
  

  

Abstract. Space manipulator systems in orbit are subject to 
link flexibilities since they are designed to be lightweight and 
long reaching. Often, their joints are driven by harmonic gear-
motor units, which introduce joint flexibility. Both of these types 
of flexibility may cause structural vibrations. To improve 
endpoint tracking, advanced control strategies that benefit from 
the knowledge of system parameters, including those describing 
link and joint flexibilities, are required. In this paper, first, the 
equations of motion of space manipulator systems whose 
manipulators are subject to both link and joint flexibilities are 
derived. Then, a parameter estimation method is developed, 
based on the energy balance during the motion of a flexible 
space manipulator. The method estimates all system parameters 
including those that describe both link and joint flexibilities and 
can reconstruct the system full dynamics required for the 
application of advanced control strategies. The method, 
developed for spatial systems, is illustrated by a planar example. 

I. INTRODUCTION 

Α challenge in the design of space robotic manipulators, see 
Fig. 1, is to use light materials, suitable for typical on orbit 
tasks. Lightweight structures are expected to improve their 
payload-to-arm mass ratio. A drawback of such lightweight 
space manipulators is the increased link structural flexibility. 
In addition to these flexibilities, space manipulators also are 
subject to joint flexibilities. Such flexibilities arise when 
motion transmission elements such as harmonic drives, 
transmission belts and long shafts are used. Both of these 
types of flexibilities cause vibrations, which are profound 
when manipulating large payloads; if neglected in the 
control design, they may even result in instabilities [1]. 
Therefore, advanced control strategies are required, which 
however, need knowledge of system parameters. 

To estimate the flexible joint parameters of a space 
manipulator, the development of a simplified coplanar model 
of the flexible joint was proposed, [2]. The joint stiffness and 
damping were found by applying an impact force on the 
system and studying the resulting response. More recently, an 
estimation method based on the system energy balance has 
been developed, [3]. This method can be used for estimating 
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the parameters of flexible-joint free-floating space 
manipulator systems (SMS), since it tolerates measurement 
noise and yields all parameters required for the system 
dynamics and the design of advanced controllers for space 
applications such as trajectory following, [1]. However, link 
flexibilities have not been considered in these studies. 

 
Fig. 1. A flexible space manipulator system. 

Regarding the estimation of flexible link parameters, in the 
literature, fixed-base manipulators are mostly considered. A 
fast online closed-loop continuous-time estimator of the 
natural frequency of a single flexible-link has been proposed, 
[4]. The proposed methodology requires the measurements of 
the angular position of the motor and the coupling torque. To 
estimate physical parameters such as Young modulus and the 
mass or the length of the segments of a fixed-base flexible 
link manipulator, a linear parameter-varying descriptor state-
space structure of the manipulator has been developed in [5]. 
To tolerate measurement noise, a method based on energy 
balance has been developed to estimate the physical 
parameters of a flexible link manipulator, [6]. An 
experimental procedure has been presented that yields the 
system stiffness, mass, and damping parameters of an 
industrial manipulator based on a modal analysis concept, for 
use in an accurate model for the control system [7]. The 
observer/Kalman filter identification and the eigensystem 
realization algorithm have been applied to identify the 
structural modal parameters of solar panels mounted on 
satellites, [8]. In our previous work [3] all inertial and flexible 
joint parameters of a SMS were estimated. Although this is 
an important realization, additional parameters are required to 
describe the effects of flexible links. However, parameter 
estimation for SMSs, subject to both link and joint 
flexibilities, is a challenging problem. To the best of our 
knowledge, no parameter estimation study considering both 
link and joint flexibilities of SMSs exists. 

In this paper, the energy balance method is applied in order 
to estimate link flexibility parameters in addition to all 
system inertial and joint flexibility parameters of a SMS. 
These parameters can reconstruct the system full dynamics as 
required by advanced control strategies. The proposed 
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method is tolerant to noise since it does not require 
acceleration measurements. The method, developed for 
spatial systems, is illustrated by a planar example. 

II. FLEXIBLE SPACE MANIPULATOR SYSTEMS MODELING 
An on-orbit SMS can be considered as a central rigid body 
(spacecraft) with an N-link manipulator with flexible joints 
and links mounted on it.  

A. Flexible Joint Model 
Each joint is actuated with a torque τ applied by a DC 
brushless motor equipped with a harmonic drive (reducer). 
Due to the use of these drives, the joints are considered to be 
flexible. To derive the flexible joint model, the following 
assumptions are made. First, joint deflections are considered 
small enough so that they can be described by a torsion 
spring of constant stiffness k and by a damping element of 
constant damping b, see Fig. 2. In the presence of reduction 
gears of reduction ratio n, the joint deflection is lumped after 
the gearbox, while the actuator rotor is modeled as a rigid 
body, with its Center of Mass (CM) on the rotation axis. The 
stator of joint’s i motor is mounted on link i-1 while its rotor 
moves link i with its rotation axis aligned with the i-th joint.  
To derive the dynamic model of a flexible joint, both the 
link-side and gear motor-side angular position q and θm, 
respectively, are required; see Fig. 2, [1]. 

 
Fig. 2. Physical model of a flexible joint and a flexible link. 

B. Flexible Link Model 
To describe the flexible link deformation, each link is 
modeled as a Euler-Bernoulli beam with uniform density ρ, 
uniform cross-section A, flexural rigidity EI, torsional 
rigidity GIp and constant link length L, see Fig. 2. All 
sections experience a linear and angular deformation in three 
axes, modeled by traction, bending and torsion, [9]. 

In deriving the flexible link model, the Finite Element 
Method (FEM) is employed. In this method, the continuous 
flexible links are divided in a number of finite elements. The 
displacement at some link point is expressed in terms of 
nodal displacements [10]. Polynomial interpolation functions 
are defined in each element.  

Here, it is considered that each element has two nodes. The 
local nodal displacements of element j of link i are 

  (1) 

where and  (k=1,2) are the local translations and 
rotations of node k of element j of link i along and about the 
xi, yi, zi axes, see Fig. 4, respectively 

   (2) 

To derive the energy equation of flexible links in Section IV. 
A. (see Eq. (11)), the displacement fields along the beam 
elements of links must be defined. The  and 

 are the displacement fields due to bending along 
the yi and zi axes, respectively,  and  are 
the corresponding slopes,  and  are the 
displacement fields due to traction and torsion respectively, 
along and about the xi axis. Cubic polynomials are used to 
describe  and , while linear interpolations 
are used for both  and , [11].  

The coefficients of the polynomials associated with the 
description of the displacement fields along the j-th element 
of link i are obtained by applying the displacement fields, at 
nodal points, i.e. =0 and = , where  is the length 
of the j-th element of link i. The displacement fields can be 
written in the following matrix form [11] 

   (3) 

where is the shape function associated with the j-th 
element of link i. 

Eq. (3) is expressed with respect to the abscissa  of the 
local frame of the j-th element of link i. However, to derive 
the kinetic energy of the flexible link in Section IV. A, Eq. 
(3) must be expressed with respect to the abscissa xi of the 
body-fixed frame {i} of link i, see Fig. 4. Therefore 

   (4) 

III. NUMBER OF NODES (MARKERS) 
To estimate the parameters of a SMS with flexible joints and 
rigid links, only two encoders at each joint are required, 
measuring the link and gear motor angular positions q and 
θm, respectively, see Fig. 2, [3]. However, when also 
considering the manipulator link flexibility, k artificial 
markers [12], must be attached on link i whose number must 
be adequate to “observe” the elastic motion of the link. 

In this paper, the required number of markers per unit 
length on link i, i.e. the required spatial sampling frequency 
fs,i of link i, is based on the application of Nyquist’s theorem 
to the maximum spatial frequency fmax,i arising from the 
dominant eigenmodes of link i 

   (5) 

Hence, the required number of markers  for link i is  

   (6) 

where Li is the length of link i. 
The eigenmodes of each link are obtained using the Euler 

Bernoulli equations and appropriate boundary conditions, [9]-
[11]. In the scope of a multi-link manipulator, the clamped-
loaded boundary conditions are employed. The clamped 
assumption is made because the model is derived in the local 
frame, in which the segment base is always fixed. 
Furthermore, the loaded assumption at a segment’s endpoint 
is due to the inertia and mass of the next segments. The 
detailed procedure can be found in [9]-[11]. 
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Since each link has its base fixed, a marker at this end is 
not required. Markers placement is assumed to be uniform, 
i.e. the markers are placed at equal intervals. However, 
extensive literature exists for sensor placement methods that 
can be used with the proposed identification method, too. 
Finally, the last marker is mounted at the link’s endpoint. 

Since the link is divided into beam elements, the total 
nodes and thus, the total elements of each link must be 
determined. In this work, a node is placed at every point with 
a marker. An additional node is required at the base of the 
link as it is the first node of the first element. Hence, the 
number of link i nodes NN,i is equal to the number of markers 
Ns,i required (see Eq. (6)) plus one, and thus, the number of 
link i elements Nel,i will be equal to the number of markers 
required. Fig. 3 shows the number of nodes and elements of a 
link for 3 required markers. 

 
Fig. 3. Number of nodes and elements in the case of 3 required markers. 

IV. ENERGY AND DYNAMICS OF FLEXIBLE SPACE 
MANIPULATOR SYSTEMS  

The proposed estimation method is based on the application 
of the energy balance during the motion of the space 
manipulator. To derive the system energy, the kinetic and 
the potential energies of the system have to be computed. 

A. Energy of the Flexible Links 
The kinetic energy  of j-th element of flexible link i 
consists of the kinetic energy due to the rigid motion induced 
by motor i and the kinetic energy due to the elastic 
deformations and is given by 

  (7) 

where ρi, Ai are link’s i density and cross-section 
respectively, and  is the inertial position vector of an 
arbitrary point along the j-th element of link i, see Fig. 4, 
given by 

  (8) 

and 
  (9) 

where 
  (10) 

where  is the position vector of the spacecraft CM, see 
Fig. 4,  is the position vector from the spacecraft CM to 
the first joint expressed in the spacecraft’s frame {0}, and T0 
is the rotation matrix between frame {0} and the inertial 

frame. The position vector  of this point with respect to 
abscissa xi of body-fixed frame {i}, is defined by 

   (11) 

and the cumulative transformation Ti, i=1,..,N, between the 
body-fixed frame {i} and the inertial frame, is given by 

  (12) 
where Ai (qi) is the joint rotation matrix for joint i, qi is the 
joint angle after the gearbox, see Fig. 2, and Ei is the flexible 
link transformation matrix for link i, given by [13] 

  (13) 

where subscript d indicates the last element of link i, and 
, and  are the xi, yi, zi rotation 

components of the last element of link i respectively, 
evaluated at length Li of link i. 

 
Fig. 4. Position vectors for a flexible link SMS. 

The potential energy  of the j-th element of the 
flexible link i is the sum of the torsional strain energy, the 
longitudinal strain energy and the transverse strain energy 

 (14) 

where Ei, is the link Young’s modulus, and  
and  are the two flexural and the torsional rigidities of 
link i, respectively. 

B. Energy of the Spacecraft 
The kinetic energy K0 of the rigid spacecraft is given by 

  (15) 

where  is the inertial linear velocity of the spacecraft 
CM, m0 is its mass,  is its moment of inertia with respect 
to the spacecraft frame {0}, and ω0 is its angular velocity 
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expressed in the inertial frame. A spacecraft feature point S 
is tracked, and an observation frame {b} is attached to it, 
with orientation the same to that of frame {0}, see Fig. 4. 

The velocity,  can be calculated according to 
   (16) 

where  is the inertial velocity of feature point S,  is 
the vector from the first joint to point S, ε, η are the Euler 
parameters which describe the spacecraft attitude, and  
denotes the cross product matrix of vector . The velocity 

 and the Euler parameters ε, η are obtained from 
measurements. Vector  is known since the location of 
point S is known and thus, its distance from the first joint is 
known also. However, the vector  is considered as 
unknown, since the spacecraft CM location is considered as 
an unknown to be estimated by the developed method. 

C. Energy of the Flexible Joints 
First, the kinetic energy of motor i, see Fig. 2, is given by 

   (17) 

where  is the total mass of the joint’s i motor and is the 
sum of its rotor and stator mass, is the joint’s i stator 
moment of inertia about its local frame {si} and expressed 
with respect to this frame, and is the joint’s i rotor 
moment of inertia about its local frame {ri} and expressed 
with respect to this frame.  

The inertial velocity  of the joint’s i motor is 

  (18) 

The angular velocity  of joint’s i stator is 

   (19) 

and the angular velocity  of joint’s i rotor is 

   (20) 

where  is the unit vector in the direction of joint’s i rotor 
rotation axis and 

   (21) 

where  is the unit vector in the direction of joint’s i axis 
expressed in the frame {i}, and 

   (22) 

The potential energy due to joint flexibilities and the 
dissipative loses caused by the damping elements at the 
joints are given, respectively, by 

  (23) 

and 

  (24) 

where K=diag(k1,k2,…kN), B=diag(b1,b2,…bN) and the 

column vectors q and θm define the link and the gear 
reduction angular positions, respectively 

  (25) 

where qi and angles are defined in Fig. 2. 

D. Dynamics of Flexible Space Manipulator Systems 
The system equations of motion are derived using the 
Lagrangian approach. The system Lagrangian is defined as 
  (26) 

and the system total kinetic energy Ksystem and the system 
total dynamic energy Usysten are given by 

  (27) 

  (28) 

where Nel,i is the number of link’s i elements. 
The vector of generalized speeds is defined as 

  (29) 

where qf is the vector that consists of the global nodal 
displacements of all the discretized links and is defined as 

  (30) 

where  and 

   (31) 

where the vectors  and  that consists of the 
translations and rotations of node l of link i along and about 
x(i), y(i), z(i) axes respectively, are 

  (32) 

Using a Lagrangian approach, the equations of motion are 

  (33) 

  (34) 

  (35) 

  (36) 

  (37) 

where Ddiss is a term due to joint damping, given by 
  (38) 

Also, , with  the ith gear ratio, and τ 
is the motor torque column vector given by 
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   (39) 

where τi is the ith motor torque. 
The equations of motion can be written in matrix form as 

  (40) 
where H is the system inertia matrix, the vector C contains 
terms due to Coriolis and centrifugal forces, and terms due 
to the presence of flexibilities. The vector of generalized 
forces Q is defined as 
  (41) 

V. PARAMETER ESTIMATION USING THE ENERGY BALANCE 
In this section, an estimation method based on the system 
energy balance is developed. This method does not require 
acceleration measurements, which contain substantial noise. 
The method can estimate all parameters required for the 
system dynamics including those that describe both the joint 
and link flexibilities. 

In free-floating mode, only manipulator joints are active. 
The energy provided by the joint motors is 

   (42) 

The energy generated by the motors is balanced by the 
system kinetic and potential energy and the dissipative loses. 
Therefore, the energy balance is written as 

   (43) 

It can be shown that Eq. (43) can be written in a linear 
form with respect to the unknown parameters 

  (44) 

where Y is the regressor matrix and π is the minimal vector 
of parameters to be estimated which contains all necessary 
parameters to define the full dynamics of a space 
manipulator with flexible joints and flexible links. Note that 
Y is not a function of accelerations; only readily available 
positions and velocities measurements are needed to 
compute it. If nm measurements of  

 are obtained at given time instants 
 along an appropriate trajectory, then the 

following system of equations results 

  (45) 

To solve (45) for π,  must be of full rank. To avoid ill 
conditioning of , the number of measurements should be 
large enough. The vector of the estimated parameters π can 
be computed by a least-squares technique. All required 
quantities can be obtained directly or indirectly using 
available sensors. The required joint angles q can be 
obtained directly by link encoders, and θm by joint encoders, 
while their numerical differentiation provides the rates  

and . The orientation of the spacecraft, and thus, the 
corresponding ε, η, are obtained by Star or Sun Trackers, 
while ω0 is obtained directly from Inertial Measurement 
Units (IMUs). The spacecraft linear velocity  can be 
obtained by fusing GNSS, inertial, and magnetometer data, 
[14]. The elastic displacements qf  can be measured by link 
visual sensors, and their rates obtained by differentiation. 

VI. SIMULATION RESULTS 
The planar space manipulator with two flexible joints and 
two flexible links shown in Fig. 5 is employed to illustrate 
the proposed method. The spacecraft parameters are shown 
in Table I. The motor inertial properties, the properties of the 
flexible drive as well as the properties of the flexible links 
are presented in Table II and Table III, respectively. The 
position vector of S from joint 1 is . 

 
Fig. 5. The planar flexible space manipulator.  

TABLE I. PARAMETERS OF THE SPACECRAFT. 

Spacecraft m0 (kg) r0 (m) I0,z (kg m2) 
 400 [1 1]T 65 

TABLE II. PARAMETERS OF THE MOTORS AND THE DRIVE MECHANISMS. 

Motor ni 
ki 

(Nm/rad) 
bi 

(Nms/rad) 
 

(kg) 
 

(kg m2) 

 

(kg m2) 

1 50 1000 75.85 3 0.0075 0.0075 
2 50 1000 75.85 3 0.0075 0.0075 

TABLE III. PARAMETERS OF THE FLEXIBLE LINKS. 

Link ρi Ai (kg/m) (EIz)i  (Nm2) Ii (kg m2) Li  (m) 
1 31.42 1768.8 0.1885 1.2 
2 31.42 597.87 0.1885 1.2 

In this example, bending is considered. It is assumed that 
the first two eigenmodes sufficiently describe the dominant 
behavior of the links. The maximum spatial frequencies 
arising from the dominant eigenmodes of the first and second 
links are fmax,1=1.39 m-1 and fmax,2=1.67 m-1, respectively. 
Based on Nyquist’s theorem and according to Eq. (6), the 
markers for these links are Ns,1 = 2 and Ns,2 = 2, respectively. 

The commanded exciting joint trajectories , i=1,2 are 
  (46) 

The trajectories parameters where chosen as  

τ= [τ1 ! τ N ]
T
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rad/s, C1=1.3 rad and C2=1 rad. The motion duration is tf 

=10 s. A PD controller is applied to the system with gains 
given by Kp=diag(500,500) and KD=diag(100,100). The 
time histories of the joint angles, rates and torques are shown 
in Fig. 6. The number of measurements taken is nm =100 and 
the estimated parameters are found solving Eq. (45). The 
actual and estimated parameter values obtained are displayed 
in Table V. It can be seen that the method estimates the 
required parameters successfully. 

 

 

 
Fig. 6. (a) Manipulator exciting trajectories and inputs. (a) Joint angles q 

and (b) rates  and , and (c) input torques τ. 

TABLE V. ACTUAL AND ESTIMATED PARAMETERS. 

 Actual 
values 

Estimated 
values 

Relative 
error(%) 

 (kg m2) 865.01 865.02 -0.0014 

 (kg m) 400 400.01 -0.0016 

 (kg m) 400 400.01 -0.0016 

 (kg) 403 403.01 -0.0017 

 (kg m2) 0.0075 0.0075 -0.0001 

 (kg m2) 0.0075 0.0075 0.0004 

 (kg m2) 0.0075 0.0075 0.11 

 (kg) 3 3.00 0.0050 

 (kg/m) 31.42 31.42 -0.0004 

 (kg/m) 31.42 31.42 0.0002 

 (Nm2) 1768.8 1768.80 0.0000 

 (Nm2) 1768.8 1768.80 -0.0016 

 (Nm/rad) 1000 1000.00 0.0000 

 (Nm/rad) 1000 1000.00 0.0004 

 (Nm/rad) 75.85 75.85 0.0002 

 (Nm/rad) 75.85 75.85 -0.0008 

CONCLUSION 
In this paper, the dynamic equations of general space 
manipulator systems whose manipulators are subject to both 
link and joint flexibilities were derived. A parameter 
estimation method, based on the energy balance during 
manipulator motion, was proposed. The method estimates all 
system parameters, including those that describe both link 
and joint flexibilities, and can reconstruct the system full 
dynamics required for the application of advanced control 
strategies. The application of the developed method is valid 
for spatial systems; here it was illustrated by a planar 
example system. 
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