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Abstract

Space manipulators mounted on an on-o� thruster-

controlled base are envisioned to assist in the assembly

and maintenance of space structures. When handling

large payloads, manipulator joint and link exibility be-

come important, for they can result in payload-attitude

controller fuel-replenishing dynamic interactions. In

this paper, the dynamics model of an N-exible-joint

space manipulator is developed.The model of a three-

exible-joint manipulator mounted on a six-degree-of-

freedom spacecraft is used to compare three di�erent

on-o� thruster attitude control systems. Two varia-

tions of a classical control scheme are suggested to min-

imize such undesirable dynamic interactions, as well as

thruster fuel consumption.

1 Introduction

Robotic devices in orbit will play an important role
in space exploration and exploitation. Their mobility
can be enhanced by mounting them on free-ying bases,
controlled by on-o� thrusters. Such robots introduce a
host of dynamic and control problems not found in ter-
restrial applications. When handling large payloads,
manipulator joint or structural exibility becomes im-
portant and can result in payload-attitude controller
fuel-replenishing dynamic interactions. Such interac-
tions may lead to control system instabilities, or mani-
fest themselves as limit cycles [1].

The CANADARM-Space Shuttle system is the only
operational space robotic system to date. Its Reac-
tion Control System (RCS), which makes use of on-
o� thrusters, is designed assuming rigid-body motion,
and using single-axis, thruster switching logic based on
phase-plane techniques. This approach is common in
the design of thruster-based control systems. However,
the exible modes of this space robotic system have
rather low frequencies, which continuously change with
manipulator con�guration and payload, and can be ex-

cited by the RCS activity. The performance degrada-
tion of the RCS due to the deployment of a exible pay-
load, with or without the CANADARM, has been stud-
ied in [2]. A new design for the RCS was developed to
reduce the impact of large measurement uncertainties in
the rate signal during attitude control, thereby increas-
ing the performance of the RCS for rigid-body motion
[3]. However, the exibility problem was not addressed.
Currently, the method for resolving these problems con-
sists of performing extensive simulations. If dynamic
interactions occur, corrective actions are taken, which
would include adjusting the RCS parameter values, or
simply changing the operational procedures [2]. The
consequences of such interactions can be problematic,
since fuel is a scarce resource in space; hence, classi-
cal attitude controllers must be improved to reduce the
possibility of such dynamic interactions.

This interaction problem was studied using a single-
mode, linear translational mechanical system to ap-
proximate the dynamic behaviour of a two-exible-joint
manipulator mounted on a three-degree-of-freedom
(dof) base with a constant system damping ratio [4],
and with a variable one [5]. A state-estimator and de-
sign guidelines were suggested to minimize such unde-
sirable dynamic interactions, as well as thruster fuel
consumption. These results were validated in [6] using
a more realistic model with rotational degrees of free-
dom. In this paper, a general technique to model a
space manipulator with exible joints is �rst developed
and two variations of a classical control scheme are sug-
gested that reduce the undesirable e�ects of dynamic
interactions, as well as thruster fuel consumption.

2 System Description

2.1 Dynamics Modelling

In this subsection, the dynamics model of an N -
exible-joint space manipulator is obtained using a La-
grangian approach. Since the time scale of robotic mo-



tions are assumed to be relatively small compared to the
orbital period, orbital mechanics e�ects are neglected.
The kinematics of the free-ying space manipulator is
expressed using the spacecraft centre of mass (CM) C
as a reference point to describe system translation. The
inertial position vector of an arbitrary point P of the
system, p, can be written as

p = c+ �; with � = ci + pi (1)

where c, �, ci, and pi are, respectively, the position
vectors of C, of point P with respect to C, the CM Ci

of the i-th body with respect to the spacecraft CM, and
of point P with respect to the i-th body CM, see Fig. 1.

Figure 1: A space manipulator system

Now, vectors �a = [�1; �3; � � � ; �2N�1]
T

and �n =

[�2; �4; � � � ; �2N ]
T
are de�ned as the rotor-joint variables

and the link-joint variables, at the joints, respectively.
Here, subscripts a and n stand for the actuated and
non-actuated variables. These two vectors are not the
same due to joint exibility. Assuming lumped exi-
bility at the joints, links are considered rigid and the
kinetic energy expression of the system is given by
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where M is the total mass of the system, and J is the
moment-of-inertia matrix of the rotors.

For a free-yer, microgravity e�ects are very small
compared to control forces, and hence, they are ne-
glected. Thus, the potential energy is only due to
joint elasticity. Moreover, viscous friction forces due
to damping can be taken into account using Rayleigh's
dissipation function R. We thus have,
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where Kr is a sti�ness matrix de�ned as Kr =
diag(k1; k2; � � � ; kN ), Cr is a damping matrix de�ned
as Cr = diag(c1; c2; � � � ; cN ), while �� is the vector of
the relative deformation at the joints, namely, �n��a.

The sum of all powers developed by driving devices
supplying controlled forces is given by

� = _�
T

a � + [_c]T
0
[fs]0 + [!0]

T
0
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where � is the vector containing all torques applied by
the motors at each joint, and fs and ns are the forces
and moments applied to the spacecraft with devices like
thrusters and/or momentum wheels, expressed in the
spacecraft frame, F0. By choosing a set of Euler angles
� = [ ; �; �]T to describe the base attitude, the base
angular velocity !0 is expressed as

[!0]0 = S0(�) _� (5)

where _� are the Euler-angle rates and S0(�) is chosen
such that !0 is expressed in F0.

In the realm of the Euler-Lagrange equations, we use

q =
h
qTr ;�

T
a

iT
, where qr =

h
cT ; �T ;�Tn

iT
, as general-

ized coordinates. Then, applying the Euler-Lagrange
equations, the equation of motion can be written as

M�qr +C _qr �C1
_�a +Kqr �K1�a + n = Jq� (6a)

J��a �Cr
_�n +Cr

_�a �Kr�n +Kr�a = � (6b)

where M is a (6 +N)� (6 +N) positive-de�nite mass
matrix, n is a (6 + N)-dimensional vector containing
the nonlinear velocity terms, Jq is a Jacobian matrix,
� contains the external forces and moments, and C, K,
C1, K1 are matrices given as

C1 = [0;0;Cr]
T
; C = [0;0;C1] (7a)

K1 = [0;0;Kr]
T
; K = [0;0;K1] (7b)

where 0 are matrices having appropriate dimensions.
If we assume that joints are blocked in a speci�c

con�guration ��a, then
_�a = 0 and ��a = 0. Thus,

Eqs.(6a & 6b) become

M�qr +C _qr +Kqr + n = Jq�+K1�
�

a (8a)

�Cr
_�n �Kr�n +Kr�

�

a = � (8b)

Equation (8b) gives the expression for the torques
required to brake the joints, and Eq.(8a) represents the
dynamics of the system.

2.2 Controller Structure

The technology currently available does not allow
the use of proportional thruster valves in space, and
thus, classical PD and PID control laws cannot be used;
spacecraft attitude and position are controlled by on-o�
thruster valves, that introduce nonlinearities.

The usual scheme to control a spacecraft with on-
o� thrusters employs the error phase plane, de�ned as



Figure 2: (a) Switching logic in the error phase plane;
(b) Controller block.

having the spacecraft attitude error e and error rate _e
as coordinates. The on-and-o� switching is determined
by switching lines in the phase plane and can become
complex, as for example, the phase plane controller of
the Space Shuttle [2]. To simplify the switching logic,
two switching lines with equations e + � _e = �� have
been used, as shown in Fig. 2(a). The deadband limits
[��, �] are determined by attitude limit requirements,
while the slope of the switching lines, by the desired
rate of convergence towards the equilibrium and by the
rate limits. This switching logic can be represented as
a relay with a deadband, where the input is e + � _e,
the left-hand side of the switching-line equations, see
Fig. 2(b).

To compute the input to the controller, the position
and the velocity of the base are required and can be ob-
tained from sensors. However, it can happen that only
the attitude is available and then, the angular velocity
must be estimated. As shown in [4], the use of sen-
sors to obtain the rate of the base may deteriorate the
performance of the system due to the high-frequency
�ltering requirements. Here, we consider that only the
attitude is available from sensors, and, hence, to obtain
the velocity, estimators are used.

3 Control

In this paper, we assume that the attitude of the
spacecraft can be de�ned by a set of three Euler angles
�. Moreover, we assume that each angle remains small
enough to be controlled independently, with the atti-
tude controller presented in Subsection 2.2. The general
control system required to control the orientation of a
spacecraft in space is thus presented in Fig. 3 where
each attitude controller is represented with the block
diagram of Fig. 2(b). The plant dynamics is described
using the formulation introduced in Subsection 2.1 and
is thus represented by the set of highly nonlinear equa-
tions (8a). Finally, the state estimator blocks are re-
quired to estimate the angular velocity and �lter the
attitude signals obtained by sensors. Three di�erent

Figure 3: Model with a 3-axis rate estimator and atti-
tude �lter.

estimators are presented below and, to draw stability
conclusions, the following de�nition based on the rate of
fuel consumption of the system is used. A stable sys-

tem (S) describes a system where the motion reaches
a limit cycle similar to the one for a rigid body with
a resulting rate of fuel consumption R�

f smaller than
0.0060 fuel units/s, other cases being unstable (U).

3.1 A Classical Rate Estimator (CRE)
For this estimator, a con�guration similar to the one

used on the Space Shuttle is employed [2]. A di�erentia-
tor combined with a second-order �lter is used to obtain
a velocity estimate, as shown in Fig. 4. The di�erenti-
ation of a noisy signal is not recommended because it
ampli�es noise. However, in this case, it is possible to
use a scheme where only the exible part of the mo-
tion needs to be di�erentiated. This means that, at the
limit, for a rigid system, no di�erentiation is necessary.
This state estimator can give very good results when
exibility is low. The di�erentiator-�lter is given by
sGse(s) where

Gse(s) =
!2

se

s2 + 2�se!ses+ !2
se

(9)

The attitude feedback is also low-pass-�ltered using a
second-order �lter represented by Gf (s)

Gf (s) =
!2

f

s2 + 2�f!fs+ !2

f

(10)

For this �lter, we use �f = 0:707, and let !f free to
vary, while, for the di�erentiator-�lter, we use values
that correspond to the ones used on the Space Shuttle
[2], namely, !se = 0:2513 rad/s and �se = 0:707.

3.2 A Rate Estimator with Linear Com-
pensation (RELC)

In order to improve the performance of the attitude
control system, we propose the use of a second-order



Figure 4: Block diagram for CRE estimator.

compensator of the form
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!2

p(s
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z)

!2
z(s

2 + 2�p!ps+ !2
p)

(11)

The same rate estimator of Fig. 4 is considered, but in

this case, both the estimated velocity _̂� and �ltered atti-
tude �̂ are compensated using Gc(s). This compensator
was chosen based on the analytical results described in
detail in [7].

An important aspect of this estimator is the pole and
zero location of the second-order linear compensator
Gc(s) of Eq.(11), namely, the determination of �z, !z,
�p and !p. For this task, it is very important to keep
in mind that the compensator is cascaded to a second-
order �lter which is used to eliminate high frequency
noise. Therefore, to avoid noise ampli�cation, the zeros
of Gc(s) should not be too close to the origin while its
poles should not be too far from it. Moreover, by expe-
rience, it was observed that the imaginary part of the
zeros of Gc(s) should be less than both the imaginary
part of the poles of the second-order �lter or the imag-
inary part of the poles of the plant transfer-function.
After many trials, a set of guidelines was elaborated to
automatically select the poles and zeros of Gc(s). These
guidelines do not always lead to the optimal design of
the compensator for a particular case, but were found
to give good performance in most cases. Another im-
portant aspect was the sensitivity of the stability of the
system to parameter variations, like those related to
the motion of the space manipulator. These guidelines
were found to give good reasonable performance for a
wide range of motion of the manipulator. Therefore,
the imaginary part of the zeros of Gc(s) should be cho-
sen as the minimum value of the imaginary part of the
poles of the second-order �lters or 75% of the imagi-
nary part of the pole associated with the lowest natural
frequency of the system. Moreover, its real part should
be chosen as half the higher value between the real part
of the poles of Gf (s) and those of Gse(s). On the other

Figure 5: Block diagram for the NRELC estimator.

hand, the real part of the poles of Gc(s) should be cho-
sen as the mean value of the real parts of the poles of
Gf (s) and Gse(s), its imaginary part been null. These
guidelines are presented in algorithmic form in [7].

3.3 A New Rate Estimator with Linear
Compensation (NRELC)

One way to further improve the performance of the
estimator of Fig. 4 is to �lter only the \exible" part
of the attitude signal, as is done for the rate estimate
_̂�. Linear compensation is also considered for this es-
timator, the above guidelines being also used for the
pole and zero determination. This NRELC estimator is
presented in Fig. 5.

4 Simulation Results

In this section, the three-exible-joint manipulator
mounted on a six-dof spacecraft of Fig. 6 is considered
as the plant. This model has basically the same ar-
chitecture as the CANADARM/Space Shuttle system
when considering only its three �rst joints. Moreover,
in order to choose realistic parameter values for the sys-
tem, the parameter values of the CANADARM/Space
Shuttle system are used, while link exibility was
lumped at the joints and zero joint angles were assumed
for its last three joints [8]. This model is described in
detail in [7].

Using the Matlab/Simulink simulation environment,
a parametric study was undertaken to show the perfor-
mance of the estimators described in Section 3. For this
study, the parameters of Table 1 were �xed while �, the
negative inverse of the slope of the switching lines, and
!f , the cuto� frequency in the second-order �lterGf (s),
were given the values � = 3 s or � = 5 s, and !f =
0:2513 rad/s, !f = 0:47 rad/s or !f = 0:6911 rad/s.
Moreover, three typical con�gurations of the manipu-
lator were considered, namely, (�1; �3; �5) = (0�; 0�; 0�)
or (0�; 135�;�90�) or (120�; 90�; 105�), as well as four
di�erent payloads, � = 0, 0.1, 0.3, or 1.0, where � is
the ratio of the mass of the payload to the mass of
the spacecraft, � = 0 and � = 1 being extreme cases
where there is no payload and where the payload mass



Figure 6: A three-exible-joint space manipulator

Table 1: Parameter values used for all simulations

� � � (s) �f !se (rad/s) �se

1� 0:02�=s2 0.1 0.707 0.2513 0.707

is equal to that of the spacecraft. The value � = 0:3 cor-
responds to the maximum value that was considered for
the CANADARM/Space Shuttle system, while � = 0:1
corresponds to a more typical payload.

The results of this study are summarized in Tables 2
and 3, respectively for � = 3 s and � = 5 s, where
\U" stands for an unstable system, \S" for a stable
system, and 1, 2 and 3 correspond to the CRE, RELC
and NRELC estimators, respectively. From this study,
it is apparent that the use of linear compensation im-
proves the performance of the CRE estimator. Many
simulations that were unstable using the CRE estimator
are now stable using the RELC estimator. Moreover,
we see that the use of the NRELC estimator further
improves the performance of the system. Using this es-
timator, almost all the cases studied were stable, most
of the unstable cases being for � = 1:0, which corre-
sponds to a very large payload. Moreover, in [7], it is
shown using the describing function technique that the
RELC estimator is able to eliminate the dynamic in-
teractions that result in large limit cycles. However, it
cannot stabilize systems with a diverging motion, as it
can be done using the NRELC estimator.

Typical simulation results are displayed in Figs. 7
and 8 for the motion about the Z0 axis of the spacecraft,
as per Fig. 6. The simulations were performed using the
parameters of Table 1, with � = 5 s, !f = 0:47 rad/s,
and the con�guration (120�; 90�; 105�) of the manipu-
lator with � = 0:3. An initial error of 0.05 rad was
considered for each axis of the spacecraft. The results

Table 2: Results of the parametric study for � = 3 s

!f � Con�g. 1 Con�g. 3 Con�g. 5

(rad/s) 1 2 3 1 2 3 1 2 3

0.0 U U S U U S U U S

0.2513 0.1 U U S U U U U U S

0.3 U U S U U S U U U

1.0 U U S U U S U U U

0.0 U U S U U S U U S

0.47 0.1 U U S U U S U U S

0.3 U S S U U S U U S

1.0 U S S U U S U U S

0.0 S S S S S S S S S

0.6911 0.1 U S S U S S U S S

0.3 U S S U S S U U S

1.0 U U S U U S U U S

Table 3: Results of the parametric study for � = 5 s

!f � Con�g. 1 Con�g. 3 Con�g. 5

(rad/s) 1 2 3 1 2 3 1 2 3

0.0 U U S U U S U U S

0.2513 0.1 U U S U U S U U S

0.3 U U S U U S U U S

1.0 U U S U S S U U U

0.0 S S S S S S S S S

0.47 0.1 U S S S S S S S S

0.3 S S S S S S U S S

1.0 U S S U S S U U U

0.0 S S S S S S S S S

0.6911 0.1 S S S S S S S S S

0.3 S S S S S S U S S

1.0 U S S U S S U U S

of Fig. 7 were obtained using the CRE estimator, while
the results of Fig. 8 were obtained using the NRELC
estimator. From Fig. 7(a), we see that the controller is
not able to bring the spacecraft inside the desired atti-
tude limits and that a large limit cycle is reached. The
thrusters then �re on and o� continuously, resulting in
a high fuel consumption of 1336.6 fuel units, as can be
observed in Figs. 7(b) and (c). The resulting rate of fuel
consumption is, in this case, 0.8667 fuel units/s. On the
other hand, from Fig. 8, we see that the NRELC can
bring the same system inside the desired attitude lim-
its without problems. Figure 8(b) shows that only a
few �rings of the thrusters are required, resulting in a
consumption of only 43.0 fuel units for the same 2 000 s
run. In this case, the rate of fuel consumption is only
0.0003 fuel units/s. This typical example shows the in-
crease in performance that can be attained using the
NRELC estimator.
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Figure 7: Simulation results for the CRE estimator about the pitch axis: (a) spacecraft error phase plane;
(b) thruster command history; and (c) fuel consumption.
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Figure 8: Simulation results for the NRELC estimator about the pitch axis: (a) spacecraft error phase plane;
(b) thruster command history; and (c) fuel consumption.

5 Conclusion

This work focused on reducing or eliminating pos-
sible dynamic interactions between the attitude con-
troller of a spacecraft and the exible modes of a space
manipulator mounted on it. A three-exible-joint ma-
nipulator mounted on a six-dof spacecraft was used
to evaluate three di�erent control/estimation schemes
with the help of a parametric study. It was found that
the RELC and NRELC estimators can minimize such
undesirable dynamic interactions, as well as thruster
fuel consumption, thus improving signi�cantly the sta-
bility and performance of the system.
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