
  

  

Abstract— This paper studies the effects of varying rollover 
curvature on the passive dynamic gait of a biped walker. The 
dynamic model of a compliant biped robot is extended with the 
implementation of semielliptical feet, to mimic human rolling-
radius progression during a step. The process of modeling the 
semielliptical foot shape and integrating its kinematics to the 
biped’s dynamics is presented in detail. The passive dynamic 
behavior of the biped for elliptic feet of various dimensions is 
investigated through numerical simulations to provide results 
about gait stability, walking speed, energetic efficiency, and 
impact force levels. The concept of energetic efficiency in 
passive walking is discussed thoroughly, and an efficiency 
comparison methodology is proposed. Finally, it is shown that 
the biomimetically-inspired semielliptical foot profile can lead 
to higher gait efficiency. The results of this study can be used to 
optimize energetic efficiency in biped walking machines and/or 
gait assisting prosthetic equipment by means of foot shape 
optimization. 

I. INTRODUCTION 
The study of human gait has been a common area of interest 
for the fields of robotics and biomechanics for a long time. 
From a robotics point of view, human kinesiology provides 
observation opportunities and inspiration for the development 
of walking machines. On the other end, robotics can provide 
a theoretical understanding of the underlying mechanisms 
governing human gait, as well as guidelines for mimicking 
the naturally occurring dynamics. Their successful pairing 
can give rise to comfortable gait-assisting prosthetic 
equipment and efficient walking robots. 

A special mode of bipedal locomotion is passive bipedal 
walking. This walking mode, first presented in [1] has been a 
key point of interest, as it proves that walking is a natural 
mode of a biped’s passive dynamics, achieved without the 
need for any kind of control.  

The simplest passive biped model includes massless, rigid 
legs, carrying a mass at the hip joint [2][3][4]. This model has 
been extended in various studies: by the introduction of foot 
geometry and hip joint friction [1], leg compliance [5] and 
leg damping [6]. Various works have investigated the effects 
of design parameter selection on important gait 
characteristics, such as gait stability [7], walking speed [8], 
and energy dissipation [9]. 

Most of the recent work on passive walking assumes a 
semicircular foot shape [1][6][7][8][9]. This notion has been 
supported by studies on the rollover characteristics of human 
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gait, reporting a high degree of resemblance between gaits 
achieved on circular foot profiles and human walking data 
[10][11]. 

However, studies on human kinesiology suggest that the 
rollover curvature in human walking varies during the foot-
to-ground rolling progression, with a “functional” radius 
obtaining a maximum value when the foot is flat on the 
ground, but a minimum value at the heel-strike and toe-off 
events [12][13].  

In an effort to mimic this behavior, a few studies have 
modelled passive gait on alternative foot shapes. In [14] a 
simplified flat foot geometry has been assumed: their biped 
rolls around its “heel pivot”, effectively having a point-foot 
shape, until the “toe pivot” hits the ground with an impact, 
and the motion continues with the point contact moved to the 
front of the foot. In another study, the varying curvature 
effect is introduced by a piecewise polynomial function, 
leading to a leg geometry similar to the one observed in 
humans [15]. However, the rolling kinematics are once again 
solved by breaking down the foot geometry to a finite 
number of pivot points, introducing small impacts at each 
solution step. The impacts introduced by both methods in 
reality are not present in human walking, limiting the 
generalization of the studies’ results. 

To the best of our knowledge, no method of incorporating 
the exact kinematics of the foot-to-ground variable-curvature 
rolling contact in a passive dynamic biped walker has been 
published to date. 

In this paper, a passive walking model incorporating 
elastic and damping elements along its legs as well as circular 
feet, firstly introduced in [7], is extended to investigate the 
passive mechanisms induced by semielliptical foot shapes, 
see Fig. 1. 

 
 

 
Figure 1. Passive biped model. 
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The variable-curvature elliptic foot shape provides a 
certain curvature when the foot is “flat” on the ground, but a 
different curvature at the beginning and end of the foot-
ground contact, emulating the rolling radius progression 
recorded in human gait. This model is studied for its passive 
behavior, to investigate the effects of the variable-curvature 
foot shapes on the energetics of walking. 

The paper consists of four sections. The biped model is 
presented in Section II, where the focus is turned towards the 
analytical modeling of the semielliptical foot shape and its 
interface with the ground, as well as the integration of the 
foot’s kinematics with the rest of the biped’s dynamics. In 
Section III, the developed model is studied for its passive 
behavior, the notion of energetic efficiency in stable passive 
walking is discussed and re-defined, and useful guidelines are 
drawn regarding the relationship between foot shape and 
energetic efficiency. Finally, Section IV presents the 
conclusions and sets the directions for future work. 

II. PASSIVE BIPED MODELING 
A passive biped model, as is shown in Fig. 1, is employed. 
The biped performs passive walking in the x-direction of the 
x-y coordinate system (CS) of Fig. 1, which has negative 
slope a. The model consists of two elastic legs of initial 
length Lnat: the legs’ elastic and damping constants are k and 
b respectively. The biped’s body mass M is located at the hip 
joint, and the legs’ inertial properties are introduced through 
the leg mass m, located at a distance l from the bottom of 
each foot. The biped is situated inside a gravity field of 
acceleration g in the -Y direction of the global X-Y CS. The 
xE-yE coordinate system is a local CS attached to the leg in 
contact with the ground. 

The assumptions set to study the biped are the following: 
(i) the contact of the feet and ground is non-compliant, (ii) 
the feet perform rolling without slipping on the ground and 
(iii) scuffing of the swing foot during its forward 
advancement in the single stance phase is ignored.  

A. Generalized coordinates and system state 
The configuration of the biped is fully described by four 

generalized variables: the stance and swing leg angles, θ and 
ψ, and their corresponding leg lengths, L1 and L2. These 
compose the generalized vector q:  

   (1) 

which along with its derivative, , form the state vector x 
fully describing the system state:  

   (2) 

The dynamics of the biped must be expressed with 
respect to the elements of the state vector: therefore, the foot 
kinematics must be expressed in terms of the elements of x. 

B. Elliptic foot geometry 
The special case of a biped model having semicircular 

feet has been studied in [7]. For a biped with circular feet of 
radius r, the motion of each foot rolling on the ground is 
described by:  
   (3) 

where xr is the foot center’s displacement in the x-direction. 

To mimic human anatomy and to study the effects of 
varying foot curvature on passive walking, in this work the 
biped’s feet are assumed to have a semielliptical shape. This 
change in foot shape complicates the analytical description of 
the rolling motion of the feet on the ground.  

Fig. 2 presents the elliptical foot shape on the foot-bound 
xE-yE CS, see Fig. 1. An ellipse in this plane is made up of 
points of the form: 
   (4) 

where ra and rb are the ellipse’s major and minor radii on the 
xE and yE axes respectively, and φc is a parameter visualized 
as the angle of a line whose intersections with two circles of 
radius ra and rb result in the (xi, yi) coordinates of each ellipse 
point, as is shown in Fig. 2. This point on the ellipse 
determines the geometric angle φe, for which: 

   (5) 

This last equation links a geometric point (xi, yi) of the 
ellipse’s perimeter to the parameter φc used in the definition 
of the ellipse, enabling the expression of contact geometry 
through simple algebraic equations. 

 
Figure 2. Elliptic foot geometry. 

C. Contact geometry in terms of state variables 
In Fig. 3, the elliptic foot is tangent to the ground at the 

point of contact. Therefore, for a foot rotation angle θ, see 
Fig. 3, the tangent to the ellipse at the contact point, 
measured in the xE-yE CS, can be calculated using the 
definition of the tangent line for Eq. (4): 

   (6) 

providing a relationship between φc and θ. Therefore, at the 
contact point, φe can be linked to the leg angle θ using (5): 

   (7) 

D. The kinematics of rolling on elliptic feet 
The elliptic foot of Fig. 3 performs rolling without 

slipping on flat ground: by increasing the leg angle from 0 to 
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θ, the resulting displacement of the contact point, xroll must be 
equal to the ellipse’s arc length xe: 

   (8) 

 
Figure 3. Rolling without slipping for the elliptic foot. 

Knowing xroll, it is possible to express the position of the 
center of the ellipse, C, in x-y coordinates: 

   (9) 

   (10) 

In (9), x0 is the distance of the contact point from the 
origin when θ=0, as is shown in Fig. 3. Note that φe, φc<0 for 
the bottom part of the ellipse, where contact occurs. 

The spatial configuration of the rest of the biped can be 
expressed with respect to point C’s coordinates. Note that the 
x-y CS is rotated by a<0 with respect to the global CS; 
therefore, both xc and yc are used for the estimation of the 
biped’s potential energy due to gravity g in the X-Y CS. The 
Lagrangian will then contain the integral xroll, introduced 
through the potential energy terms. This integral does not 
have an analytical solution; however, only the time and state 
derivatives of xroll are used to produce the dynamic equations 
of the biped in the Lagrangian formulation. These are 
produced via the chain rule and can be expressed 
analytically: 

   (11) 

   (12) 

Therefore, the differential equations describing the state 
of the biped can be analytically expressed as a function of the 
state variables in x, bypassing the limitation introduced by 
xroll in (8) not having a closed-form analytical expression. 

E.  Single stance phase 
During the single stance phase of walking (SSP), only 

one of the biped’s feet, called the stance foot, is in contact 
with the ground, while the swing foot advances forward. 

The biped’s motion is governed by a set of four non-
linear second-order dynamic equations, which can be 
expressed in the form: 
   (13) 

where M4x4 is the inertia matrix of the system, C4x4 introduces 
centrifugal, Coriolis and damping terms, K4x1 is a vector 
containing the spring forces, and G4x1 is the gravity vector. 

The system (13) is solved by MATLAB’s moderately-
stiff ode23t solver for its initial-condition response to the 
state at the beginning of the nth step, xn.  

The SSP ends when the swing foot hits the ground, at the 
heel strike event (HS), with a state vector xn,HS. The HS event 
is triggered when three conditions are met simultaneously: 
these are the foot-on-ground condition (14), the swing leg 
advancement condition (15), and the swing leg retraction 
condition (16): 
   (14) 

   (15) 

   (16) 

In (14) the subscripts “1” and “2” refer to the stance and 
swing leg respectively. It is worth noting that xC2 and yC2 
emerge from (9) and (10) by using the angle -ψ in place of θ.  

The initial state xn is mapped to the state at HS, xn,HS 
through the dynamics in (13); this mapping can be written in 
the form of a discrete function f1:  
   (17) 

F. Double stance phase 
When the swing foot hits the ground at the end of the 

SSP, both legs are in rolling contact with the ground, and the 
biped is in the double stance phase (DSP). This configuration 
constrains two of the system’s degrees of freedom (DOF), by 
introducing two more equations that must be satisfied by the 
biped’s state: these are the no slip condition (18) and the foot-
on-ground condition (19):  
   (18) 

   (19) 

The equations of motion governing the DSP are of the 
form: 

   (20) 

In (20) Π4x2 is the transpose of the constraint Jacobian: 

   (21) 

while λ2x1 is a vector containing the Lagrange multipliers for 
the satisfaction of the constraints, s.  

The dynamical system (20) contains both differential and 
algebraic equations (DAE). In order to obtain a system of 
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differential equations, the constraint equations s=0 in (20) 
would have to be differentiated twice: therefore, the DAE 
system would be of index 2.  

To solve this index 2 DAE system, the constraints  
are differentiated once to obtain: 

   (22) 

The system in (22) is now a DAE system of index 1. The 
new constraints translate to , and since  at HS, 
see (14), the constraints s=0 are satisfied by the solution of 
(22). MATLAB’s solver ode15s is used to solve the DAE 
system (22) for its response to the initial conditions xn,HS.  

The DSP terminates when the stance leg is lifted from the 
ground: to detect this instant, the ground forces are calculated 
with a Newton-Euler approach. The instance when the 
normal ground force on the stance leg becomes zero marks 
the toe-off event (TO), with a state of xn,TO. 

The DSP process can also be described by the discrete 
function f2 in a manner similar to (17): 
   (23) 

G. Transition between steps 
The state at the beginning of the (n+1)th step, xn+1, 

emerges from the multiplication of xn,TO with the 
transformation matrix T8x8: 
   (24) 

which flips the stance and swing leg initial conditions to 
prepare for the next step. The elements of T are all zero 
except for t15=t26=t51=t62=-1 and t37=t48=t73=t84=1. The 
negative elements of T are due to the convention of defining 
the leg angles in opposite directions, as seen in Fig. 1. 

H. Fixed points and gait stability 
The process described by (17), (23) and (24) can be 

summarized by (25): 
   (25) 

where P is a discrete function describing a full step of the 
biped. A fixed point of P, x*, constitutes a fully repetitive gait 
and is defined by (26):  
   (26) 

A Newton-Raphson numerical method is used to find 
such gaits: 

   (27) 

In (27) ν is a relaxation parameter, used to regulate the 
solution steps of the solver as P is highly nonlinear: setting 
v=1 as in the original method, might prohibit the convergence 
of the solver towards the solution, since the Jacobian ∇P can 
obtain large values. With this in mind, (27) is repeatedly 
solved until numerical convergence, according to the 
following empirical convergence criterion: 

   (28) 

The stability of a fixed-point x* of P can be estimated by 
linearizing P around x*: 

   (29) 

where Δx = x – x*, a small variation of the biped state from 
its calculated fixed point. The eigenvalues e8x1 of A8x8 
characterize the gait stability: the system is stable around the 
fixed-point x* if all elements of e have a magnitude smaller 
than 1, i.e. they lie inside the unit circle in the z-domain.  

III. PASSIVE GAIT ON SLOPE 
A nominal biped design with semicircular feet has been 

optimized for its passive gait stability in [7], by finding e for 
different biped configurations that lead to different functions 
P. The design parameters of the nominal biped are listed in 
Table I.  

In the semicircular feet scenario, the two elliptic radii ra 
and rb are equal to each other and set to r. In this special case, 
the radius of curvature is constant throughout the step. 

TABLE I.  NOMINAL BIPED PARAMETERS. 
Parameter  Explanation Nominal Value 

M Biped body mass 80 [kg] 
Lnat Natural leg length 1 [m] 
a Floor slope -2° 
b Damping constant 909.56 [Ns/m] 
k Elastic constant 23309 [N/m] 
l Foot mass distance 0.1485 [m] 
m Foot mass 1.296 [kg] 
ra  Elliptic radius in xE 0.363 [m] 
rb Elliptic radius in yE 0.363 [m] 

A. Passive walking on semielliptical feet 
To investigate the effects of semielliptical foot shape on 

passive walking, fixed points were determined for bipeds of 
varying foot shapes by changing the values of the elliptic 
radii on the nominal biped of Table I. The radii ra and rb were 
gradually increased from 0 to 0.4 [m]: all possible 
combinations of the two were examined, to produce various 
foot shapes, ranging from “pointy” feet of large rb, to 
“flattened” feet of large ra, visualized schematically in Fig. 4.  

 
Figure 4. Energetic distribution in passive walking. Continuous black lines 

indicate the limits of the stable region. 
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The resulting bipeds’ passive gaits were evaluated for 
their stability, forward velocity, energetic efficiency and 
impact force levels, and the results were plotted in Fig. 4. 

In the stability chart of Fig. 4, it is shown that the passive 
gaits of bipeds with circular feet (where ra= rb, marked with a 
dashed diagonal line in the stability chart), are generally 
stable; the same holds for bipeds with pointy feet with rb> ra; 
however, bipeds with longer, flattened feet of ra<rb perform 
less stable passive walks. By observing the velocity and 
impact force plots of Fig. 4 it can be deduced that flattened 
foot profiles result in faster gaits, with larger impact loads 
during the ground contact.  

In general, changes in ra appear to affect the gait 
characteristics more drastically in comparison to changes in 
rb, which is apparent due to the steeper slope in the direction 
of ra in most of the plots of Fig. 4. The pointy foot shapes in 
feet of larger rb behave in the same manner as the actual 
point-foot case, obtained when ra=rb=0. However, the 
semielliptical feet tend to become longer and flatter when ra 
increases, making it difficult for the passive biped to lift its 
feet above the ground before HS. 

However, the energetic efficiency remains the same for 
all stable walks, regardless of the foot shape. This 
observation is intuitive for repetitive gaits but must be further 
investigated before reaching any conclusions on the 
relationship between foot shape and energetic efficiency. 

B. Energy considerations in passive walking 
The stable passive descendance of a biped walking on a 

negative slope is only possible due to energy conservation. 
The energetic losses of the biped due to its intrinsic damping 
elements as well as due to the impacts with the ground are 
compensated by the potential energy obtained by its descent 
through the gravity field.  

Fig. 5 presents the energy distribution for a biped walking 
on a negative slope. It can be seen that the kinetic as well as 
the elastic energy of the biped at each instant are oscillating 
around a fixed average value during the passive walk, 
indicating the repetitiveness of the gait.  

The gravitational potential energy presents a decreasing 
trend as the biped descends towards the negative Y-direction 
of Fig. 1, while the total energy lost through damping 
presents an increasing trend as the dissipation power due to 
the dampers and ground impacts is accumulated. The sum of 
the above energetic components, plotted in the last plot of 
Fig. 5, is shown to be constant during each step as a direct 
consequence of energy conservation. The sum only decreases 
with a discontinuity at each HS instance: this is a 
consequence of the conservation of angular momentum of the 
system before and after the HS event. The discontinuity step 
of the plot is then equal to the amount of energy lost due to 
the impact of the foot with the ground at HS.  

The Cost of Transport (COT) of any walking machine is 
defined as the ratio of the energy loss during a walk over the 
product of the machine’s weight with the distance it 
travelled: 

   (30) 

where Eout is the energy loss due to damping and ground 
impacts, and Δx is a distance traveled in the x-direction of 
Fig. 1.  

However, for the gait to be repetitive, the total energy 
must be conserved, and therefore the energy output must 
equal the energy input, Ein.  

 
Figure 5. Energetic distribution in passive walking. 

In passive walking, Ein originates from the energetic gain 
due to the descent , therefore:  

   (31) 

The convergence of the COT as defined in (30) towards 
the theoretical value of (31) for a passive biped commencing 
its gait near a stable fixed point is shown in Fig. 6. It can be 
observed that as the gait progresses, the COT converges to 

(for ), as a direct consequence of the 
energetic equilibrium in the stable system.  

 
Figure 6. COT convergence to sin(a) in passive walking. 
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passive walking through elimination of a. Here we select to 
investigate the effect of foot shape on energy efficiency with 
respect to a targeted forward gait velocity.  

C. Foot shape and gait efficiency 
According to the above observations, we select a target 

forward velocity of vx =0.6 [m/s]. The question of energetic 
efficiency can then be posed as follows: Is it possible to 
design a foot shape that will decrease the amount of energy 
needed to perform a walk for the target vx?  

To answer this last question, the slope angle of the 
passive walker is decreased to smaller values, therefore 
decreasing the COT of all stable passive gaits achieved on the 
new slopes. Then the foot-shape investigation process 
presented in Fig. 4 is repeated for the biped on the smaller 
slopes. The contour levels of gaits with the target forward 
velocity vx =0.6 [m/s] are extracted from the corresponding 
velocity contour plots and re-plotted in Fig. 7, where a is 
eliminated and the COT acts as a plotting parameter.  

The lower-COT dashed curves in Fig. 7 are on the right of 
the higher-COT curves, corresponding to larger elliptic radii 
ra. It is then clear that for a targeted forward gait velocity, 
less pointy foot shapes, associated with larger ra for a certain 
rb, allow for lower COT, and therefore for larger energy 
efficiency during the gait. 

This observation has potential extensions to the 
biomechanics of gait, implying that the human foot 
configuration, where the foot is flat on the ground for a large 
portion of each step, might have evolved towards optimizing 
the energetic efficiency of the most common mode of human 
locomotion, which is bipedal walking.  

 
Figure 7. Constant forward gait velocity contours for different foot shapes. 

IV. CONCLUSION 
A passive biped model was extended with the addition of 
semielliptical feet, to mimic human rolling curvature 
progression. The methods followed to produce the kinetics of 
the semielliptical foot shape, the analytic expression of its 
rolling contact with the ground, and the integration of the 
above to the full biped’s dynamics were thoroughly 
presented. The passive gait of the biped on semielliptical feet 
was studied for its stability, velocity, energetic efficiency and 
heel-strike impact force levels. The energy distribution of the 
biped throughout its passive gait was studied and the 

energetic efficiency of all stable passive bipeds walking on a 
given slope was proven to only be dependent on that slope.  

Following the above, a first step was made towards 
reconfiguring the criteria and methods used for energetic 
comparisons between passive walking models. Finally, it was 
shown that flattened foot shapes can lead to gaits of better 
energy efficiency for a targeted walking speed. This 
translates to lower metabolic effort when walking on natural 
or prosthetic feet of variable foot curvature, as well as lower 
actuation power for walking robots having this foot design. 

A future extension of this study is to develop a general 
methodology for the simulation of various foot shapes, 
defined either by a specific function or even a random series 
of points. This will allow the comparison of several foot 
shapes, unconstrained by the elliptic profile assumed here. 

REFERENCES 
[1] McGeer, T., “Passive Dynamic Walking”, The International Journal 

of Robotics Research, 1990. 9(2): pp. 62-82. 
[2] Garcia, M., et al., “The Simplest Walking Model: Stability, 

Complexity, and Scaling,” Journal of Biomechanical Engineering, 
1998, 120(2): pp. 281-288. 

[3] Kuo, A. D., “Energetics of actively powered locomotion using the 
simplest walking model”, Journal of Biomechanical Engineering, 
2002, 124(1): pp. 113-120. 

[4] Gregg, R. D., et al., “On the mechanics of functional asymmetry in 
bipedal walking,” IEEE Transactions on Biomedical Engineering, 
2012, 59(5): pp.1310-1318. 

[5] Alexander, R., “A model of bipedal locomotion on compliant legs”, 
Philosophical Transactions of the Royal Society of London, Series B: 
Biological Sciences, 1992, 338(1284): pp. 189-198. 

[6] Linde, R.Q.V.D., “Active leg compliance for passive walking,” IEEE 
International Conference on Robotics and Automation (ICRA ’98), 
Leuven, Belgium, 1998, pp. 2339-2344.  

[7] Smyrli, A., Bertos, G. and Papadopoulos, E., “Efficient stabilization 
of zero-slope walking for bipedal robots following their passive fixed-
point trajectories.”, IEEE International Conference on Robotics and 
Automation (ICRA), Brisbane, Australia, 2018, pp. 5733-5738. 

[8] Asano, F. and Luo, Z.W., “On Energy-Efficient and High-Speed 
Dynamic Biped Locomotion with Semicircular Feet”, IEEE/RSJ Int. 
Conf. on Intelligent Robots & Systems (IROS ’98), Beijing, China, 
2006, pp. 5901-5906. 

[9] Asano, F. and Luo, Z.W. “The effect of semicircular feet on energy 
dissipation by heel-strike in dynamic biped locomotion,” IEEE 
International Conference on Robotics and Automation (ICRA ’07), 
Rome, Italy, 2007, pp. 3976-3981. 

[10] Gard, S.A. and Childress, D.S., “What Determines the Vertical 
Displacement of the Body During Normal Walking?”, Journal of 
Prosthetics and Orthotics, 2001, 13(3): pp. 64-67.  

[11] Adamczyk, P.G., and Kuo, A.D., “Mechanical and energetic 
consequences of rolling foot shape in human walking”, Journal of 
Experimental Biology, 2013, 216(14): pp. 2722-2731. 

[12] Caspers, L., Lugrís, U. and Kecskeméthy, A., “Foot-ground sagittal 
rolling behaviour during heel contact and its approximation by an 
exponential-curvature disk”, 4th Joint International Conference on 
Multibody System Dynamics, Montreal, Canada, 2016. 

[13] Caspers, L., Siebler, M., Hefter, H., Lugrís, U., & Kecskeméthy, A., 
“Using Kinematic Rolling Surfaces for Fast Foot-Ground Modeling in 
the Forward Dynamics of Human Gait—A Sagittal Plane Analysis”, 
ECCOMAS Thematic Conference on Multibody Dynamics, Prague, 
Czech Republic, 2017. 

[14] Kwan, M., and Hubbard, M., “Optimal foot shape for a passive 
dynamic biped”, Journal of Τheoretical Βiology, 2007, 248(2): pp. 
331-339. 

[15] Mahmoodi, P., Ransing, R.S., and Friswell, M.I., “Modelling the 
effect of ‘heel to toe’roll-over contact on the walking dynamics of 
passive biped robots”, Applied Mathematical Modelling, 2013, 37(12-
13): pp. 7352-7373. 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
ra [m]

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Forward velocity vx = 0.6 [m/s]

COT=0.0297
COT=0.0349
COT=0.0384

increasing
COT

6307


