONS RESULTS 
To demonstrate the results of the sensitivity analysis, we 
study the case of a passive object in the shape of a 
homogenous rectangular body, of dimensions a×b×c = 2m× 
3m×2m and density ρ = 15 kg/m3, which corresponds to a 
passive object mass equal to 180 kg. The object is handled 
by three single-manipulator servicers, whose end-effectors 
are in point contact with the object. Each servicer base has 
thrusters capable of producing forces and moments, reaction 
wheels, and a single PUMA-type manipulator. The free-
flying servicers have mass of 70 kg each, and their base is a 
cube of 0.7 m side. The three contact points lie on the object 
surfaces with normal vectors parallel to the xB, -xB and yB 
unit vectors of the object body-fixed axes. The servicer 
thrusters develop per axis a force of 20 N, while their trigger 
threshold is set to ft =10 N. For attitude control, the servicers 
have additional pairs of thrusters that develop torque of 2 
Nm per axis, and reaction wheels that can develop 
continuous torques up to nt =1 Nm per axis. The above 
system parameters, including the object/ servicer mass ratio, 
the servicer thruster, and the reaction wheel capabilities, 
were chosen taking into account realistic scenarios. The 
simulations are run on Matlab/ Simulink.  

The motion of the passive object and the three servicers 
is simulated next. The passive object is commanded to 
follow a trapezoidal velocity trajectory in all DOFs, see 
Table I. The accelerations were chosen to be compatible 
with the servicers force/ moment capabilities. There is an 
initial position error for the passive object, equal to e0_init = 
0.05*[-1 1 1]m. 
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The control gains are constrained by reaction wheel and 
thruster limits. Higher gains would result in lower tracking 
errors, but also in more frequent thruster firing, resulting in 
higher fuel consumption. Given a desired motion, the 
tradeoff between tracking errors and fuel consumption can 
be used to obtain the appropriate gains. Here, the control 
gains in (7) are taken as KP0 = 3.24, KD0 = 1.8 (for all 
passive object translational DOF), KP0 = 1.6, KD0 = 2.56 (for 
all passive object rotational DOF). For more information on 
system parameters and control gains choice, refer to [12]. 

Table I. Passive object desired motion parameters (Trajectory 1). 
 

DOF 
const. accel. 

(m/s2)/ (rad/s2) 
up to 
(s) 

const. veloc. 
(m/s)/ (rad/s) 

up to 
(s) 

const. deccel. 
(m/s2)/ (rad/s2) 

up to 
(s) 

x0d 0.0003 56 0.0168 84 -0.0003 140 
y0d -0.00036 50 -0.018 90 0.00036 140 
z0d 0.0002 59 0.0118 81 -0.0002 140 
θ0d 5*10-5 60 0.003 80 -5*10-5 140 
φ0d 7*10-5 55 0.00385 85 -7*10-5 140 
ψ0d 10-4 65 0.0065 75 -10-4 140 

 
Assuming uncertainty of +15%, -10% and +10% for the 

passive object dimension measurements, leads to an 11.4% 
volume uncertainty. This, in addition to a passive object 
density measurement uncertainty of -35.4%, results in an 
uncertainty regarding the passive object mass of about -20%. 
Thus, uncertainties δρ and δV in (26) are: 

 
  
δρ=5.3kg

m3 , δV =2.85m3  (35) 

Eq (35) is used in equations like (30) to provide the δI of 
(31), and in (34) to provide δm0. Then, δI and δm0 are used 
in (32) and (33) to obtain δH and δC, which in turn provide, 
through (21), the expected level of steady-state errors. 

Fig. 2a shows the passive object tracking errors without 
uncertainty, i.e. with full knowledge of the parameters. As 
can be seen the controller overcomes the initial position 
errors within about 8 s, and position errors of that magnitude 
never reappear throughout the simulation. Fig. 2b is a zoom-
in-e0-axis version of Fig 2a, showing more clearly the 
response after the controller reduces the initial position 
errors. This is to be contrasted with Fig. 2c, in which the 
uncertainty described above is taken into account. The 
controller reduces the initial position error and thus, in Fig. 
2c we again focus in the zoom-in version of the response, for 
easier comparison with Fig 2b. The disturbance due to 
discontinuities in the desired accelerations of the passive 
object (see Table I), leads to the larger tracking errors during 
the transient phase, as can be seen in Figs. 2b and 2c and for 
the interval between 50s to about 90s. Also, the disturbances 
due to the application of the additional repulsive force are 
shown in Fig. 2b for the interval between 26s to 50s, 110s to 
130s and 145s to 165s and in Fig. 2c for the interval between 
26s to 50s, 100s to 115s and 125s to 135s. In both cases the 
controller rejects these disturbances as predicted, converging 
again to the expected error values, as can be seen both in 
Figs. 2 and 3. Even though the maximum tracking errors for 

the system with uncertainty are larger than those for the 
system without uncertainty, they are still quite low. 

Figures 3a and 3c show the upper six elements of the 
estimated steady-state errors vector ε0 (corresponding to q0), 
as obtained by (21). These are shown for two characteristic 
time spans during the simulation. Note that the lower six 
elements of ε0, corresponding to   q0 , are constantly equal to 
zero throughout the simulation (not shown here for brevity). 

 
Figure 2. Tracking errors e0 for the passive object motion, for the system (a) 
and (b) without and (c) with uncertainty. 

Throughout the simulation, the elements of ε0 are of the 
order of 10-4 or less (again not shown here for brevity) and 
thus this part of requirement (1) for (21) is verified. The 
actual position/orientation errors for the passive object, for 
the same time-spans, are shown in Fig. 3b and Fig. 3d 
respectively. The passive object tracking errors overcome 
the disturbances that have occurred and converge to the 
expected steady-state errors ε0. 

 
Figure 3. Comparison between expected position/orientation tracking errors 
(a and c) and the corresponding actual values (b and d), for two steady-state 
periods. 

It should also be noted that as expected, all twelve 
elements of vector ε0 are constantly equal to zero throughout 
the simulation, in the case of no uncertainty (δρ = δV = 0), 
verifying (22). This is not shown here for brevity. 

In a simulation with a more demanding desired 
trajectory, a triangular profile on the desired velocities is 
used (no coasting), with higher accelerations, see Table II. 
The control gains and the uncertainty levels are as before. 
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Table II. Passive object desired motion parameters (Trajectory 2). 
 DOF const. accel. up to const. deccel. up to  

x0d 0.0004 (m/s2) 70 (s) -0.0004 (m/s2) 140 (s) 
y0d -0.00046 (m/s2) 65 (s) 0.00046 (m/s2) 130 (s) 
z0d 0.0003 (m/s2) 75 (s) -0.0003 (m/s2) 150 (s) 
θ0d 6*10-5 (rad/s2) 67 (s) -6*10-5 (rad/s2) 134 (s) 
φ0d 7*10-5 (rad/s2) 73 (s) -7*10-5 (rad/s2) 146 (s) 
ψ0d 1.1*10-4 (rad/s2) 70 (s) 1.1*10-4 (rad/s2) 140 (s) 
 
The tracking errors for this trajectory are shown in Fig. 

4a for the case with uncertainty, again with zoom in e0 axis 
for better comparison. A noticeable fact is that there are 
fewer disturbances, compared to the previous trajectory, 
since in this case there are fewer discontinuities in the 
desired trajectory (compare Fig. 4a to Fig. 2b, from about 
50s to about 95s), although these are now somewhat larger, 
since the motion is faster and the discontinuities more 
abrupt. In the remaining of Fig. 4, the passive object tracking 
errors are compared to the expected values, for time periods 
where no disturbances occur. Again, the tracking errors 
converge on the corresponding steady-state values of ε0. 

 
Figure 4. Passive object tracking errors e0 (a), and comparison between the 
expected position/orientation tracking errors (b and d) and the 
corresponding actual values (c and e), for the system with uncertainty. 

V. CONCLUSIONS 
Previous work by the authors led to a planning and control 
methodology for manipulating passive objects using orbital 
servicers. This work demonstrates the robustness of the 
employed model based PD controller, under the presence of 
passive object parametric uncertainty. Assuming adequately 
known parameters of the man-made servicers, we focus on 
the passive object inertia parameters, needed for the chosen 
model based PD control. Linearization methodology is used 
in order to provide a scheme with which the proposed 
controller’s robust behavior can be ascertained a-priori, 
without the need to run experiments, by simple knowledge 
of the desired trajectory and a maximum expectancy in 
parameter estimation uncertainty. The system robust 
performance is also illustrated in a realistic 3D scenario and 
verified via simulations, in which, not only the tracking 

errors of the system converge to the expected values, but 
also the response overcomes certain disturbances, imposed 
on the controller.  
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