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An efficient model reduction based methodology is presented for predicting the global (impact force,
plate deflection and electric potential) and through-thickness local (interfacial strains and stresses)
dynamic response of pristine simply-supported cross-ply composite and sandwich composite plates with
piezoelectric sensory layers subjected to low-energy impact. The through-thickness response of the
laminate is modelled using coupled higher-order layerwise displacement-based piezoelectric laminate
theories. Linearized contact laws are implemented for simulating the impactor–target interaction during
impact. The stiffness, mass, piezoelectric and permittivity matrices of the plate are formulated from ply
to structural level and reduced by applying a Guyan reduction technique to yield the structural system
in state space. This reduction technique enables the formulation of a plate–impactor structural system
of minimum size (1 term per vibration mode for composite plates – 2 terms for sandwich plates) and
reduces computational cost, thus facilitating applicability for real-time impact and vibration control.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic response of composite and sandwich composite
plates under low-energy impact is of practical significance in auto-
motive, aerospace and every-day life applications, in cases such as
a tool drop during repair, a hit by a runaway stone or the fall of a
composite cell-phone case from a table to the floor, where the
damage caused may be invisible, while the inclusion of piezoelec-
tric sensory layers into the lamination enables monitoring of the
structural response on-site in real-time. The prediction of the glo-
bal and local through-thickness impact response of such smart
structures is essential during the design phase in order to deter-
mine the impact force, the type and duration of impact, to estimate
stresses at the interface between composite and piezoelectric
material layers and to quantify the signals acquired by the piezo-
electric layers. These predictions, combined with a computation-
ally efficient plate–impactor system model, are expected to
contribute to the development of appropriate algorithms for active
impact control and control for energy harvesting.

The importance of the impact response of composite and sand-
wich composite structures is highlighted by the amount of work
conducted in this field so far. Extensive related literature reviews
have been conducted among others by Cantwell and Morton
(1991), Abrate (1997, 1998, 2001), Qiu and Yu (2011) and Chai
and Zhu (2011), while relevant papers have been reported by
Stronge (2000) in his book on impact mechanics. On the basis of
the kinematic assumptions used to predict the response of the
impacted composite or sandwich composite structure, the existing
models may be divided into two main categories: (i) mass–spring
models without (Shivakumar et al., 1985; Wu and Yu, 2001;
Olsson, 2002; Zhou and Stronge, 2006) or with dampers (Olsson,
2003; Anderson, 2005) and (ii) full continuum models based on
energy equilibrium equations. The latter may encompass exact,
analytical or finite element solutions and can potentially predict
the impact response in several positions of the structure, including
all displacements, strains and stresses. Moreover, depending on the
amount of the vibration modes taken into account, continuum
models can capture multiple impacts caused by the induced vibra-
tion triggered by the impact event. Analytical solutions for com-
posite plates subjected to low-velocity impacts have been
developed among others by Christoforou and Swanson (1991),
and Christoforou and Yigit (1998), on the basis of Kirchhoff’s plate
theory kinematics and a linearized elasto-plastic contact law
between the plate and impactor (Yigit and Christoforou, 1994),
whereas Chun and Lam (1998) implemented Reddy’s higher-order
single layer plate theory and a Hertzian contact law. Finite element
solutions for predicting the low-velocity impact response of com-
posite plates have been reported among others by Sun and Chen
(1985), who developed a quadratic Lagrange element based on
Reissner–Mindlin kinematics and an experimentally determined
non-linear indentation law, Wu and Chang (1989), who formulated
es with
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a 3-D plate theory and a corresponding brick element to study out
of plane stresses in addition to plate deflection and contact force,
and Choi and Chang (1992), who predicted damage due to impact
and reported relevant experimental results. As far as sandwich
plates subjected to low-velocity impact are concerned, Palazotto
et al. (2000) formulated a C2-continuous finite element based on
higher-order single-layer kinematics and geometrical nonlinearity
for conducting progressive failure analysis, whereas Besant et al.
(2001) combined first order shear shell elements for the faces with
brick elements for the core, considered elastoplastic material
behaviour and degradation, and reported numerical and experi-
mental results. Yang and Qiao (2005) developed an analytical solu-
tion based on a higher-order laminate theory and predicted global
(contact force and deflection) and local through-thickness (propa-
gation of normal and shear stresses) response, and predicted fail-
ure locations, time and modes in sandwich composite beams.
Icardi and Ferrero (2009) reported a refined plate element based
on global-local 3-D layerwise kinematic assumptions, considered
material degradation and predicted damage and through-thickness
distributions of transverse displacement and interlaminar shear
stress, in addition to temporal variation of the contact force. A
Ritz-type solution based on 3-D higher-order single-layer mixed
kinematics was developed by Malekzadeh et al. (2006) for predict-
ing the dynamic response of sandwich plates subjected to multiple
impacts. Analytical and finite element solutions were also reported
by Hoo Fatt and Park (2001) and Kärger et al. (2008), respectively.
Experimental results for composite and sandwich composite plates
subjected to low-velocity impact were reported among others by
Sjöblom et al. (1988), Lee et al. (1993), Ambur et al. (1995),
Hazizan and Cantwell (2002), Schubel et al. (2005), Christoforou
et al. (2010) and Yang et al. (2013). The idea of embedding piezoelec-
tric sensors to composite structures in order to detect impact loca-
tion and reconstruct the contact force time-profile was reported in
the late 90’s by Tracy and Chang (1998) and Seydel and Chang
(2001), and has been elaborated for the design of real-time monitor-
ing networks (Park et al., 2009; Liu and Chattopadhyay, 2013). The
active control of impact response of composite plates and shells by
means of piezoelectric layers and patches towards the minimization
of contact force has been studied by Saravanos and Christoforou
(2002a,b), who developed an analytical solution based on first-order
shear kinematics for the composite laminate and a linear layerwise
approximation of electric potential. Yet, the local through-thickness
impact response of sandwich piezoelectric composite plates in the
case of low-velocity and low-energy impact has not been studied
so far. Moreover, in the vast majority of existing work employing full
continuum models for predicting impact response of composite or
sandwich plates, the full plate–impactor system is solved. This leads
to large matrix sizes and increased computational effort for detailed
through-thickness modelling, such as in the case of layerwise lami-
nate theories.

In this paper, an efficient Ritz-type solution is presented, which is
based on higher-order layerwise through-thickness kinematic
assumptions and a Guyan reduction technique, for predicting both
global (plate deflection, contact force and electric potential) and local
(through-thickness distribution of displacements, strains and stres-
ses) response of pristine simply-supported cross-ply composite and
sandwich composite plates with piezoelectric layers subjected to
low-energy impact. In the proposed method, the full structural sys-
tem containing all Fourier modal displacement amplitudes is
reduced to one containing a single deflection amplitude per mode,
leading to dramatic savings in size and computational effort, which
is a most useful capability for real-time control applications. Still,
the information included in the full structural system is retained
and recovered after solving the reduced system by expressing the
dependent modal variables and their derivatives via the modal
deflection of the plate. The accuracy of the proposed method is
Please cite this article in press as: Plagianakos, T.S., Papadopoulos, E.G. Low-e
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validated by comparisons with published numerical results for
composite plates without/with piezoelectric layers and with experi-
mental results for sandwich composite plates.

2. Theoretical formulation

In this section, the integrated theoretical framework developed
for simulating the impact response of a sandwich composite plate
with piezoelectric layers subjected to low-energy impact is devel-
oped, starting from a general composite material ply with piezo-
electric properties and arriving to the solution of the structural
system in state-space.

2.1. Formulation of plate-subsystem structural matrices

2.1.1. Basic physical assumptions
The theoretical framework developed is based on the following

assumptions:

� The impact energy is low, such as no material damage is
induced by the impact event.
� The impact is elastic, thus, there is no loss of energy in the form

of heat.
� The laminate plies are perfectly bonded together throughout

the impact event.

2.1.2. Governing material equations
In general, the laminate layers including the piezoelectric, com-

posite and foam plies are assumed to exhibit linear piezoelectric
behaviour. In the following formulation, displacements and electric
potential and all other variables arising from these (strains, stres-
ses, etc.) are time-dependent. The ply constitutive equations in
the natural coordinate system Oxyz (Fig. 1(a)) have the form:

ri ¼ CE
ijSj � ðemiÞT Em

Dm ¼ emjSj þ eS
mmEm

ð1Þ

where i, j = 1, . . .,6 and m = 1, . . .,3; ri and Sj are the mechanical
stress and engineering strain, respectively, in vectorial notation;
Em is the electric field vector; Dm is the electric displacement vector;
Cij is the elastic stiffness tensor; emj is the piezoelectric tensor aris-
ing from the piezoelectric charge tensor and the stiffness tensor;
and emm is the electric permittivity tensor of the material. The form
of the above tensors is shown in Appendix A. Superscripts E and S
indicate a constant electric field, and strain conditions, respectively.
The above equations may encompass the behaviour of both an off-
axis homogenized fibrous piezoelectric ply and a passive composite
ply (emj = 0). The electric field vector Em is the gradient of the elec-
tric potential u along basis vectors x, y, z of the natural coordinate
system:

Em ¼ �@um=@xm ð2Þ

In the current work, piezoelectric components polarized through-
thickness are considered.

2.1.3. Through-thickness kinematic assumptions
A typical composite or sandwich composite laminate with pie-

zoelectric components is subdivided into n discrete layers as
shown schematically in Fig. 1(a). Each discrete-layer may contain
either a single ply, a sub-laminate, or a sub-ply. In the case of com-
posite plates, the displacement field assumed through the thick-
ness of the laminate is based on a 2-D higher-order layerwise
formulation (HLPT 2-D – Plagianakos and Saravanos, 2008), which
approximates displacements and electric potential by piecewise
linear, parabolic and cubic functions of the discrete layer thickness
(Fig. 1(b)), while maintaining displacement continuity across
nergy impact response of composite and sandwich composite plates with
16/j.ijsolstr.2014.04.005
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Fig. 1. Typical sandwich piezoelectric composite laminate configuration analyzed with n-discrete layers. (a) Discrete layers with natural coordinate system and local
thickness coordinate fk used for predicting arbitrary distribution of displacements and electric potential through the laminate thickness; (b) assumed displacement and
electric potential components through the thickness of a discrete layer.
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discrete layer boundaries. For the sandwich structures, the core
compressibility effects are taken into account by applying a similar
through-thickness approximation on the transverse displacement
(HLPT 3-D). In this context, the kinematic assumptions take the
form:

Both composite and sandwich plates

ukðx; y; fkÞ ¼ Ukðx; yÞWk
1ðfkÞ þ Ukþ1ðx; yÞWk

2ðfkÞ þ ak
xðx; yÞW

k
3ðfkÞ þ kk

xðx; yÞW
k
4ðfkÞ

vkðx; y; fkÞ ¼ Vkðx; yÞWk
1ðfkÞ þ Vkþ1ðx; yÞWk

2ðfkÞ þ ak
yðx; yÞW

k
3ðfkÞ þ kk

yðx; yÞW
k
4ðfkÞ

uzðx; y; fkÞ ¼ Uk
zðx; yÞW

k
1ðfkÞ þUkþ1

z ðx; yÞW
k
2ðfkÞ þ ak

uðx; yÞW
k
3ðfkÞ þ kk

uðx; yÞW
k
4ðfkÞ
ð3Þ

Composite plates (HLPT 2-D)

wkðx; y; fkÞ ¼ w0ðx; yÞ

Sandwich plates (HLPT 3-D)

wkðx; y; fkÞ ¼Wkðx; yÞWk
1ðfkÞ þWkþ1ðx; yÞWk

2ðfkÞ þ ak
zðx; yÞW

k
3ðfkÞ

þ kk
zðx; yÞW

k
4ðfkÞ

where u and v are the in-plane displacements, w is the transverse
displacement, superscript k = 1, . . .,n denote discrete layer, and fk

is the local thickness coordinate of layer k defined such that fk = 0
at the middle of the discrete layer, fk = 1 and fk = �1 at the top
and the bottom, of the discrete layer k, respectively. Wk

1;W
k
2 are lin-

ear and Wk
3;W

k
4 are quadratic, cubic interpolation functions, respec-

tively, through the thickness of the layer (Appendix A). Uk, Vk, Wk,
Uk+1, Vk+1, Wk+1 and Uk

z ; Ukþ1
z are displacements and electric poten-

tial at the bottom and top of the discrete layer k, effectively describ-
ing extension and rotation, and electric potential at the terminals,
respectively, of the layer, and w0 is transverse displacement at the
midplane. The terms ak

x ;ak
y;ak

z ;ak
u; k

k
x ; k

k
y; k

k
z ; k

k
u are amplitudes of

quadratic (a) and cubic (k) variations of displacements (subscript
x, y and z) and electric potential (subscript u) through the thickness
of the discrete layer. The contributions of these higher-order varia-
tions to the in-plane displacement and electric potential distribu-
tion through the thickness of the discrete layer vanish at its top
and bottom interfaces.
Please cite this article in press as: Plagianakos, T.S., Papadopoulos, E.G. Low-e
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The impact mechanics methodology is presented in the follow-
ing sections for the case of constant transverse displacement
through the thickness of the laminate (HLPT 2-D), whereas its
application is similar for through-thickness variable transverse dis-
placement (HLPT 3-D) and relevant modifications are reported
wherever necessary.

2.1.4. Laminate energy
The stiffness and mass matrices of the sandwich composite

plate are derived on the basis of Hamilton’s principle,Z t2

t1

�
Z

Ao

dHLdA�
Z

Ao

dWdL
dAþ

Z
Ao

dKLdAþ
Z

C
ðduÞT �sdC

� �
dt ¼ 0

ð4Þ

where A0 denotes the midplane (Fig. 1(a)), du is the vector of all
degrees of freedom of the laminate arising from the kinematic
assumptions (3), �s are the tractions at the boundary surface C,
dHL and dKL are the variations of the electromechanical and kinetic
energy of the laminate per unit area, and dWdL is the variation of the
dissipated energy of the laminate per unit area. The present paper
focuses on the prediction of plate response during impacts for
impact durations in the range of milliseconds. By taking also into
account that the structural damping of the materials studied is
low (Plagianakos and Saravanos, 2009), the effect of damping dur-
ing impact is considered minimal and is therefore neglected.

The variations of electromechanical and kinetic energy per unit
area in a composite laminate consisting of n discrete layers are
expressed as:

dHL ¼
Xn

k¼1

Z
z
ðdSk

i Þ
T
ri � ðdEk

j Þ
T
Dj

� �
dz ð5Þ

dKL ¼
Xn

k¼1

Z
z

1
2
ðd _ukÞ

T
qk _uk

� �
dz ð6Þ

where k denotes discrete layer, i = 1, 2, 4, 5, 6 and j = 1, 2, 3, and
Sk

i ;u
k are mechanical strain (Appendix A) and displacement vectors.
nergy impact response of composite and sandwich composite plates with
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Combining the constitutive equations (1), the kinematic assump-
tions (3) and the field-potential relation (2) with Eqs. (5) and (6),
and taking into account interlaminar shear stress compatibility con-
ditions (Appendix A), the laminate energies per unit area take the
form:

dHL ¼
Xn

k¼1

ðdSkÞ
T
½Q k�Sk þ ðdSk

s Þ
T
½Q k

s �S
k
s � ðdSkÞ

T
½Q k

e �E
k
3

h
� ðdEk

3Þ
T
½Q k

e �
T
Sk � ðdEk

3Þ
T
½Lk

e �E
k
3

i
ð7Þ

dKL ¼
1
2

Xn

k¼1

ðd _ukÞ
T
½cMk� _uk

� �
ð8Þ

where indices s and e denote the interlaminar shear strain and elec-
tric field, respectively, the overhat indicates discrete layer inertia
matrix and variables in italics denote vectors reduced by imposition
of interlaminar shear stress compatibility. The generalized displace-
ment, strain and electric field vectors are given by

_uk ¼f _Uk; _Ukþ1; _Vk; _Vkþ1; _w0; _al
x; _al

yg

Sk ¼fUk
;x;U

kþ1
;x ;Vk

;y;V
kþ1
;y ;Uk

;y;U
kþ1
;y ;Vk

;x;V
kþ1
;x ;al

x;x;a
l
y;y;a

l
x;y;a

l
y;xg k¼1; . . . ;n

Sk
s ¼fw0

;y;V
k;Vkþ1;w0

;x;U
k;Ukþ1;al

y;a
l
xg l¼1; . . . ;n�1

Ek
3 ¼fU

k
z ;U

kþ1
z ;ak

u;k
k
ug

ð9Þ

In Eq. (7), Q and Qs are the laminate in-plane and interlaminar
shear stiffness matrices, respectively, Qe is the piezoelectric matrix
and Le is the electric permittivity matrix. These matrices include
the integration through the thickness of the composite laminate
and their formulation has been extensively described elsewhere
(Plagianakos and Saravanos, 2008, 2009). The major benefits arising
from the explicit imposition of the interlaminar shear stress compat-
ibility include prediction of stresses at interfaces between discrete
layers and the elimination of 2n + 2 independent kinematic variables
by expressing the higher-order displacement terms kk (k = 1, . . .,n)
and an as a function of the remaining ones (Appendix A). In the case
of transverse compressibility (HLPT 3-D), no stress compatibility is
imposed, and the displacement and strain vectors of Eq. (9) contain
linear and higher-order terms of transverse displacement and their
derivatives, while the out of plane normal strain is also considered.

2.1.5. In-plane approximation of elastic and electric variables
Before proceeding with integration along the plate’s midsurface,

as dictated by Eq. (4), an in-plane approximation of displacements
and electric potential of the laminate should be implemented. In
the case of a Navier solution applicable to simply-supported cross-
ply composite plates with n piezoelectric layers, the electromechan-
ical variables are approximated using a Fourier series expansion as:

w0ðx;y;tÞ¼
X

m

X
n

w0
mnðtÞsin mp

Lx
x

� �
sin np

Ly
y

� �
Ukðx;y;tÞ¼

X
m

X
n

Uk
mnðtÞcos mp

Lx
x

� �
sin np

Ly
y

� �
Vkðx;y;tÞ¼

X
m

X
n

Vk
mnðtÞsin mp

Lx
x

� �
cos np

Ly
y

� �
al

xðx;y;tÞ¼
X

m

X
n

al
xmn
ðtÞcos mp

Lx
x

� �
sin np

Ly
y

� �
k¼1; . . . ;nþ1

al
yðx;y;tÞ¼

X
m

X
n

al
ymn
ðtÞsin mp

Lx
x

� �
cos np

Ly
y

� �
l¼1; . . . ;n�1

Uk
zðx;y;tÞ¼

X
m

X
n

Uk
zmn
ðtÞsin mp

Lx
x

� �
sin np

Ly
y

� �
s¼1; . . . ;n

as
uðx;y;tÞ¼

X
m

X
n

as
umn
ðtÞsin mp

Lx
x

� �
sin np

Ly
y

� �
ks
uðx;y;tÞ¼

X
m

X
n

ks
umn
ðtÞsin mp

Lx
x

� �
sin np

Ly
y

� �

ð10Þ

With m, n mode numbers.
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In the case of the HLPT 3-D, the Fourier series expansion is
implemented in a similar manner for approximating the additional
out of plane normal terms wk, as

z, ks
z (s = 1, . . . ,n), and the in-plane

terms ks
x, ks

y, an
x , an

y which are not eliminated by imposition of stress
compatibility.

2.1.6. Plate modal structural matrices
Substituting the expressions for laminate electromechanical

and kinetic energy (7) and (8) into the governing equations of
motion (4) and taking into account equations (9) and (10) the plate
structural subsystem in discrete form is built for each mode pair
mn:

½Muu�mn 0
0 0

� �
€umn

€uP
mn

( )
þ
½Kuu�mn ½KPP

uu�mn

½KPP
uu�mn

½KPP
uu�mn

" #
umn

uP
mn

� 	

¼
qmnðtÞ � ½K

PA
uu�mn

uA
mn

DP
mnðtÞ � ½K

PA
uu�mn

uA
mn

( ) ð11Þ

where superscripts P and A denote passive (sensory) and active
piezoelectric layers (Saravanos and Heyliger, 1995), and

umn ¼ w0
mn;U

k
mn;V

k
mn;al

xmn
;al

ymn

n oT
k ¼ 1; . . . ;nþ 1

uP
mn ¼ Uk

zmn
;as

umn
; ks

umn

n oP
� �T l ¼ 1; . . . ;n� 1

s ¼ 1; . . . ;n

ð12Þ

are the plate elastic and electric variable vectors, respectively. The
vector q contains the externally applied loads per unit area, while
D is the vector of externally applied charges. In the absence of exter-
nal charge sources, the structural subsystem is condensed by solv-
ing the second equation of the structural subsystem for sensory
electric potential vector and substituting in the first one. Thus, the
electrically condensed plate subsystem takes the form:

½Muu�mn
€umn þ ½Kcu�mnumn ¼ qmnðtÞ þ ½KA

ce�mnu
A
mn ð13Þ

where

½Kcu�mn ¼ ½Kuu�mn � ½K
PP
uu�mn

½KPP
uu�

�1

mn
½KPP

uu�
T

mn

½KA
ce�mn ¼ ½K

PP
uu�mn

½KPP
uu�

�1

mn
½KPA

uu�mn
� ½KPA

uu�mn

ð14Þ

In the case of the HLPT 3-D, the elastic variables’ vector of
Eq. (12) contains linear and higher-order terms of transverse dis-
placement, as well as, additional in-plane higher order terms, which
are eliminated by stress compatibility in the case of the HLPT 2-D.

2.1.7. Reduction of modal matrices
As indicated by Eqs. (12) and (13), the size of the mass and

stiffness matrices of the plate depend on the through-thickness
discretization. For a plate discretized through-thickness by n
discrete layers, Eq. (12) yields 4n + 1 independent elastic variables
per mode pair, thus the plate has 4n + 1 degrees of freedom (DOF),
which determine the size of the mass and stiffness matrix in
Eq. (13). Considering that for predicting the dynamic response of
a plate subjected to a point impact the plate–impactor system
should be solved for a large amount of mode pairs at each time
step, the layerwise through-thickness discretization would lead
to mass and stiffness matrices of large size and respective compu-
tational cost. In order to reduce this cost and enable implementa-
tion of the methodology to real-time control applications, while
retaining the information regarding the through-thickness response,
appropriate reduction techniques should be applied on the plate sub-
system of Eq. (13). In the current formulation, a Guyan reduction
scheme (Guyan, 1965; Avitabile, 2005) was adopted for being a static
condensation yielding easily an expression of the plate’s selected
primary (independent) DOF as a function of the reduced ones, while
nergy impact response of composite and sandwich composite plates with
16/j.ijsolstr.2014.04.005
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other reduction techniques could be also applied. Since the impact
force is assumed to act purely in the z-direction (Fig. 1(a)) and thus
bending vibration modes are primarily excited, the transverse dis-
placement was selected as the independent DOF:

umn ¼

w0
mn

Uk
mn

Vk
mn

al
xmn

al
ymn

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼ ui

mn

ud
mn

( )
¼ Tmnui

mn ¼ Tmnw0
mn ð15Þ

where Tmn is the modal transformation vector, which arises from
consideration of a static load case for independent (superscript i)
and dependent (superscript d) elastic variables:

½Kii�mn ½Kid�mn

½Kdi�mn ½Kdd�mn

� �
ui

mn

ud
mn

( )
¼ qi

mn

0

( )
ð16Þ

Tmn ¼
1

�½Kdd��1
mn½Kdi�

� 	
ð17Þ

In this context, the plate stiffness matrix for each mode pair mn is
reduced as:

Kr
mn ¼ TT

mn½Kcu�mnTmn ð18Þ
The mass matrix is reduced in a similar manner:

Mr
mn ¼ KT

mn½Muu�mnKmn ð19Þ

where K = {1,0, . . .,0}. The implementation of the Guyan reduction
includes the construction of a modal transformation vector (Eq.
(17)) and of modal matrices (Eqs. (18) and (19)) statically, i.e. once
for each mode pair. The corresponding computational effort is imper-
ceptible with respect to the corresponding effort required for solving
at each time step an at least five times larger system (in the case of a
single discrete layer), such as the full plate-impactor system. On the
other hand, due to the static nature of the Guyan reduction technique,
the mass is underestimated for an increasing mode number (Qu,
2004). However, as illustrated in Section 3, mass underestimation
results to deviations of a few percent between predictions of the full
and reduced system natural frequencies. This deviation has very small
significance compared to the benefit gained by the system size reduc-
tion in terms of computational efficiency.

The plate matrices reduction procedure yields per mode pair mn
a single term for stiffness and mass, respectively. These terms rep-
resent the modal stiffness and inertia properties of the plate,
respectively, with respect to the modal transverse displacement.
The modal in-plane elastic variables U, V, ax, ay can be determined
from the modal transverse displacement w0 by using Eq. (17). The
reduced subsystem of the plate has the form

Mr
mn

€w0
mn þ Kr

mnw0
mn ¼ qw

mnðtÞ ð20Þ

where the contribution of active electric potentials is incorporated
to the vertical surface load.

In the case of the HLPT 3-D, the vector umn in Eq. (12) contains
9n + 3 elastic variables. The reduction technique is implemented in
a similar manner by selecting the top and bottom plate face trans-
verse displacement as independent DOF, thus yielding per mode pair
mn two terms for stiffness and mass, respectively, whereas the rest
9n + 1 dependent variables are expressed as a function of top and
bottom transverse displacement by means of the Guyan reduction.

2.2. Formulation of plate–impactor structural system

2.2.1. Plate–impactor contact force
In the case of impact of a rigid hard impactor such as steel, on

a surface composed of a material of considerably lower stiffness,
such as Graphite/Epoxy, the Hertzian contact law (Stronge, 2000)
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gives rather conservative predictions for the contact force, which
develops during impact. Moreover, it leads to increased computa-
tional cost due to the non-linear relation between the impact
force and the induced local displacement on the impacted face.
In the present methodology, linear contact laws have been imple-
mented in order to retain low computational cost and facilitate
implementation to real-time control applications. In the case of
composite plates, the linear elasto-plastic contact law proposed
by Yigit and Christoforou (1994) is implemented. During impact
at a point with coordinates (x0, y0), the contact force Fi is assumed
to vary linearly with the local indentation, which is defined as the
relative distance between the impactor position and the face
deflection. The latter is assumed to be constant through-thickness
in the case of composite plates on the basis of kinematic assump-
tions (3).

Fiðx0; y0; tÞ ¼
kyðwiðtÞ �w0ðx0; y0; tÞÞ; wiðtÞ > w0ðx0; y0; tÞ
0; wiðtÞ 6 w0ðx0; y0; tÞ

( )
ð21Þ

where wi is the vertical distance of the impactor (modelled as a
point mass) from the plate’s surface position just before impact
and ky is the contact stiffness, which depends on impactor radius
and elastic properties of impactor and plate material (Christoforou
and Yigit, 1998). On the basis of Eq. (21), the simulation of a low-
energy impact of a steel sphere on a composite plate includes two
distinct impact states: (i) aggregation – plate and impactor motion
are coupled and (ii) disaggregation – plate and impactor move inde-
pendently. The trigger for switching between these two distinct
states is the relative distance between impactor position and plate
midsurface (Eq. (21)).

In the case of sandwich composite plates, linearized contact
laws in the form of Eq. (21) have been adopted, with transverse
displacement of the impacted face instead of w0 and contact stiff-
ness based on either reported values (Anderson, 2005), or values
based on the assumption that no damage is induced by the impact
event. In the case of damage, the linearized contact law should
encompass material degradation effects, such as core crushing,
and large face-deflections (Olsson and McManus, 1996; Olsson,
2002), which are not captured by the current methodology. Thus,
the values considered herein for the contact stiffness rest on the
assumption that no damage takes place throughout the impact
event.

A schematic representation of the contact model adopted in the
present impact formulation is illustrated in Fig. 2. A fictitious
spring with stiffness equal to ky is assumed to be attached on the
midsurface. The impactor is assumed to indent the bottom surface,
to attach itself to the spring and to start pushing it upwards, result-
ing in the development of a plate deflection. After some time,
which depends on the values of the initial velocity, plate mass
and stiffness, and contact stiffness ky, the relative velocity between
impactor and plate becomes zero (maximum impact force) and the
relative distance between plate midsurface – impactor starts to
increase up to disaggregation, when the impact force becomes
zero. The plate continues to vibrate and, as extensively discussed
by Christoforou and Yigit (1998), depending on impact characteris-
tics mentioned above it might even catch up with the impactor and
hit it again, yielding a response described as impact chattering
(Stronge, 2000).

2.2.2. Plate–impactor structural system
The plate–impactor structural system is formulated by combin-

ing the plate subsystem equation (20) with the contact force equa-
tion (21), the governing equation of motion of the impactor,

mi €wiðtÞ ¼ �Fiðx0; y0; tÞ ð22Þ
nergy impact response of composite and sandwich composite plates with
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and the expression of transverse modal load per unit area qmn by
means of Fourier series terms,

qmnðx0; y0; tÞ ¼
4Fiðx0; y0; tÞ

LxLy
sin

mp
Lx

x0

� �
sin

np
Ly

y0

� �
ð23Þ

thus describing the governing equations of motion of both impacted
plate and impactor:

Mr
mn 0

0 mi

� �
€w0

mnðtÞ
€wiðtÞ

( )
þ Kr

mn 0
0 0

� �
w0

mnðtÞ
wiðtÞ

( )

¼
4ky wiðtÞ�

Pn

i¼1

Pw

j¼1
w0

ij
ðtÞ sin ip

Lx
x0ð Þ sin jp

Ly
y0

� �� �
LxLy

sin mp
Lx

x0

� �
sin np

Ly
y0

� �
�ky wiðtÞ �

Pn
i¼1

Pw
j¼1w0

ijðtÞ sin ip
Lx

x0

� �
sin jp

Ly
y0

� �� �
8>><>>:

9>>=>>; m ¼ 1; . . . ; n

n ¼ 1; . . . ;w

ð24Þ

where n, w indicate the Fourier modes along x, y, respectively, used
to model plate response and transverse load per unit area.

Eq. (24) implies that when the impactor comes into contact
with the plate, the n and w plate vibration modes get excited
Fig. 2. Schematic representation of the linearized contact model (Yigit and

Table 1
Electromechanical properties of materials considered.

Material properties Composite Foam

Gr/Epoxy (Saravanos and
Christoforou, 2002a)

Klegecell (Plagian
Saravanos, 2009)

Mass density
q (kg/m3) 1578 45

Elastic properties
E11 (GPa) 120.0 0.035
E22 (GPa) 7.9 0.035
E33 (GPa) 7.9 0.035
G23 (GPa) 5.50 0.0123
G13 (GPa) 5.50 0.0123
G12 (GPa) 5.50 0.0123
v12 0.30 0.40
v13 0.30 0.40
v23 0.30 0.40

Piezoelectric properties
d31 (10�12 m/V) – –
d32 (10�12 m/V) – –
d33 (10�12 m/V) – –
d36 (10�12 m/V) – –
d15 (10�12 m/V) – –
d24 (10�12 m/V) – –

Dielectric properties
e11 (10�12 Farad/m) 31 –
e22 (10�12 Farad/m) 27 –
e33 (10�12 Farad/m) 27 –
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piezoelectric sensory layers. Int. J. Solids Struct. (2014), http://dx.doi.org/10.10
yielding a relevant contact force, which results to a pressure load
analysed to its modal counterparts, each of which is related to
the modal transverse deflection by means of Eq. (20). Rearranging
Eq. (24) in order to formulate a homogeneous system of differential
equations yields the coupled impactor–plate system in time
domain:

½Ms�
€w0

mnðtÞ
€wiðtÞ

( )
þ ½Ks�

w0
mnðtÞ

wiðtÞ

( )
¼ 0 ð25Þ

Taking for instance 3 � 3 modes along the midsurface and
assuming impact at the plate’s centre, the system mass and stiff-
ness matrices are written as,

½Ms� ¼

Mr
11 0 0 0 0

Mr
13 0 0 0

Mr
31 0 0

S Mr
33 0

mi

26666664

37777775 ð26Þ
Christoforou, 1994) implemented during impact on a composite plate.

Piezoelectric

akos and PZT-4 (Saravanos and
Christoforou, 2002a)

PVDF PIC 181

7600 1780 7800

81.3 3.0 84.7
81.3 3.0 84.7
64.5 6.0 70.4
25.6 1.0 27.1
25.6 1.0 27.1
30.6 1.0 31.9
0.33 0.30 0.33
0.43 0.30 0.43
0.43 0.30 0.43

�122 �23 �120
�122 �23 �120
285 30 265
0 0 0
495 33 475
495 33 475

13,082 106,000 13,280
13,082 106,000 13,280
11,530 106,000 10,620
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Fig. 3. Validation of current methodology predictions for the case of a small mass
impact on a [(0/90)2/0]S Gr/Ep plate: (a) impact force, (b) plate displacement and
impactor position.
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½Ks� ¼

Kr
11 þ k �k �k k �k

�k Kr
13 þ k k �k k

�k k Kr
31 þ k �k k

k �k �k Kr
33 þ k �k

�ky ky ky �ky ky

26666664

37777775 ð27Þ

where k = 4ky/(LxLy).
The system of Eq. (25) is written in state space form as

_x
�
¼ ½A� x

�

y
�
¼ ½C� x

�

ð28Þ

where x
�

and is the vector of state variables,

x
�
¼ fw0

mn;wi; _w0
mn; _wig

T ð29Þ

y
�

is the vector of output variables, as arising from Eqs. (15) and (11)

y
�
¼ fumn;w0

;x;w
0
;y; _umn;u

P
mng

T
ð30Þ

and [A], [C] are the system and output matrix, respectively:

½A� ¼
0 I
½Ms��1½Ks� 0

� �

½C� ¼
Tmn 0 0 0
0 0 Tmn 0

½KPP
uu�

�1

mn
½KPP

uu�
T

mn
Tmn 0 0 0

264
375 ð31Þ

The slopes of the transverse displacement appearing in Eq. (30) are
used for calculating all cubic higher-order displacement terms k and
the quadratic displacement terms of the nth layer (Eq. (3)) by means
of the through-thickness interlaminar shear stress compatibility
equations (Appendix A). Moreover, an additional physical constraint
applied on the electric potential dictates a constant value along the
piezoelectric surface, thus a relevant analytical integration is
implemented:

uP ¼ 4
p2

X
m

X
n

uP
mn

mn
ð32Þ

The state space system of equations (28) is a stiff system due to
difference between the plate and contact stiffness value. Therefore,
appropriate integration algorithms, such as the Adams-Moulton
(ode113 in Matlab) implicit integration scheme with adaptive
step-size and convergence tolerance in the range of 1.0e�13, have
been implemented.

When the plate loses contact with the impactor (k = 0), the
equation of motion of the impactor uncouples from the plate struc-
tural system (Eq. (25)). The plate vibrates freely with initial condi-
tions the displacement and velocity at the time instant of
disaggregation, whereas the impactor is assumed to move with
constant velocity, since the acceleration of gravity is negligible
compared to the accelerations experienced during an impact.

After solving the structural system of Eq. (28), the displacement
and electric potential components are calculated from the respec-
tive modal amplitudes (Eq. (30) using Eq. (10) and the interlaminar
shear stress compatibility equations (Plagianakos and Saravanos,
2009). Mechanical strain components are calculated by derivation
of Eq. (10) and use of interlaminar shear stress compatibility equa-
tions, whereas for the electric field, Eq. (2) is implemented. Finally,
stresses are calculated by means of the constitutive equations (1).
The procedure is similar in the case of the HLPT 3-D, where the
modal amplitudes of top and bottom face displacements are the
independent DOF included to the structural system and the rest
of the elastic and electric variable amplitudes are calculated after
solution of the structural system.
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3. Results and discussion

The predictions of the current impact mechanics methodology
(HLPT 2-D) were validated with predictions of analytical and
Ritz-type solutions for composite plates without/with piezoelectric
layers (Christoforou and Yigit, 1998; Saravanos and Christoforou,
2002a) and with experimental results for sandwich composite
plates reported in the literature (Anderson, 2005). Simply-
supported cross-ply plates were studied. The impact took place
at the centre of the plates, thus only odd modes were taken into
account. The electromechanical properties of materials considered
are listed in Table 1.
3.1. Case 1: benchmark composite plate

A [(0/90)2/0]S Graphite/Epoxy square composite plate impacted
by a steel sphere having a mass of mi = 8.537 g and an initial veloc-
ity at contact vi = 3.0 m/s was studied as the first validation case.
The plate had an edge length of a = 0.2 m and a thickness aspect
ratio of a/h = 74, whereas each composite ply had a thickness of
0.135 mm. A smeared version of the current higher-order layer-
wise theory (actually a higher-order single-layer theory) was used
to model the plate through-thickness by applying one discrete
nergy impact response of composite and sandwich composite plates with
16/j.ijsolstr.2014.04.005
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Table 2
Predicted natural frequencies of a [pzt-4/(0/90)2/0]S simply-supported plate using full
and reduced higher-order layerwise plate theory (HLPT 2-D).

Mode in x Mode in y

1 3 5 7 9 11
Natural frequency [kHz]

Full system
1 0.4 1.9 4.9 9.1 14.4 20.4
3 2.1 3.4 6.1 10.2 15.4 21.4
5 5.4 6.5 8.9 12.7 17.5 23.3
7 10.1 11.0 13.1 16.4 20.9 26.4
9 15.7 16.6 18.4 21.3 25.3 30.4

11 22.1 23.0 24.7 27.3 30.9 35.6

Reduced system
1 0.4 1.9 4.9 9.2 14.5 20.7
3 2.1 3.4 6.2 10.3 15.5 21.6
5 5.5 6.5 9.0 12.7 17.7 23.6
7 10.1 11.1 13.2 16.6 21.1 26.7
9 15.8 16.7 18.6 21.6 25.6 30.9

11 22.4 23.2 25.0 27.7 31.3 36.2
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layer, since for the thickness aspect ratio and lamination
studied, prediction of primary variables as displacement and thus
impact force are insensitive to local predictions of interlaminar
shear stress at the interface between adjacent layers with differ-
ent fiber-orientation. The contact stiffness had a value of
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Fig. 4. Validation of current methodology predictions for the case of a 0.5 kg mass impac
position, (c) electric potential at lower sensor.
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ky = 6.65e6 N/m (Christoforou and Yigit, 1998), as arising from
yield strength of a typical Graphite/Epoxy composite material
(Reese and Bringman, 1978).

Fig. 3 shows predictions of the current methodology for impact
force and plate–impactor displacement for a time-window of
0.5 ms, during which the impact is over. The results are validated
with those reported using two analytical solutions. The first one
is based on first-order shear laminate theory (FSPT) kinematics
(Saravanos and Christoforou, 2002a), and takes into account the
contribution of the in-plane rotation inertia of the composite
laminate to the total plate inertia. The second is based on classical
laminate theory (CLPT) kinematics (Christoforou and Yigit, 1998)
and neglects such inertia terms. In order to prove convergence,
predictions of the current methodology for impact force
(Fig. 3(a)) are extracted using 11 � 11 and 25 � 25 Fourier modes,
yielding excellent agreement with the FSPT. Note that in the devel-
oped method the size of the reduced plate–impactor system was
74 � 74 for 11 � 11 modes, whereas the full system, such as in
the case of the FSPT, would have a size of 362 � 362 for equal
modes in state space. The required computational time on a dual
core processor (3.06 GHz, 6 MB) for the reduced plate impactor
system was 1.5% of that of the full system. Thus, the developed
method could efficiently capture the wave-controlled impact
response of the composite plate (local response occurring prior
to reflection of waves from the boundaries, as described by
Olsson, 2003), as well as, the impact chattering observed after
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t = 0.328 ms. According to Eq. (21), the duration of the two distinct
impact states may be determined by the force amplitude, as well as
from comparison of predicted displacements for plate and impac-
tor shown in Fig. 3(b).
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Fig. 6. Energy variation during impact of a 5.0 kg impactor on a [pzt-4/(0/90)2/0]S

plate.
3.2. Case 2: composite plate with piezoelectric sensory layers

Surface attached sensory piezoelectric layers with inner termi-
nals grounded, having a thickness of 0.25 mm, were added to the
composite plate studied above to yield a [pzt-4/(0/90)2/0]S lamina-
tion and a thickness aspect ratio a/h = 62.5. The plate was modelled
using three discrete layers through thickness, namely one for each
piezoelectric layer and one for the composite sublaminate. A con-
tact stiffness ky = 1.234e7 N/m was assumed (Saravanos and
Christoforou, 2002b). Steel spherical impactors with different mass
(0.5 and 5.0 kg) were considered in order to indicate response in a
transition or a global impact regime (Christoforou and Yigit, 1998),
whereas the initial impactor velocity was 1 m/s. The term ‘‘global
impact’’ has been borrowed from Christoforou and Yigit (1998) to
indicate the quasi-static response dominated by the inertia effects
of the impactor, while the plate’s vibration is negligible.

In Table 2 the natural frequencies of the plate are presented,
which have been calculated by using either the full, or the reduced
stiffness and mass matrices of the developed methodology. The full
and the reduced system are practically equivalent, since the max-
imum difference between their predictions is around 1.5%. The
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Fig. 5. Validation of current methodology predictions for the case of a 5.0 kg mass impac
position, (c) electric potential at lower sensor.
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impact response of the plate for the case of the medium and large
mass impact for 11 � 11 Fourier modes is illustrated in Figs. 4 and
5, respectively. Good agreement is observed between the devel-
oped methodology and the analytical solution based on the
single-layer FSPT, which implements an explicit integration of
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the full system for impact force, plate displacements and impactor
position (Saravanos and Christoforou, 2002a). The predicted varia-
tion of the electric potential at the bottom outer face with time for
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Fig. 7. Validation of current methodology with published measured data for a thick [0/
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the two impactor masses is illustrated in Figs. 4(c) and 5(c),
respectively. The deviations observed between predictions of the
current method and FSPT is attributed to the additional in-plane
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integration of the electric potential along the xy-plane (Eq. (32)). As
far as computational effort is concerned, implementation of the
developed method, which models the through-thickness response
by three discrete layers, led to a plate-impactor system of size
74 � 74 in state space, as in the previous case study, and to similar
computational gain, whereas the solution of a full system of size
938 � 938 would have been required in the case of no reduction.

In order to quantify the electric energy developed in the piezo-
electric layers, which could be used in the case of power autono-
mous control, the energy equilibrium during impact was studied.
Fig. 6 illustrates the temporal variation of potential, kinetic and
electric energies developed during impact of the larger mass
(5.0 kg) for 3 � 3 vibration modes. During the loading phase, the
kinetic energy of the impactor is gradually transformed to poten-
tial energy stored in the fictitious contact spring (Fig. 2), and elas-
tic, electric and kinetic energy in the plate, whereas this process is
inversed during the unloading phase. The amount of electric
energy developed is considerable in this case, where piezoceramic
material layers have been applied. In the case of piezopolymer lay-
ers, the electric energy would be negligible, mainly due to lower
piezoelectric coefficients.

3.3. Case 3: sandwich composite plate

A simply-supported [0/90/0/foam] thick square sandwich com-
posite plate studied by Anderson (2005) was considered. The
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plate had an edge length of a = 0.0762 m and a thickness aspect
ratio of a/h = 4, whereas the core consisted of 12.7 mm thick
PMI foam. The plate was impacted at its centre by a mass of
mi = 1.8 kg, which had an initial velocity of 2, 3 and 3.73 m/s,
respectively, resulting in impact energies of 3.6, 8.1 and 12.6 J.
The plate was modelled using 3 discrete layers through the thick-
ness and it was impacted upwards on the bottom face. A contact
stiffness of ky = 2.23e6 N/m, reported by Anderson (2005), was
assumed and 11 � 11 Fourier modes were taken into account.
Using the HLPT 3-D kinematics of Eq. (3), a reduced structural
system of size 146 � 146 was formulated in state space, including
deflection amplitudes of bottom und top face per vibration mode,
whereas solution of a system of size 2162 � 2162 would be
required in the case of a full structural system.

Predictions of the HLPT 3-D impact methodology and measured
data reported by Anderson (2005) for impact load vs. time for the
three different impact energy levels are illustrated in Fig. 7(a).
Fairly good agreement between predictions and measurements
can be observed for impact force during loading and maximum
impact force, whereas the current methodology fails to predict
impact force during unloading due to damage effects, such as core
crushing, which are neglected in the formulation and the contact
law applied. In Fig. 7b the transverse displacement of impactor,
bottom face and top face are plotted, illustrating that the current
methodology can capture the core compressibility effects occur-
ring during impact.
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3.4. Case 4: sandwich composite plate with piezoelectric sensory layers

The impact response of a square [pz/0/foam]s sandwich composite
plate of thickness aspect ratio a/h = 31 was studied. The plate con-
sisted of two surface attached piezoelectric layers, each having a
thickness of 0.2 mm, Graphite/Epoxy faces of 2 mm each and a
15 mm PVC foam core (Klegecell – DIAB Group). The plate was
impacted upwards at the centre of the bottom face by a mass of
mi = 0.25 kg having an initial velocity of 1 m/s. To indicate the effect
of piezoelectric material on the impact response of the plate, a piez-
oceramic (PIC 181 – PI Ceramic GmbH) and a piezopolymer (PVDF
(DT1-052 K) – MS Inc.) layer were considered. Since no indentation
measurements were available, a contact stiffness of 1.234e7 N/m
(Saravanos and Christoforou, 2002b) and 7.0e6 N/m were assumed
for the piezoceramic and piezopolymer material, respectively, on
the basis that no damage takes place. Both contact stiffness values
are in the range of linearized Hertzian contact for the predicted
indentations. The plate was modelled using five discrete layers
through-thickness, namely one for each material sublaminate, result-
ing to 46 deflection-dependent DOF per mode. In this case, 15� 15
modes were used for predicting the impact response of the plate,
resulting to the formulation of a reduced structural system of size
258� 258 in state-space, whereas solution of a system of size
6146� 6146 would be required in the case of a full structural system.

Fig. 8 illustrates the impact response of the plate in the case of
piezoceramic and piezopolymer sensory layers. The piezoelectric
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material strongly affects the impact force, mainly due to the value
of contact stiffness. As seen in Fig. 8(a) there is practically a single
impact event for both piezoceramic and piezopolymer layers and
force and deflection, shown in Fig. 8(b) are in-phase. Thus, for both
piezoelectric materials a rather global impact response may be
observed. In realistic control applications, the type and duration
of impact and the electric energy developed are of major impor-
tance, since they determine the feasibility of control during the
impact event. As expected, the maximum impact force is much
higher, and impact duration much shorter in the case of the piez-
oceramic layer due to a higher contact stiffness. As far as the con-
version of the kinetic to electric energy is concerned, the
piezoceramic layer is much more efficient, as indicated by the tem-
poral variation of the electric potential presented in Fig. 8(c) and
(d) for these piezoelectric materials, respectively. The large differ-
ence between the two piezoelectric materials in impact-induced
electric potential is attributed to both electromechanical proper-
ties and contact stiffness. The fact that the piezoelectric coeffi-
cients of the piezoceramic material are higher than those of the
piezopolymer, combined with the higher contact stiffness, lead to
higher strains and higher conversion of mechanical to electric
energy in the piezoelectric layer, as mandated by the constitutive
equation (1).

Fig. 9 shows the predicted electromechanical local through-
thickness response at points of maximum values at the timestep
corresponding to maximum impact force. Fig. 9(a)–(d) highlight
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the benefit of implementing higher-order layerwise kinematic
assumptions, since piecewise through-thickness distributions up
to second order can be efficiently captured using a minimum num-
ber of discrete layers. Especially in the case of interlaminar shear
stress (Fig. 9(d)) the developed methodology efficiently captures
parabolic through-thickness distributions at the sandwich faces
using five discrete layers through the thickness of the laminate.
The latter is a major advantage compared to linear layerwise
laminate theories, which would require a large number of discrete
layers and thus degrees of freedom in order to capture such
through-thickness stress profiles (Plagianakos and Saravanos,
2008, 2009). On the other hand, the lack of explicit imposition of
shear stress compatibility equations leads to non-zero interlaminar
shear stresses at the free faces, although they tend to get to zero.
The enhanced capabilities of the developed methodology regarding
efficiency include information concerning the through-thickness
response during impact and prediction of stress at adjacent mate-
rial interfaces, while the size of structural matrices participating to
the solution after the impact event is kept small by expressing all
structural parameters as a function of modal deflection amplitudes,
as described in Section 2.1.7. Prediction of the temporal stress var-
iation at a particular point of interest is useful for having an idea of
the possibility of damage initiation in the form of core crushing,
delamination and matrix cracks, and design accordingly. Fig. 10
illustrates such a prediction of stress tensor components at the
interface between different material layers. In Fig. 10(a) and (c),
in-plane normal and interlaminar shear stresses at the interface
between composite-piezoelectric layer are plotted. The latter pre-
diction is useful in order to estimate probable delamination of
the piezoelectric layer. Fig. 10 shows predicted temporal variation
of the out of plane normal stress at the interfaces between compos-
ite faces and foam core. Taking into account the failure criterion of
Besant et al. (2001) and the foam strength data (compressive
strength 0.5 MPa, shear strength 0.6 MPa), it can be observed that
the foam does not fail.

The proposed methodology can predict the stress field devel-
oped in a composite or a sandwich composite plate with piezoelec-
tric layers subjected to low-energy impact, while remaining within
the limits of linear elastic response. It has been developed for use
in real-time control applications, where the amount of state vari-
ables and the size of the system matrices are of major importance.
The initiation of damage is combined with non-linear phenomena
that are not captured. If extended to account for non-linear effects,
such as large displacements and material degradation, it will be
able to predict damage initiation and propagation; this can be
the subject of future work.
4. Summary

A novel model-reduction based methodology for predicting
both global and local low-energy impact response of pristine sim-
ply-supported cross-ply composite and sandwich composite plates
with piezoelectric sensory layers was presented. The methodology
combines novel higher-order layerwise through-thickness kine-
matics, which account for core transverse compressibility, and a
Guan reduction technique. Its major advantage over single-layer
or linear layerwise analytical solutions or finite element formula-
tions lies in the computational efficiency, which leads to at least
an 80% saving in system size and thus leads to comparable reduc-
tion in computational effort, whereas it predicts stresses at inter-
faces between different material layers. Contributions of the
paper include prediction of the low-energy impact response of
sandwich composite plates with piezoelectric layers, quantifica-
tion of the effect of piezoelectric material on the global impact
response (impact force, displacement and electric potential) and
Please cite this article in press as: Plagianakos, T.S., Papadopoulos, E.G. Low-e
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prediction of the electric energy developed in the piezoelectric lay-
ers during impact on composite plates. The developed methodol-
ogy leads to formulation of low-size systems in state space, thus
facilitating applicability in real-time impact and vibration control,
which will be topics of research to follow.
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Appendix A

A.1. Composite ply tensors (HLPT 2-D)

The stiffness tensor of a unidirectional orthotropic composite
ply is formulated in the material coordinate system as follows:

½Q l� ¼

Q l11 Q l12 0 0 0
Q l22 0 0 0

Q l44 0 0
S Q l55 0

Q l66

26666664

37777775 ðA1Þ

where S denotes symmetry and the matrix terms are given by:

Ql11 ¼
E11

1� m12m21
; Q l12 ¼

m12E11

1� m12m21
;

Ql22 ¼
E22

1� m12m21
; Q l44 ¼ G23; Ql55 ¼ G13; Ql66 ¼ G12 ðA2Þ

The off-axis stiffness matrix of a ply having fibers aligned at an
angle h to the natural coordinate system is derived by the rotational
transformation for second-order tensors:

½Q c� ¼ ½R�
�1½Q l�½R�

�T ðA3Þ

where [R] is the rotational transformation matrix:

½R� ¼

m2 n2 0 0 2mn
n2 m2 0 0 �2mn

0 0 m �n 0
0 0 n m m

�mn mn 0 0 m2 � n2

26666664

37777775with m ¼ cos h and n ¼ sin h

ðA4Þ
A.2. Piezoelectric ply tensors (HLPT 2-D)

The piezoelectric charge tensor has the following form:

½dl� ¼
0 0 0 d15 0
0 0 d24 0 0
d31 d32 0 0 0

264
375 ðA5Þ

The piezoelectric tensor [el] appearing in the constitutive Eq. (1) is
formulated from the piezoelectric charge tensor and the stiffness
tensor as follows:

½el� ¼ ½dl�½Cl� ðA6Þ
A.3. Through-thickness polynomial functions

The polynomial functions developed for the approximation of
in-plane displacements and electric potential through the thick-
ness of each discrete layer are:
nergy impact response of composite and sandwich composite plates with
16/j.ijsolstr.2014.04.005
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Wk
1 ¼ ð1� fkÞ=2

Wk
2 ¼ ð1þ fkÞ=2

Wk
3 ¼

hk

2
ðf2

k � 1Þ

Wk
4 ¼

hk

2
fkðf2

k � 1Þ

ðA7Þ

In the above equation fk is the local thickness coordinate of layer k,
given by:

fk ¼
2
hk

z� zk
1 þ zk

2

hk
ðA8Þ

where hk is the thickness of the discrete layer and zk
1, zk

2 are the
z-axis coordinates of the bottom and top surfaces of the kth discrete
layer, respectively (Fig. 1(a)).

A.4. Discrete layer strain vectors

On the basis of the kinematic assumptions (3), the full strain
vectors appearing in Eq. (5) in the case of the HLPT 2-D are
formulated as,

Sk
1 ¼ Uk

;xW
k
1 þ Ukþ1

;x Wk
2 þ ak

x;xW
k
3 þ kk

x;xW
k
4

Sk
2 ¼ Vk

;yW
k
1 þ Vkþ1

;y Wk
2 þ ak

y;yW
k
3 þ kk

y;yW
k
4

Sk
6a ¼ Uk

;yW
k
1 þ Ukþ1

;y Wk
2 þ ak

x;yW
k
3 þ kk

x;yW
k
4

Sk
6b ¼ Vk

;xW
k
1 þ Vkþ1

;x Wk
2 þ ak

y;xW
k
3 þ kk

y;xW
k
4

Sk
4 ¼ w0

;y þ
Vkþ1 � Vk

hk
þ 2fkak

y þ ð3f2
k � 1Þkk

y

Sk
5 ¼ w0

;x þ
Ukþ1 � Uk

hk
þ 2fkak

x þ 3f2
k � 1


 �
kk

x

ðA9Þ
A.5. Interlaminar shear stress compatibility

In a sandwich piezoelectric composite laminate modelled with
n-discrete layers through-thickness interlaminar shear stresses
should be continuous between discrete layers and vanish at top
and bottom of the laminate:

r1
4ðf1 ¼ �1Þ ¼ r1

5ðf1 ¼ �1Þ ¼ 0 ðaÞ
rk

4ðfk ¼ 1Þ ¼ rkþ1
4 ðfkþ1 ¼ �1Þ

rk
5ðfk ¼ 1Þ ¼ rkþ1

5 ðfkþ1 ¼ �1Þ
k ¼ 1; . . . ;n� 1 ðbÞ

rn
4ðfn ¼ 1Þ ¼ rn

5ðfn ¼ 1Þ ¼ 0 ðcÞ

ðA10Þ

By taking into account the constitutive equation (1) and discrete
layers strains of Eq. (A9) the above equations are rearranged as:

kk
y

kk
x

( )
¼ ½~Kðk;kÞ�Nk

s þ ½~Kðk;k�1Þ�Nk�1
s þ � � � þ ½~Kðk;1Þ�N1

s ðaÞ

an
y

an
x

� 	
¼ ½K̂ðn;nÞ�

N�ns

kn
y

kn
x

8><>:
9>=>; ðbÞ

kn
y

kn
x

( )
¼ ½~K�ðn;nÞ�N�ns þ ½~Kðn;n�1Þ�Nn�1

s þ � � � þ ½~Kðn;1Þ�N1
s ðcÞ

ðA11Þ

where ~K, K̂ and ~K� are reduction matrices and their superscript
denotes expression of higher-order terms of layer k as a function
of terms of that layer and all layers below (Plagianakos and
Saravanos, 2009) included in vectors,

Nk
s ¼ wo

;y;V
k;Vkþ1;wo

;x;U
k;Ukþ1;ak

y;a
k
x

n o
N�ns ¼ wo

;y;V
n;Vnþ1;wo

;x;U
n;Unþ1

n o ðA12Þ
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Derivation of Eq. (A11) with respect to x, y yields higher-order
terms participating in the expression of discrete layer in-plane
strains. Imposition of the interlaminar shear stress compatibility
conditions of Eq. (A11) on the discrete layer stiffness matrices yields
the reduced vectors Ss and Sk

s of Eq. (7), explicitly given in Eq. (9).
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