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Abstract— Efficient and thorough vineyard inspection is cru-
cial for optimizing yield and preventing disease from spreading.
Manual approaches are labor-intensive and prone to human
error, motivating the development of automated solutions. Pre-
cision viticulture benefits greatly from access to photo-realistic
3D vineyard maps and from capturing intricate visual details
necessary for accurate canopy and grape health assessment.
Generating such maps efficiently proves challenging, partic-
ularly when employing cost-effective equipment. This paper
presents a novel vineyard inspection and 3D reconstruction
framework implemented on a Robotic Platform (RP) equipped
with three stereo cameras. The framework’s performance was
evaluated on an experimental synthetic vineyard developed
at NTUA. This testing setup allowed experimentation under
diverse lighting conditions, ensuring the system’s robustness
under realistic scenarios. Unlike existing solutions, which often
focus on specific aspects of the inspection, our framework offers
a top-down approach, encompassing autonomous navigation,
high-fidelity 3D reconstruction, and canopy growth assessment.
The developed software is available at the Control Systems
Laboratory’s (CSL) bitbucket repository [1].

I. INTRODUCTION

Earth’s growing population and the ever-present climate
change pose a significant challenge to global food avail-
ability. Precision agriculture (PA) practices and automated
crop inspection have emerged as key strategies to make
agriculture more efficient and sustainable. One key sector
is vineyards due to their structured layouts and the high
value of the crops [2]. However, several challenges must be
addressed before robots can be integrated fully into vine-
yard management. One significant obstacle is the obstructed
satellite signal in mountainous vineyard regions. This renders
Global Positioning Systems (GPS), an essential component
for robot navigation, unreliable. Uneven terrain within the
vineyards and obstacles like rocks, irrigation equipment, and
workers necessitate developing robust and adaptable path-
planning solutions. Furthermore, cost-effectiveness remains
a critical concern when it comes to widespread adoption.
Many existing solutions in vineyard robotics rely heavily
on GPS [3], rendering them ineffective in GPS-denied [21]
environments. Other approaches address specific aspects of
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Fig. 1. Drone view of the rover in the synthetic vineyard developed at the
Control Systems Lab of the National Technical University of Athens.

automation like spraying [4], grape counting [5], or disease
detection [6], lacking a holistic solution. The former do not
offer a comprehensive 3D representation of the vine trees,
which is valuable for crop inspection. Also, research often
neglects the crucial aspects of autonomous navigation and
obstacle avoidance within the vineyard [22], [23]. This frag-
mentation limits their effectiveness in providing a complete
picture for the vine grower. Recent research demonstrates the
possibility of generating photo-realistic 3D maps utilizing
3D Gaussians [7]. While valuable, such solutions typically
require immense computing power [8], [9], making them
prohibitively expensive for many growers and hampering
real-time capability, which is essential since fast decision-
making is crucial for farmers to react to sudden weather
events [10], [11].

Given these limitations, we present Vinymap: a Vineyard
Inspection And 3D Reconstruction Framework For Agricul-
tural Robots. Vinymap employs a robust dual-camera visual
odometry (VO) system designed explicitly for GPS-denied
environments with limited visual features available [12]. This
redundancy ensures continuous operation even when one
camera is obstructed by sunlight or texture-less obstacles.
We enhance its effectiveness by improving loop closure with
AprilTag Detection by adding a visual servoing algorithm
that ensures proper alignment with the AprilTag before initi-
ating loop closure corrections. Moreover, Vinymap leverages
a path-planning algorithm that uses polytopic decomposition
to create obstacle-free corridors [13]. This approach, imple-
mented for the first time on a real robot, benefits from the
vineyard’s corridor-like layout. Vinymap delivers compre-
hensive vineyard inspection through two key algorithms: 1)
A photo-realistic 3D mapping algorithm that generates fast
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visual representations of the vineyard. 2) A canopy density
assessment algorithm that provides vital insights into grape
health and quality, as dense foliage can limit sunlight and
air circulation around the grape clusters [24]. Vinymap’s
effectiveness was initially evaluated in realistic simulations.
We subsequently constructed a synthetic vineyard at CSL to
extensively test the framework on an actual robotic platform
under realistic conditions.

II. EXPERIMENTAL SETUP

A. Realistic Grapevine Canopy

A vineyard with artificial grapes and leaves was built
at CSL to conduct controlled and repeatable experiments
with varying light conditions. Each row consists of multiple
plants on a trellis system, so the vegetation form resembles
a natural canopy. The basic vineyard row parameters, such
as the distance between plants (∼1m) and grapes’ minimum
height (0.60m), are based on standard viticulture practices
in Greece. The artificial grapes’ grid features varying density
and grape size, creating different visibility conditions since
some grapes are partly covered with leaves, whereas others
lie on the front plane. The vineyard consists of three 3-meter-
long rows on even terrain.

B. CSL Rover

A custom robotic platform (RP) was used to validate and
test the proposed software framework. The RP was designed
and constructed for research purposes, comprising of in-
house built and off-the-shelf parts (e.g., aluminum profiles,
bearing units, etc.). Its motion system features four mecanum
wheels [14] to provide the robot with omnidirectional motion
capabilities. The wheels are powered by four Maxon DC
motors (RE 35) combined with planetary gearboxes (GP 42)
and incremental encoders (HEDL 5540), providing 5Nm of
continuous torque per wheel.

The perception system of the RP was designed to host
a dual-camera VO algorithm [12], as well as the Vinymap
framework. Thus, the RP had three stereo cameras (Fig. 2).
The front and rear cameras are Stereolabs ZED2 cameras.
They are utilized for VO, while the right side camera is a
ZED X Mini Camera with a 2.2mm focal length. It is used
for the 3D reconstruction and canopy density assessment
tasks. The ZED X Mini is also fitted with polarizing lenses,
which increase the RP’s ability to operate under diverse
lighting conditions.

The software framework runs on the NVIDIA Jetson Orin
AGX. The ZED2 cameras are connected to the device via
USB 3.0, while the ZED X Mini is connected via a GMSL2
port. The Orin is powered by a 12V , 1200mAh XP-1 lithium
battery, providing power for more than 30 minutes.

C. Simulation Environment

Before deployment within the synthetic vineyard, our
framework was validated through a set of simulation ex-
periments. Leveraging the Gazebo simulation platform, we
constructed a replica of the synthetic vineyard, the CSL
rover, and the ZED Depth cameras. The use of appropriate

simulation plugins and accurate STL files ensured high
fidelity to the actual hardware configuration.

D. Experimental Pipeline

Our framework employs a pipeline to achieve navigation
and concurrent 3D reconstruction within the vineyard. Fig.
4 illustrates the pipeline in detail. The process unfolds as
follows:

Objective Initiation: The robot begins its trajectory at
a predetermined starting location within the vineyard. A
user-defined target position within the designated vineyard
perimeter serves as the navigation goal.

Trajectory Planning: The path planning algorithm [13]
uses a pre-existing vineyard map to decompose the environ-
ment and compute an obstacle-free trajectory for the RP to
follow.

Real-Time Localization: The dual-camera VO algorithm
developed at CSL [12] continuously estimates the robot’s
position within the vineyard. This VO algorithm incorporates
the loop closure functionality, which is triggered whenever
the robot encounters an AprilTag. The AprilTags are period-
ically placed within the vineyard.

Velocity Control: To ensure the robot follows the planned
trajectory, a tracking-PID controller is employed. Utilizing
the desired waypoints and the robot’s current position, it
outputs the appropriate velocity commands published using
the Robot Operating System (ROS).

Command Execution & Motion: The published velocity
messages are received via a UDP interface on the robot’s
onboard Raspberry Pi. Subsequently, they are transmitted to
the Roboclaw microcontrollers through serial communica-
tion, dictating the robot’s motion and ensuring the planned
trajectory is followed.

Continuous 3D Reconstruction & Inspection: The plat-
form utilizes its dedicated ZED X camera to capture visual
data throughout the navigation process. The data are used
from our inspection and 3D reconstruction software, to create
a 3D map with valuable spatial information.

E. Loop Closure with AprilTags

The dual-camera VO algorithm implements a loop clo-
sure mechanism that leverages AprilTags placed periodically
within the environment to address potential drift associated

Fig. 2. The robotic platform and the developed vision system: (A) mecanum
wheel, (B), (C), (D), (E) Maxon Motors, (F) Raspberry Pi, (G), (H) ZED2
Cameras, (I) ZED X Mini Camera, (J) Nvidia Orin AGX, (K) XP-1 Battery.
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Fig. 3. Simulated Environment in Gazebo.

Fig. 4. Experimental Pipeline.

with visual navigation. These fiducial markers are placed
in a priori known positions and orientations, allowing the
robot to determine its absolute pose upon detection with
the ZED X camera. We observed performance degradation
in loop closure accuracy when AprilTags were detected at
oblique angles or from distances greater than 50cm. In
such scenarios, the tag information yielded inaccurate pose
estimates, worsening odometry drift after loop closure. We
implemented a corrective process triggered upon AprilTag
detection to mitigate this effect. The robot performs visual
servoing to reach a pre-defined distance (30cm) & ensures
a viewing angle close to the AprilTag normal. This pose
facilitates an accurate inference of the robot’s transformation
relative to the tag, enabling subsequent loop closure & pose-
graph optimization to refine the odometry measurements
effectively. The application of this algorithm resulted in a re-
duction in loop closure errors & improved VO performance.

To investigate the impact of both radial distance and
viewing angle on the accuracy of pose estimation, we con-
ducted several experiments as illustrated in Fig. 5a. Two
radial distances from the AprilTag were evaluated: 30cm
and 50cm. Each semicircle was subdivided into 12 sections,
representing view angle deviations of 15°. The findings,
presented in Fig. 5b, demonstrate a significant reduction in
transformation error as the viewing angle approached 90°.
Furthermore, a radial distance of 30cm yielded more accurate
pose estimations compared to a 50cm radial distance. The
transformation error at a 90° view angle and at a radial
distance of 30cm is zero.

Fig. 5. (a) The experimental setup for identifying the optimal camera view
angle & distance from the AprilTag for loop closure. (b) Distance and Angle
error of AprilTag pose from various viewing angles. The transformation
error at a 90° view angle and a radial distance of 30cm is zero.

III. THE VINYMAP FRAMEWORK

The Vinymap framework leverages synchronized point
clouds and images captured by the ZED X camera to
comprehensively represent the vineyard canopy and assess
its vegetative state. It is implemented in Python with Open3D
and OpenCV, and its key functionalities include a Point
Cloud Quality Enhancement pipeline, a Canopy Density As-
sessment algorithm, and a photo-realistic 3D Reconstruction
algorithm.

A. Point Cloud Quality Enhancement

Vinymap involves cleaning the raw input point clouds
through a series of statistical methods based on [25]. This
step eliminates noise and outliers, ensuring the integrity and
reliability of subsequent processing stages. This process: 1)
Loads and formats the raw point clouds. It removes invalid
points and downsamples for memory efficiency. 2) Crops
point clouds using bounding boxes to exclude areas near the
boundaries of ZED X’s field of view, which were noisy. 3)
Removes points with a low number of neighboring points
within a local radius, targeting areas with high noise. 4)
Removes clusters identified by DBSCAN clustering [15] that
fall below a size threshold, indicating noise. 5) Estimates
surface normals for each point using covariance analysis
of neighboring points. The point cloud quality enhancement
algorithm is always called before any other process.

B. Canopy Density Assessment

Our framework incorporates a novel strategy for identify-
ing gaps within the vineyard canopy. This method capitalizes
on the inherent color properties of the vine tree leaves, as
well as the topological properties of surface reconstruction
with alpha shapes [16]. We implement a Canopy Density
Assessment (CDA) algorithm to output a comprehensive
Canopy Density Index (CDI) for each input point cloud
batch. This index enables vine growers to pinpoint increased
foliage density that could restrict sunlight and air circulation
around the grape clusters or decreased foliage density, which
might indicate impaired growth. After the quality of the point
clouds is enhanced, CDA calls the following functions:
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PointCloudRegistration: This function merges individual
point cloud scans captured from successive viewpoints as
the RP traverses the vineyard and leverages KISS-ICP [17].
The function implements a tiered ICP approach utilizing
three distinct point correspondence distances. This sequential
strategy, employing a coarse-to-fine logic, progressively re-
fines the alignment between successive scans. The function’s
primary output is a unified point cloud map fm encom-
passing all the input batch’s scans stitched together through
the registration process. Additionally, the function provides
a list of individual transformations tr. Each transformation
corresponds to a specific input point cloud and details the
precise positional and rotational adjustments necessary to
integrate it into the overall map.

CanopySeparation: This function operates on the fused
point cloud map fm generated by the PointCloudRegistra-
tion function. It isolates points within the map exhibiting
green hues. This targeted color-based segmentation filters out
extraneous elements, resulting in a distinct point cloud ic,
that exclusively encompasses the vineyard’s green canopy.

FullCanopyEstimation: Reconstructs a mesh m from the
ic point cloud acquired by the CanopySeparation function.
The reconstruction excludes all gaps and irregularities by
employing a large alpha parameter.

CanopyGapExtraction: The mesh m produced from the
FullCanopyEstimation is sampled, and a point cloud fc
representing the gapless full canopy is acquired. The initial
canopy point cloud ic is subtracted from the full canopy point
cloud using distance-based subtraction. The resulting point
cloud gc represents the gaps in the canopy.

The CDA algorithm then calculates the CDI by dividing
the number of points of the output point cloud from the
CanopyGapExtraction gc by the number of points of the full
canopy point cloud fc, as seen in (1), after downsampling
both of the clouds using the same voxel size. Fig. 6 illustrates
the CDA process in detail.

CDI = 1− NumberOfPoints(gc)

NumberOfPoints(fc)
(1)

C. Photo-Realistic Vineyard Reconstruction

To generate a visually informative and spatially accurate
representation of the vineyard, Vinymap utilizes projective
texture mapping. The Photo-realistic Vineyard Reconstruc-
tion (PVR) algorithm receives a set of point clouds P and
a set of images I as its input. Each point cloud pi ∈
P must be captured simultaneously with a corresponding
image Ii ∈ I as the robot moves. This is achieved with
ROS’s synchronization policy. PVR effectively projects high-
resolution RGB images onto meshes reconstructed from the
raw point cloud data using alpha shapes. The meshes are
then registered and aligned, resulting in a photorealistic 3D
representation of the vineyard. This process is presented in
Algorithm 1 and illustrated in Fig. 6. After enhancing the
point clouds using point cloud quality enhancement, PVR
calls the following functions:

SurfaceReconstruction: This function creates a triangle
mesh mi that accurately represents a source point cloud pi.

This is achieved by leveraging the ball pivoting algorithm
(BPA) [18] and fusing its results with the alpha shapes [16]
reconstruction algorithm.

ProjectiveTextureMapping: This function receives a trian-
gle mesh mi and an RGB image Ii as input. For each triangle
vertex v ∈ mi, the function projects it to the 2D image plane
of Ii and matches it with a pixel q ∈ mi with coordinates
(u, v) ∈ Ii, according to (2).

q = Mv, (2)

where:

q =

[
u
v

]
,M =

fx 0 cx
0 fy cy
0 0 1

 and v =

XY
Z

 .

The M matrix is the intrinsic matrix of the camera that
captured Ii, in our case, the ZED X mini camera. The (u,v)
coordinates are used to apply texture to the so-far colorless
mesh mi. Provided that the RGB image Ii and the point
cloud pi were captured simultaneously, the resulting texture
application produces a photo-realistic 3D mesh ri. The sum
of all the photorealistic meshes is symbolized with R.

PointCloudRegistration: Merges individual point cloud
scans captured from successive viewpoints as the RP tra-
verses the vineyard. Described in section III B.

MeshFusion: The output transformations tr from the
PointCloudRegistration are used to transform each recon-
structed mesh ri ∈ R identically. Thus, the ICP cloud
registration is used to register the meshes accurately. The
aligned and registered meshes are then fused, and the func-
tion outputs the result of a photo-realistic vineyard mesh y.

Algorithm 1 Photo-realistic Vineyard Reconstruction
1: Given: P = {p1, ..., pk}, I = {I1, ..., Ik}, alpha,M
2: B = PointCloudQualityEnhancement(P )
3: for pi in B do
4: mi = SurfaceReconstruction(pi, alpha)
5: ri = ProjectiveTextureMapping(mi, Ii, M )
6: end for
7: fm, tr = PointCloudRegistration(B)
8: y = MeshFusion(tr)
9: return y

IV. EXPERIMENTAL RESULTS
A. Canopy Density Assessment

To test the performance of our canopy density assessment
algorithm, we conducted experiments in both the simulated
and the synthetic vineyard setting. The simulation offered a
highly controlled environment with almost no canopy density
variations. We tested the CDA on dense, perfect canopies,
resulting in very high-density index scores, as expected. The
laboratory setting provided a more realistic yet controlled
environment. We tested two distinct scenarios:

Moderately sparse canopy: CDA returned a density index
within an expected range, aligning with the visual assessment
of the canopy.
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Fig. 6. Pipeline illustrations of the (a) Canopy density assessment, (b) Photorealistic vineyard Reconstruction.

Sparse canopy: The presence of gaps resulted in a signifi-
cantly lower density index, validating CDA’s ability to detect
and quantify vegetation irregularities.

Laboratory tests were repeated under natural and artificial
lighting. All tests yielded accurate and intuitively useful
results, reflecting CDA’s simplicity and effectiveness in as-
sessing canopy density. Table 1 and Fig. 7 display the results
in detail.

Fig. 7. Canopy Density Assessment Scenarios.

B. Reconstruction Quality

Regarding visual fidelity and information richness, the
PVR algorithm is compared to the raw point cloud data
and Stereolabs’ ZED Spatial Mapping [19] algorithm. A
direct comparison with the raw point cloud data readily
reveals the difference. While the raw data offers an essential
structural representation, our reconstructed mesh delivers a
significantly clearer depiction of the vineyard. As presented
in Fig. 8, the AprilTag exhibits enhanced clarity, and individ-
ual grapes within grape clusters are more readily discernible.

Compared to the high-quality mesh output of Stereolabs’
ZED Spatial Mapping algorithm at its highest settings, our
reconstruction emerges as the superior solution. The projec-
tive texture mapping approach generates meshes featuring
significantly greater visual detail, enabling vine growers
to inspect individual leaves and grapes meticulously. This

TABLE I. CANOPY DENSITY INDEX OUTPUT.

Experiment Type Canopy Type CDI

Simulated Dense 0.742

Laboratory
Artificial Lighting

Moderately Sparse
0.512

Natural Lighting 0.569

Laboratory
Artificial Lighting

Sparse
0.450

Natural Lighting 0.461

enhanced texture facilitates more informed decision-making
in remote precision agriculture.

Fig. 8. Reconstruction Comparison.

C. Real-Time Viability

To evaluate the real-time capabilities of our algorithm,
we captured data using ROSbags and SVO files from ZED
cameras, allowing for offline review, timing analysis, and
benchmarking against state-of-the-art methods. This assess-
ment was conducted on the NVIDIA Jetson Orin platform.
We compared the Vinymap framework with RTAB-map [20]
and ZED Spatial Mapping [19].

Our algorithm demonstrates real-time processing capabili-
ties, performing on par with the ZED Spatial Mapping algo-
rithm at its high settings. The time needed for reconstructing
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a single vineyard row is ∼ 68s with ZED Spatial Mapping
and ∼ 51s with Vinymap. While RTAB-Map exhibits faster
execution (∼ 30s for a single row), it occasionally experi-
ences delays due to loop closure estimation calculations. In
contrast, our approach strategically triggers loop closure only
upon AprilTag detection, eliminating these delays.

The CDA and PVR algorithms achieve real-time viability.
Notably, the desired output quality of Vinymap can influ-
ence the robot’s operational speed. Vine growers can select
the optimal solution for their needs by carefully balancing
robot speed and desired reconstruction detail. In the case of
Vinymap, a 40% overlap between captured point clouds is
required for effective ICP registration. Assuming the robot
moves in a straight line perpendicular to the canopy, (3)
yields the maximum robot speed which achieves the 40%
overlap,

s = fps ∗ fov ∗ (1− overlap) (3)

where s is the maximum movement speed, fps is the
frequency of point cloud and RGB image capturing, fov is
the length of the visible canopy at each frame in meters and is
dependent on the distance between the robot and the canopy,
and overlap is the required overlap in volume percentage
between the captured point clouds. With the capability of
running with fps = 2, fov = 0.9m, and a necessary overlap
of 0.4, Vinymap is currently suitable for running in real-time
on robots with movement speeds lower than 1.08m/s. The
RP on which our framework was tested was moving at about
0.12m/s, comfortably within the limit.

V. CONCLUSION

This paper presented a novel framework for 3D reconstruc-
tion and vineyard canopy analysis. Demonstrated in a syn-
thetic vineyard, our approach: (a) enhanced VO localization
by utilizing AprilTags and applying a visual servoing step be-
fore triggering loop closure optimization, (b) achieved real-
time viability, (c) achieved crisp 3D reconstruction compared
to the ZED spatial mapping approach, (d) demonstrated
a complete inspection solution integrating state-of-the-art
path planning approaches based on polytope decomposition
applied for the first time on a real robotic platform. Re-
garding future research directions, integrating deep learning
and automated reasoning techniques could unlock complex
inspection tasks, such as detecting diseases or highlighting
potential risks for the vine grower to further examine.
Additionally, extending autonomous inspection could enable
complete vineyard coverage and monitoring without needing
pre-defined start and finish points. We strongly believe this
framework is a solid first step towards a complete solution
for precision viticulture.
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