
  

  

Abstract— A novel identification method is developed which 
identifies the accumulated angular momentum (AAM) of 
spinning reaction wheels (RWs) of an uncooperative satellite 
captured by a robotic servicer. In contrast to other methods 
that treat captured satellite’s RWs as non-spinning, the 
developed method provides simultaneously accurate estimates 
of the AAM of the captured satellite’s RWs and of the inertial 
parameters of the entire system consisting of the robotic 
servicer and of the captured satellite. These estimates render 
the system free-floating dynamics fully identified and available 
to model-based control. Three-dimensional simulations 
demonstrate the method’s validity. To show its usefulness, the 
performance of a model-based controller is evaluated with and 
without knowledge of the captured satellite’s RWs AAM. 

I. INTRODUCTION 
Successes in space exploration have emphasized the growing 
importance of On-Orbit Servicing (OOS) in space programs. 
One of the most promising ways to accomplish OOS 
activities is to exploit robotic servicers, [1], [2]. Moreover, 
the large amount of satellites launched over the last decades, 
has resulted in a great number of space debris endangering 
the success of current and future missions. Consequently, 
future OOS missions for refueling and repairing of the 
defunct satellites, the largest space debris on orbit, have been 
considered by space agencies of vital importance. 

To increase a servicer’s life and avoid potentially harmful 
motions, its reaction wheels (RWs) and thrusters are turned 
off during servicing. This results in a free-floating operation, 
i.e. no external forces and torques act on the system. 
Subsequently, manipulator(s) motions result in motion of the 
uncontrolled robotic servicer’s base, due to dynamic coupling 
between them. Moreover, since reaction wheels are turned 
off, any accumulated RW angular momentum remains 
constant. Then, as the servicer base attitude changes, 
disturbance torques appear due to the RWs. To accomplish 
the aforementioned OOS tasks at high accuracy, advanced 
model-based control strategies must be adopted; these require 
accurate knowledge of system parameters and momenta [3]. 

However, very often, the dynamic parameters of a robotic 
servicer may change on orbit for a number of reasons, such as 
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fuel consumption and payload deployment. Moreover, 
defunct satellites (see Figure 1) usually have a non-functional 
attitude control system (ACS) and hence, their RWs may 
have accumulated angular momentum (AAM) from previous 
operations. However, the AAM of the RWs of an 
uncooperative satellite can be unknown due to lack of 
communication or to system failures. Therefore, the need for 
parameter identification methods arises. 

 
Figure 1. Satellite with rotating RWs captured by a robotic servicer. 

A number of researchers have proposed methods to 
identify the parameters of an unknown satellite in the pre-
capture phase, while others have developed methods that 
require the capture phase to be accomplished first. The 
former are mainly vision-based [4]-[7]. However, vision-
based methods can estimate only ratios of the moments of 
inertia, the location of the center of mass (CM) and the 
orientation of principal axes. 

Most recently developed methods proposed the application 
of an impulse to the floating satellite and the use of 
measurements from visual and force sensors, to estimate all 
satellite inertial parameters [8]-[9]. However, all vision-based 
algorithms developed so far, do not identify the AAM of 
satellite RWs; they assume that RWs are not spinning. This is 
unrealistic for uncooperative defunct satellites and endangers 
servicing missions. 

Nevertheless, methods that assume prior capture are very 
useful too, since potentially they can provide the controller 
with the mass matrices of the entire robotic servicer, 
compensating for uncertainties not only of the captured 
satellite and of the servicer, but also of their connection 
special characteristics (e.g., exact pickup location). These 
methods can be classified to those that use the equations of 
motion and those based on momentum principles. Examples 
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of the former include [10]-[14]. The main disadvantage of all 
methods based on the equations of motion, is the requirement 
for acceleration measurements, which contain substantial 
noise corrupting the estimates. 

To tackle this issue, other researchers have formulated 
identification methods based on momentum equations, [10], 
[15]-[18]. Xu et al. proposed a method that uses both 
equations of motion and momentum equations [19]. 
However, all such algorithms also treat captured satellite 
RWs as non-rotating, with the same potential mission risks. 

In our previous work, we proposed a momentum-based 
method that allows identification of all system inertial 
parameters for free-floating dynamics reconstruction of a 
robotic servicer with/without a captured satellite [18]. 
Compared to the ones proposed in the literature, this method 
is superior as it yields all inertial parameters and has distinct 
accuracy advantages in the presence of noise. Although this 
is an important achievement, additional identification of the 
AMM of the captured satellite RWs is required by model-
based advanced controllers. 

In this paper, a novel identification method is developed, 
which in contrast to other methods, provides accurate 
estimates of both the AAM of the captured satellite RWs and 
of the inertial parameters of the entire system consisting of 
the robotic servicer and the captured satellite. These estimates 
render a system’s free-floating dynamics fully identified and 
applicable to model-based control. The importance of 
identifying the AAM for control is shown by an example. 

II. DYNAMICS OF FREE-FLOATING SPACE MANIPULATORS  
In this section, the dynamics of a free-floating robotic 
servicer (FFRS), which has captured a satellite with initial 
AAM on its RWs, is presented briefly. Figure 2 shows a 
FFRS consisting of a spacecraft (SC) equipped with Nrs,rw 
RWs, and with n manipulators or appendages with revolute 
joints, in an open chain kinematic configuration, which has 
captured a satellite equipped with Ns,rw RWs. The captured 
satellite is considered as part of the servicer’s last link. Also, 
rigid grasp is assumed; orbital disturbances are neglected. 

The m-th manipulator has Nm links, and the sum of all 
manipulator links K is equal to 

 K = Nm
m=1

n

∑  (1) 

A frame 0{x0, y0, z0} is attached at the SC center of mass 
(CM). A SC feature point S is tracked, and an observation 
frame b{xb, yb, zb} is attached to it, with orientation that of 
frame 0. Moreover, a frame rs,rw,i{xrs,rw,i, yrs,rw,i, zrs,rw,i} is 
attached to robotic servicer’s ith RW and a frame s,rw,i{xs,rw,i, 
ys,rw,i, zs,rw,i} is attached to captured satellite’s ith RW. Frame 
i{X, Y, Z} is the inertial frame.  

In free-floating mode, the system center of mass (CM) 
remains fixed in inertial space. Thus, the origin of the inertial 
frame can be chosen to be at the system CM. In free-floating 
operation, both the servicer’s thrusters and RWs are off.  

A left superscript on (•) indicates the frame in which (•) is 
expressed. No left superscript is used for the inertial frame. 

A. System Angular Momentum 
Due to the importance of the RW angular momentum, the 
system angular momentum with respect to the system CM, 
hcm, is written as the sum of the robotic servicer’s angular 
momentum hrs, its RWs angular momentum due to their 
relative motion with respect to the servicer SC hrs,rw/sc, and 
the AAM of the captured satellite’s RWs due to their relative 
motion with respect to the servicer last link hs,rw/N 

y0

x0

z0

r1
l1

r2
l2

r3l3
Inertial Frame i

X

Y
Z

(m)

(m)

r0
(m)

(m)

(m)
(m)

(m)

lk
(m)

(m)

rN
(m)

Nl

  
Figure 2. An uncooperative satellite captured by a robotic servicer. 

   hcm =hrs + hrs,rw/sc + hs,rw/N = const.  (2) 

The robotic servicer angular momentum hrs is [20]: 
   hrs =R0 (

0D 0ω 0 +
0Dq !q )   (3) 

where 0ω0 is the SC angular velocity and the column vector 

 !q  is: 

 
   
!q= [ !q(1)T " !q(m)T " !q(n)T ]T  (4) 

where the Nmx1 column-vector   !q
(m)  represents the joint 

rates vector of the m-th manipulator. The matrix R0 is the 
rotation matrix between the 0 frame and the inertial frame, 
expressed as a function of the Euler parameters ε, η. The 
inertia-type matrices 0D, 0Dq are given in [18] and they 
include the inertial parameters of the RWs as part of the SC 
inertial parameters. 

The angular momentum of the robotic servicer’s RWs due 
to their relative motion with respect to the servicer SC, 
hrs,rw/sc, is given by: 
  hrs,rw/sc = R0

0hrs,rw/sc = R0
0Drs,rw !qrs,rw = Drs,rw !qrs,rw  (5) 

where  !qrs,rw  is the column vector of the robotic servicer’s 
RW relative angular rates, and the inertia-type matrix 0Drs,rw  
is given by: 

 
 

0Drs,rw = 0Drs,rw,1 … 0Drs,rw,Nrs,rw
⎡
⎣⎢

⎤
⎦⎥

 (6) 

where 

1866



  

  
0Drs,rw,i =

0Rrs,rw,i
rs,rw,iIrs,rw,i

rs,rw,i ẑ rs,rw,i i = 1,…,N rs,rw   (7) 

and rs,rw,iIrs,rw,i is the robotic servicer’s ith RW’s moment of 
inertia, 0Rrs,rw,i is the rotation matrix between the rs,rw,i 
frame and the 0 frame and thus it is constant over time, and 
rs,rw,i ẑ rs,rw,i  is the unit vector along the robotic servicer’s ith 
RW rotation axis. 

The AAM of the captured satellite’s RWs due to their 
relative motion with respect to the servicer last link hs,rw/N is 
given by: 
   hs,rw/N = R0

0RN
Nhs,rw/N = R0

0RN
NDs,rw !qs,rw  (8) 

where 0RN is the rotation matrix between the body-fixed (N) 
frame of link N and the 0 frame,  !qs,rw  is the column vector 
of the captured satellite’s RW relative angular rates, and the 
inertia-type matrix NDs,rw  is given by: 

 
 

NDs,rw = NDs,rw,1 … NDs,rw,Ns,rw
⎡
⎣⎢

⎤
⎦⎥

 (9) 

where 
  

NDs,rw,i =
NRs,rw,i

s,rw,iIs,rw,i
s,rw,i ẑs,rw,i i = 1,…,Ns,rw  (10) 

where s,rw,iIs,rw,i is the captured satellite’s ith RW’s moment of 
inertia, 0Rs,rw,i is the rotation matrix between the s,rw,i frame 
and the 0 frame and thus it is constant over time, and 
s,rw,i ẑs,rw,i  is the unit vector along the captured satellite’s ith 
RW rotation axis. The captured satellite’s RWs joint rates 
remain constant as no torques are applied to the RWs of an 
uncooperative satellite. 

An important remark here is that hcm remains constant 
when the system is in free-floating mode, i.e no externals 
forces and moments act on it. Moreover, 0hrs,rw/sc is known 
since the robotic servicer’s RWs inertias are assumed to be 
known, and remains constant since they are not actuated. 
Therefore, solving for hcm yields: 
  hrs = −R0

0hrs,rw/sc −R0
0RN

Nhs,rw/N + hcm  (11) 

By differentiating (11), the system dynamic equations are 
obtained: 
   

0D(q) 0 !ω 0 +
0Dq (q)!!q+c1(

0ω 0 ,q, !q)=R0
Tgcm  (12) 

where  

  gcm = −R0
0ω 0

× 0hrs,rw/sc −R0
0RN

NωN
× Nhs,rw/N  (13) 

and (*)× is the cross-product matrix of vector (*).  
The angular velocity of link N NωN  is given by [20]: 

 
 

NωN = R0
T 0RN

TωN = R0
T 0RN

TR0
0ω 0 +

0Fk !q
k=1

N

∑⎛
⎝⎜

⎞
⎠⎟

 (14) 

where  

 
 
0Fk = [

0R1
1 ẑ1 … 0Rk

k ẑk 03×(K−k ) ]  (15) 

where 0Rk is the rotation matrix between the body-fixed (k) 
frame of link k and the 0 frame and k ẑk  is the unit vector 
along the robotic servicer’s kth joint’s rotation axis. 

The left side of the equations of motion (12) for the 
servicer is derived in [21]; however in [21] there are no 
rotating RWs and therefore no disturbances act on the SC or 

the last link, i.e. gcm = 0. The reduced equations of motion of 
the free-floating servicer are [21]: 
   

0Dq
T(q) 0 !ω 0 +

0Dqq (q) !!q+ c2 (
0ω 0 ,q, !q)= τ  (16) 

where the inertia-type matrices 0D, 0Dq, 0Dqq are as in [18] 
and the column vectors c1, c2 are as in [22], and τ is the 
vector of the manipulator joint torques. 

Since 0D is always invertible, solving (12) for  
0 !ω 0  and 

substituting in (16) yields: 

   
0Dqq!!q−

0Dq
T 0D-1 0Dq!!q+ c2 -

0Dq
T 0D−1 c1 − R0

Tgcm( ) = τ  (17) 

or, equivalently 

 
   
H q( )!!q+ c 0ω 0,q, !q,ε,η,

0hrs,rw/sc ,
Nhs,rw/N( ) = τ  (18) 

where 

   H q( ) = 0Dqq −
0Dq

T 0D−1 0Dq  (19) 

 
  
c = c2 −

0Dq
T 0D−1 c1 − R0

Tgcm( )  (20) 

III. PARAMETER IDENTIFICATION METHOD 
To use (2) for parameter identification, the robotic servicer’s 
angular momentum hrs must be expressed linearly with 
respect to a parameter vector π. This procedure is described 
in detail in [18]. Thus, the servicer angular momentum is 
written as: 
   hrs = Y !q,q,ω 0 ,ε,η( )π  (21) 

where the 3×k matrix Y is the regressor matrix and k is the 
dimension of π. The key feature of this regressor is that in 
contrast to other methods, it does not require noisy 
acceleration measurements. Hence, the system angular 
momentum hcm (see Eq. (2)) can be written as: 
  hcm = Yπ+R0

0hrs,rw/sc +R0
0RN

Nhs,rw/N  (22) 

To solve (22) for π and the AAM of the captured satellite’s 
RWs  

Nhs,rw/N , hcm must be known. Since hcm remains 
constant: 
  hcm = hcm( )in

 (23) 

were (*)in is the initial value of (*). Hence, applying (2) 
yields 
 

 
hcm( )in

= hrs( )in
+ hrs,rw/sc( )in

+ hs,rw/N( )in
 (24) 

and subsequently 
 
 
hcm( )in

= Yinπ + R0( )in
0hrs,rw/sc + R0( )in

NR0( )in
Nhs,rw/N  (25) 

where 0hrs,rw/sc is also constant since no RW torques are 
applied during the identification. Thus, (23) and (25) provide 
the required hcm. 

Assuming N measurements of the variables ( !q,q,ω 0 ), and 
ε, η are obtained at time instants t1, t2, …, tN during the task, 
Eqs. (22)-(25) result in the following system of equations 

 

  

b̂ =

b(t1)
b(t2 )
!

b(tN )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

A(t1)
A(t2 )
!

A(tN )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

x = Âx  (26) 
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where 

 A(t) = R0 (t)
0RN(t)− R0( )in 0RN( )in Y(t)−Yin

⎡
⎣⎢

⎤
⎦⎥

  (27) 

 
 
b(t) = R0( )in −R0 (t)( ) 0hrs,rw/sc  (28) 

 

 

x =
Nhs,rw/N

π

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
(3+k )x1

  (29) 

In case the robotic servicer is initially at rest and only its 
RWs have accumulated angular momentum, a realistic 
scenario after a stabilization procedure, (26) still holds with 
(Y)in=0. In case both robotic servicer and its RWs are initially 
at rest, hence (hcm)in=( hs,rw/N)in, angular momentum must be 
introduced in the RWs. This can be implemented by setting 
desired RWs joint rates 

 
!qrs,rw( )des and employing a velocity 

controller. After the torque application of the SC RWs, they 
are turned off left to spin with the desired accumulated 
angular momentum: 
 

 
0hrs,rw/sc( )des = 0Drs,rw !qrs,rw( )des  (30) 

In this case, (27) becomes: 

 A(t) = R0 (t)
0RN(t)− R0( )in 0RN( )in Y(t)⎡

⎣⎢
⎤
⎦⎥

 (31) 

 b(t) = −R0 (t)
0hrs,rw/sc( )des  (32) 

The estimated regressor matrix Â  must be of full rank for 
(26) to be solved for x, which in turn requires π to be a 
minimal parameter set, obtained as in [18]. To ensure that Â  
is of full rank and with a small condition number, the joint 
exciting trajectories are based on truncated Fourier series 
with a fifth-order polynomial also added, [18] 

 qi
m( ) = al

i (m )

ω f l
sin ω f lt( )− bl

i (m )

ω f l
cos ω f lt( )

l=1

N f

∑ + cj
i (m ) t j

j=0

5

∑  (33) 

where m = 1,...n , i=1,...,Nm , N f  is the number of the 
harmonics employed, ω f =2π t f  with t f  the motion 
duration, and al

i (m )  and bl
i (m )  the free coefficients obtained 

by minimizing the condition number of the regressor matrix.  
Measurement of robotic servicer’s RWs joint rates is 

required also. Measurements of RWs joint rates during the 
joint trajectories are not required since they remain constant. 
Nevertheless, all required quantities can be obtained directly 
or indirectly by available sensors. The required joint angles q 
are obtained directly by the joint motor encoders, while their 
differentiation provides the joint rates  !q . RW rates   !qrs,rw  are 
obtained by differentiating qrs,rw, obtained directly from the 
corresponding encoders. The orientation of the servicer base, 
and thus the corresponding Euler parameters ε, η, are 
obtained directly using star or sun trackers, while ω0 is 
provided by on board IMUs. 

The system of equations given by (26), is over-determined 
and either recursive or non-recursive methods (e.g. least 
squares) can be used for solving it (not in the scope of this 
work). 

IV.  SIMULATION RESULTS 

A. Identification Results 
The proposed identification method is illustrated by a spatial 
robotic servicer with a 3-DOF manipulator. The kinematic 
and dynamic parameters of the servicer are given in Table I. 
The joint-space minimal set of parameters of the simulated 
servicer, i.e. the elements of vector π, are as in [18].  

The robotic servicer’s RWs angular momentum due to 
their relative motion with respect to the servicer SC is 0hrs,rw/sc 
= [25 27 28]T Nms and the AAM of the captured satellite’s 
RWs due to their relative motion with respect to the servicer 
last link is Nhs,rw/N = [42 49 41]T Nms. The initial base attitude 
is [εin

Τ, ηin]T = [0.2 0.1 0.3 0.927]Τ. The initial joint angles are 
qin = [0 0 0]Τ rad. The SC initial angular velocity is 0ω0 = 
[0.1 0.12 0.08]Τ rad/s. The joints are initially at rest.  

TABLE I. PARAMETERS OF THE SYSTEM UNDER STUDY. 

i li 
(m) 

ri 
(m) 

mi 
(kg) 

Ixx 
(kg m2) 

Iyy 
(kg m2) 

Izz 
(kg m2) 

0 - [0.5,0.5,1]T 2000 1500 1500 1500 

1 0.25 0.25 50 0.1 11 11 

2 1.0 1.0 100 0.1 33 33 

3 1.0 1.0 500 400 300 350 

 
In this simulation, tf =20 s and Nf =3. The desired initial 

and final conditions correspond to zero joint angles, rates and 
accelerations. The desired joint trajectory is described by the 
functions    qd (t), !qd (t), !!qd (t)  based on (33). The coefficients 
al
i  and bl

i  of the optimized exciting joint trajectories for 
minimum condition number of the regressor matrix, are 
derived for this simulation study and presented in Table II. 
The number of measurements is N=1000 and the sampling 
rate is 50 ms. 

TABLE II. OPTIMIZED TRAJECTORY COEFFICIENTS. 

a1
1  0.1234 a2

1  -0.1867 a3
1  0.0005 

a1
2  0.1306 a2

2  -0.1222 a3
2  -0.3760 

a1
3  0.15486 a2

3  -0.1269 a3
3  0.4030 

b1
1  0.1600 b2

1  -0.3808 b3
1  0.0513 

b1
2  -0.1179 b2

2  0.1787 b3
2  -0.1333 

b1
3  -0.0458 b2

3  0.1346 b3
3  0.1389 

 
In Figure 3, the joint torques required for the joint 

trajectories (a) and the SC angular velocity, (b), respectively, 
during the identification, are shown. 

Using a least squares solution of (26), the parameter vector 
x is identified without noise and in the presence of noise. The 
relative errors (RE) of the identified parameters are shown in 
TABLE III. The noise models used are described in detail in 
[18]. Hence, the proposed method estimates both the AAM of 
the captured satellite RWs and the inertial parameters of the 
entire system consisting of the robotic servicer and the 
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captured satellite, practically exactly. These parameters are 
enough to reconstruct the system’s free-floating dynamics. 
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Figure 3. Manipulator joint torques (a) and SC angular velocity (b). 

TABLE III. SIMULATION IDENTIFICATION OF PARAMETER VECTOR X.  
 RE (%) RE (%)+noise  RE (%) RE (%)+noise 

x1 6e-11 0.16 x13 3e-11 0.14 

x2 -4e-10 -0.96 x14 7e-11 0.14 

x3 -2e-10 -0.75 x15 7e-11 0.17 

x4 6e-11 0.17 x16 1e-10 0.17 

x5 1e-10 0.12 x17 -9e-12 0.09 

x6 6e-11 0.16 x18 6e-11 0.13 

x7 4e-11 0.10 x18 3e-10 0.46 

x8 6e-11 0.16 x19 6e-11 0.17 

x9 6e-11 0.17 x20 7e-11 0.17 

x10 6e-11 0.17 x21 6e-11 0.16 

x12 4e-11 0.15 x21 6e-11 0.16 

B. Importance of RWs AAM Knowledge for Control 
To demonstrate the importance of identifying the captured 
satellite RWs AAM, two controllers are used for the same 
desired joint trajectory and with the same gains; the first 
controller (CWK) has knowledge of the AAM of the 
captured satellite RWs while the second controller (CNK) 
does not. The desired joint trajectory are described by the 
functions    qd (t), !qd (t), !!qd (t) based on (33). The coefficients 
al
i  and bl

i  are presented in Table II. 
The model-based CWK law is given by: 

 
  
τ = H !!qd +Kd !e +Kpe( ) + c   (34) 

where e is the joint position error, and vector c is given by 
(20), and hence it contains both terms due to the servicer’s 
RWs relative angular momentum with respect to the SC, i.e. 
the term  −R0

0ω 0
× 0hrs,rw/sc in gcm, and to the AAM of the 

captured satellite’s RWs, i.e. the term  −R0
0RN

NωN
× Nhs,rw/N  

in gcm. 
Substituting c (see (20)) and gcm (see (13)), (34) can be 

written further: 

 
   

τ = H !!qd +Kd !e +Kpe( ) + c2 −

− 0Dq
T 0D−1 c1 +

0ω 0
× 0hrs,rw/sc +

0RN
NωN

× Nhs,rw/N( )
  (35) 

The application of (34) on the system equations of motion 

(18) results in the following error dynamics,  
  

!!e +Kd !e +Kpe = 0   (36) 

in which the selection of appropriate positive definite gain 
matrices Kp, Kd ensures the stability of the dynamics and 
zero steady state joint error in desired time. 

On the contrary, the model-based CNK law is given by: 

 
   

τ = H q( ) !!qd +Kd !e +Kpe( )
+ c2 −

0Dq
T 0D−1 c1 +

0ω 0
× 0hrs,rw/sc( )

  (37) 

Note that this law contains only the term caused by 
servicer’s RWs relative angular momentum with respect to 
the SC, i.e. the term  −R0

0ω 0
× 0hrs,rw/sc in gcm, and not the term 

caused by the AAM of the captured satellite’s RWs, i.e. the 
term  −R0

0RN
NωN

× Nhs,rw/N  in gcm. 
The application of (37) on the system equations of motion 

(18) results in the following error dynamics:  

   !!e +Kd !e +Kpe = −H−1( 0Dq
T 0D−1 0RN

NωN
× Nhs,rw/N ) = a (38) 

The RHS of (38), i.e. a, is function of  q, !q,ε,η,
0ω 0,

Nhs,rw/N  
since matrices H, 0Dq,

0D, 0RN  are functions of q and vector 
NωN  (see (14)) is function of  q, !q,ε,η,

0ω 0 . Hence, 
applying this control law and assuming existence of a steady 
state error ess ( q = qss , !q = 0, !e = 0,!!e = 0 ) yields the 
following:  

 ess = Kp
−1a(qss ,ε,η,

0ω 0,
Nhs,rw/N )  (39) 

However, ess is a function of ε,η  and 0ω 0  which vary with 
time. Hence, in this case the error cannot converge to zero. 

Figures 4 and 5 show the joint torques (a) and the SC 
angular velocity (b) for the CWK and CNK, respectively. 
Observing Figure 6 and comparing the absolute errors for the 
CWK (a) and CNK (b) one can see that knowing the captured 
satellite RWs AAM results in significant improvement on the 
joint trajectories errors. In practice, errors will be larger than 
those presented here due to sensor noise and unmodelled 
uncertainties; however, the identification still will be 
necessary as it results in vastly improved trajectory tracking. 

As shown in Figure 6, and in contrast to CWK, the CNK 
maximum absolute joint position error is almost 8 degrees, 
which corresponds in 90 cm of maximum end-effector 
position error, see Figure 7; this is unacceptable for servicing 
missions. 
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Figure 4. (a) Joint torques and (b) SC angular velocity with CWK. 
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Figure 5. (a) Joint torques and (b) SC angular velocity CNK. 
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Figure 6. Absolute joint position errors due to the CWK (a) and due to the 

CNK (b). 
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Figure 7. Absolute end-effector position error due to the CWK (a) and due 

to the CNK (b). 

V. CONCLUSION 
In this paper, an identification method is developed which, 
in contrast to other methods which treat captured satellite’s 
RWs as non-spinning, provides simultaneously accurate 
estimates of the AAM of the captured satellite’s RWs and of 
the inertial parameters of the entire system consisting of the 
robotic servicer and the captured satellite. These estimates 
render system free-floating dynamics fully identified and 
applicable to advanced model-based control strategies during 
on-orbit servicing tasks. Three-dimensional simulations 
demonstrate the method’s validity. To show the necessity of 
the proposed method, the manipulator tracking performance 
using a model-based controller with and without knowledge 
of AAM of the captured satellite’s RWs was evaluated. 
Results show that identification of the AAM of the captured 
satellite allows vastly improved trajectory tracking. 
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