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Abstract
In this paper, we study the problem of large force/torque
application using robotic systems with limited force/torque
actuators. For such systems, the available workspace may be
smaller than its reachable workspace. It is shown that
redundancy increases the force capability and workspace of a
robotic system. To plan redundant manipulator postures
during force tasks, a new method based on a min-max
optimization scheme is used. Unlike other norm-based methods,
the proposed one guarantees that no actuator capabilities are
exceeded, and that the required force/torque of the most loaded
actuator is minimized. Examples that demonstrate the validity
and usefulness of the proposed method are included.

1 Introduction
Humans display an extraordinary ability in developing and
applying large forces to their environment, compared to
their muscle force and torque capabilities. During a task re-
quiring application of large forces, body posture may
change adapting to task needs, and redundancy is utilized ef-
ficiently. On the other hand, robotic manipulators exhibit
limited force/torque capabilities, even in static or quasi-
static tasks. This issue becomes very important in mobile
applications of robotic systems, where typically
development of large forces is expected. In these
applications, the position of a mobile system’s base can be
relocated with respect to a task, adding redundancy to the
system. In cases where repetitious tasks are being planned,
the robot can be positioned initially such that its posture is
optimal for the given force task. In space, highly redundant
systems such as the Special Purpose Dexterous
Manipulators (SPDM) mounted on the Space Station
Remote Manipulator System (SSRMS), see Fig. 1, are
being built to operate in a gravity-less environment.
Efficient application of forces in space becomes very
important given the fact that actuators are typically small
due to weight restrictions, and to the lack of the need to
support a system’s own weight.

Actuator limitations have been considered in studies of
time optimal motion planning, and in resolving manipula-
tor redundancy in motion control [1,2]. The force distribu-
tion problem in multi-limb systems has been studied using
linear programming techniques, in conjunction to energy
and load balancing performance indexes [3]. The necessary
and sufficient conditions for applying a force to the envi-

ronment were presented in [4]. Posture control in motion or
force tasks has been considered using velocity and force el-
lipsoids, and a task compatibility measure [5]. The direction
and magnitude of maximum force/torque that can be applied
at some given end-effector location has been studied to pro-
vide a basis for the task planning for force control of multi-
ple cooperating robot arms [6]. A configuration-space based
Force Workspace approach, originally proposed in [7], was
used to plan motions of multi-limb systems without violat-
ing actuation and joint limits, or frictional constraints [7].
Redundancy resolution criteria were introduced based on de-
sired motion or force task requirements [8].

Fig. 1. The SPDM on the SSRMS

In this paper, we study the problem of large force/torque
application using robotic systems with limited force/torque
actuators. For a given desired end-effector force/torque, there
exists a workspace with the property that if the end-effector
is in it, then the desired force/torque can be applied without
violating actuator constraints. Such a ‘force workspace’ is
larger for redundant systems than for non-redundant systems
with the same reachable workspace. To plan force tasks for
redundant manipulators, a new method based on a min-max
approach is used. For a given force task, the optimal
manipulator posture is computed by first finding the
maximum required normalized torque curve as a function of
a redundancy parameter, and then by choosing this
parameter such that the normalized torque at some posture
is minimized. It is shown by examples how this method
can be applied in planning force tasks. Finally this new
method is compared with a widely used method based on
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minimizing the sum of weighted squared forces/torques. It
is shown that such method does not guarantee that actuator
limits are not exceeded. In contrast, the proposed method
guarantees that all joint torques will not exceed their limits.
In addition, the torque level of the joint required to apply
the largest normalized torque will ‘suffer’ the least possible,
resulting in effective actuator use, and maximization of a
robotic system’s force capabilities.

2 Force workspace
In this paper we focus on tasks which require the
application of large forces or torques on the environment.
For example, such tasks include holding or lifting large
payloads, pushing heavy containers in warehouse
operations, or removing of an Orbital Removable Unit
(ORU) during some contingency operation in space. In such
cases, inertial forces are relatively small or non-existent,
and therefore such tasks can be considered as quasi-static or
even static. Then, the equivalent torques/forces t required to
apply a force/torque F f n= [ , ]T T T , where f and n are the
force and moment applied by the end-effector to the
environment, are given by

  

tt  ==   J q F( )T (1)

where J q( )  is the Jacobian of the manipulator [9]. We
assume here that the manipulator structure is such that the
force F can be applied in any desired direction. However,
since actuators are not ideal sources of force or torque, the
forces/torques t are subject to constraints such as torque
speed characteristics. In static or quasi-static cases, these
result in maximum actuator force/torque limits given by

  

| |tt     tt≤ max (2)

For quasi-static tasks, 
  

ttmax  is a function of the con-
figuration q. As the magnitude of the applied force F is
increased, it is expected that one or more actuators will
saturate, i.e. they won’t be able to provide the necessary
force/torque as required by the equivalent torques given by
Eq. (1). If the magnitude of the force is further increased,
then either the manipulator will have to change posture,
move its base closer to the point of application, or fail in
its task, sometimes with disastrous consequences.

It is interesting to examine what are the possible
configurations (postures) at which the end-effector can apply
a force with given magnitude and direction. This problem
can be solved analytically in simple cases, but in general
requires sophisticated search techniques. Such searching can
be minimized by noting that at the boundaries of the region
at which end-effector can still apply the given force, one or
more actuators will saturate, i.e. | τ τi |= i,max . To
demonstrate this notion, a simple two-link manipulator
with equal links is employed. The link lengths are
l m l m1 21 9= =, . , and the torque limits τ1,max = 10Nm ,
τ 2,max = 6Nm . As depicted in Figure 2, when the force is
very small, the end-effector can apply a force F along the x
axis at any point in its reachable workspace. However,
when the force magnitude increases to 12Nm, the available
‘force workspace’ is reduced significantly.
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F i g . 2 Workspace regions where force F can
be applied. (a) Small F, (b) large F.

As shown in Fig. 2, the force workspace is delimited by
two straight lines parallel to the force, at a distance
| | | |,maxτ1 F  from the base of the manipulator. The
workspace boundaries associated with the second joint
saturation are obtained analytically by setting the second
joint torque to its maximum value, and then solving for the
possible end effector positions in Eq (1). For a two-link
planar manipulator, the boundaries are four circles of radius
l1 centered at a distance l2 from the base at the angle
q q l FF1 2 2= ± − ( )[ ]arcsin ,maxτ  where qF  is the direction
of the force F. For simplicity, the second joint is restricted
to positive angles.

For planar manipulators, changing the force direction
results in a simple rotation of the force workspace. For
example, if the desired force F is rotated in the positive
direction by 40°, then the shaded area in Fig. 2(b) will also
rotate by the same angle, and this is where the manipulator
will be able to apply the desired force.

Note that computing this workspace allows one to plan
force tasks. A task is feasible if the end-effector belongs in
the force workspace. If this is not the case, then either the
base of the manipulator must relocate, or the task must be
moved with respect to the base of the manipulator. The first
case applies to mobile systems, whereas the second
becomes important in repetitive operations. If any of these
possibilities does not apply, the particular force task
becomes non feasible.

We next focus on the effect of redundancy on the force
workspace of a system. To this end, we compare two ma-
nipulators with the same reachable workspace boundary, and
the same actuators. Their parameters are given in Table I.
For both, the force task is to apply a force F= 10.25 N at
0°. The force workspaces are obtained in each case. Fig 3(a)
shows that two link manipulator is not capable of applying
this force at the configuration shown, while the redundant
manipulator, can successfully accomplish the same task,
see Fig. 3(b). Physically, this is due to the fact that the
joints of the redundant system can be positioned such that
the moment arms are minimized.

Table I. Manipulator parameters

l1
(m)

l2
(m)

l3
(m)

τ1,max

(Nm)
τ 2,max

(Nm)
τ3,max

(Nm)
1 2.0 1.0 n/a 10.0 10.0 n/a
2 1.0 1.0 1.0 10.0 10.0 10.0
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Obtaining the force workspace for a redundant manipulator
requires that all possible configurations be examined before
deciding if a particular end effector position is part of the
workspace. This is done by expressing actuator
torques/forces as functions of the redundant joint variables,
and choosing values for these variables such that no joint
actuator becomes saturated.
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Fig. 3. Comparison of the force workspace for

a non-redundant and a redundant
manipulator with the same reachable
workspace boundary.

3 Configuration planning for redundant
manipulators
3.1 Optimal configurations during a force /
torque task
A redundant manipulator has more degrees of freedom than
the task requires. This allows one to choose additional con-
ditions to be met. Typical such conditions include energy
minimization, or manipulability maximization. A compre-
hensive review of related criteria can be found in [8]. To ap-
ply these criteria, some manipulator performance index is
defined first, and then optimized to result in planning con-
figurations and trajectories. However, a problem that arises
is that these criteria affect the manipulator in an overall
manner; i.e. they do not consider individual joint limita-
tions. For example, optimizing the mechanical advantage in
a manipulator, does not guarantee that individual joint actu-
ator limits will not be exceeded. To avoid these problems,
it is essential to determine first what is the workspace range
where a manipulator can apply a given force, if any, and
then consider criteria to be optimized within that range.

To demonstrate this concept, consider a three link planar
manipulator, as shown in Fig. 3(b). Its joint actuators are
subject to torque limits as specified by Eq. (2). Since these

limits are typically not the same, the torque at each joint is
normalized with respect to its maximum absolute value.
Therefore, it is required that all joint normalized
force/torques do not exceed 1 in absolute value. Hence,

τ
τ

i

i,max

≤ 1 (3)

Note that due to Eq. (1), the value of the ratio given by
Eq. (3) is a function of the configuration q  of the
manipulator. Using Eq. (3), and assuming some
configuration q, we can determine how much a particular
joint actuator is loaded, and in addition, by computing this
ratio for all joints, which actuator is loaded the most. The
closer the normalized torque for some joint's actuator is to
1, the worse it is for this actuator.

For some given end-effector location, the normalized
torques can be plotted as a function of the redundant vari-
ables, in this case as a function of q

1
. If in this plot there

are ranges of q
1 for which Eq. (3) is satisfied, then the end-

effector location lies in the force workspace, i.e. the end-ef-
fector force F can be applied at this location. For example,
Fig. 4 shows such a plot of normalized torques that corre-
sponds to some end-effector location. Since for the ranges
shown, all normalized torques are below 1, the desired force
can be applied at the corresponding end-effector location.
Since a range of angles q

1
 is available, then a corresponding

range of manipulator postures q is also available.
In general, the range from which q

1
 can be chosen is

limited due to geometric considerations, or joint limits. For
example, as shown in Fig. 4, no values between 0.92 and
3.15 rad are acceptable due to geometric limitations. When
torque limitations are taken into account, the maximum
normalized torque plot indicates two feasible ranges from
which q

1
 can be chosen, see Fig. 4. In these two regions,

the maximum normalized torque is below or equal to 1. To
optimize some given general criteria like power, would
require optimization of the posture within these ranges.
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Fig. 4. Typical normalized torque variation as
a function of the first joint angle, q 1.

The next question we address is what the optimization
criterion should be to guarantee that the force can be applied
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without violating actuator limitations. To answer this
question, we first define the optimal configuration as the
one at which all actuators ‘suffer’ the least, i.e., the
normalized torques are all as far as possible from 1.
Mathematically, this criterion can be set as a min-max
problem defined as follows: choose the optimal
configuration q such that it satisfies

U
r i

i r

i

= min max
( )

,maxq

qτ
τ

(4)

where q
r
 is the set of the redundant joint variables. To

apply this criterion, one needs to find the maximum of the
normalized torques as a function of q

r
 and then find its

minimum. This operation guarantees that all joints will
have a load less or equal to U. In the case of a three link
manipulator, if we choose as a redundant joint variable the
first joint angle, q

1
, then the optimal q

1 is determined by

U
q

q i

i

i

=
=

min max
( )

, , ,max1 1 2 3

1τ
τ

(5)

The other two joint angles can be found using standard
inverse kinematic equations.

Applying the min-max criterion on the plot in Fig. 4
yields as the optimal angle q

1,opt
 = 3.4 rad. It is readily seen

that this solution occurs where the normalized torques of
joints 2 and 3 are equal. This makes physical sense. First,
the first joint actuator has no incidence on the optimal
configuration. This is because, whatever the configuration
the manipulator adopts for a given end effector position, the
moment arm with respect to joint 1 is the same. Basically,
this joint can always support the torque, until the moment
arm becomes greater than | | | |,maxτ1 F . However, for joints
2 and 3, the normalized torque is a function of the
configuration, and it is natural that the best configuration
will occur when these two joint “share” the load equally,
taking into account their relative actuator limits. Looking
at Fig. 4, we see that there are four points where the
normalized torques of joints 2 and 3 are equal. (There are
eight points if q

3
 is allowed to be negative, but for

simplicity, it has been assumed positive). These points can
be found by using root finding algorithms like Newton’s
method. Numerical difficulties are encountered at the
geometric limits and singular configurations, especially
when links are of equal lengths. These can be overcome
using a small step size. Although only one such point
(root) corresponds to the actual minimum, finding all the
roots is useful for the next step: planning the configuration
of the manipulator as it performs a task.

3.2 Force Task Planning. When a manipulator
performs a task, such as pushing a heavy container, or
removing an ORU, it must apply a force/torque along a
path, S, parameterized by some variable s. Here again, we
require that the actuator limits at the joints must not be
exceeded. We can thus perform the same analysis as was
done above to determine the range of possible q

1
 and so

forth. However, this can be long and tedious. Instead, we
use an algorithm that tracks the angles q

1
 at which two

normalized torques are equal. Since these are found using a
root solver, we refer to them as the ‘roots’.

Note that since the motion of the end effector is
continuous, the normalized torque variation graph, and the
roots change gradually with s. Therefore, a new root can be
found with a root solver using the previous one as a rough
initial estimate. With a reasonable step size, fast
convergence is achieved and the root can be ‘followed’ as a
function of the path parameter, s. For example, Fig. 5
shows the evolution of angles q

1
 at which two normalized

torques have equal values, whereas Fig. 6 shows the
corresponding normalized torque. The optimal configuration
q

1,opt
(s) will consist of segments that belong to the curves

shown in Fig. 5.
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Fig. 6. Normalized torque values that
correspond to roots shown in Fig. 5.

Looking at the normalized torque that corresponds to
roots 2 and 4 in Fig. 6, we see that although they start off
well above 1, they eventually fall below. On the other
hand, the normalized torque that corresponds to root 1 starts
off well below 1, but increases rapidly above it. Also, both
in Fig. 5 and Fig. 6, the curves that correspond to roots 2
and 3 converge around s=0.7. This is the case when two
separate roots become a single double root, and then disap-
pear. At the point where they disappear, the normalized
torque curve for joint 2 and 3 barely touch, and then they
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separate as s is increased. The root finder algorithm then
jumps to the next closest root, # 4 as can be seen in Fig. 5.

Fig. 6 is useful because it can be used to decide which
root should be chosen so that the normalized torques are
equal or less than 1. Then Fig. 5 is used to find the
corresponding optimal configuration by specifying the
value of q

1
. At any point s along S, the minimum in Eq.

(4) corresponds to the root with the lowest normalized
torque value, i.e. we choose the lowest curve in Fig. 6. For
the case depicted in Figs. 5 and 6, the algorithm follows
root 1, then root 3, root 4, root 3 again, root 4 again and
finally root 1 (notice root 1 falls below root 4 around
s=0.95). When we switch from one root to another, the
manipulator changes configuration. However, during this
time, it may not be able to apply the force. This is
analogous to when we try to move large objects around.
Sometimes, we must stop pushing, reposition ourselves,
and continue pushing again.

If switching configurations is time demanding, or
undesirable, then it can be minimized by following
suboptimal configurations, i.e. configurations for which the
normalized torques are below 1, but not minimum.
However, in some cases switching cannot be avoided. For
example, for the case shown in Figs. 5 and 6, the number
of switchings can be reduced to just one. The corresponding
solution is to follow root 3 until s=0.7, then switch to root
4 until the end of the path.

4 Example
The planning method presented in Section III is next
applied to a three link manipulator, whose parameters are
given in Table II.

Table II. Manipulator parameters

l1
(m)

l2
(m)

l3
(m)

τ1,max

(Nm)
τ 2,max

(Nm)
τ3,max

(Nm)
1.4 1.0 0.6 10.0 5.0 3.0

The force task consists of applying a force of 8 N at 0°
along S - a straight line connecting points A and B with
coordinates ( , ) ( . , . )x y mA A = −0 3 0 6  and ( , )x yB B  = (2.3,
-0.6)m, i.e. a motion parallel to the x-axis. Figs. 5 and 6
show the evolution of the roots as the end effector moves
along S. Figures 7, and 8 depict the optimal solution
normalized torques and corresponding q

1
-configurations.

Notice that the graphs are not continuous: discontinuities
correspond to switching of configurations.

As discussed above, a suboptimal solution is also
possible if the number of switchings is reduced to one, and
occurs at s=0.7. The results are displayed in Figs. 9. Fig.
10 shows the actual configurations along the path S.

The proposed method is compared next to a frequently
used method which resolves the redundancy by minimizing
the sum of weighted actuator squared torques

q
1 satisfies min ( ) ( ) ( )w q w q w q1 1

2
1 2 2

2
1 3 3

2
1τ τ τ+ +{ } (6)

Weights are needed especially in the case where prismatic
and rotary actuators are used so that the criterion is uniform

in terms of units. Note that the min-max method proposed
here does not suffer from this limitation. Also note that the
criterion given by Eq. (6) does not guarantee that during a
force task no actuators will saturate. Instead, it guarantees
that the ‘power’ required will be minimal.

To compare the performance resulting from the use of
Eq. (6) with the results obtained using the min-max
criterion, we use Eq. (6) with unit weights. In such case,
the criterion (6) given above roughly minimizes total power
consumption. The resulting normalized torques in this case
are shown in Fig. 11, while the corresponding q

1
- s

configurations are shown in Fig. 12.
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Fig. 7. Optimal normalized torque vs. path
parameter s.
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Fig. 9. Minimum switching normalized torque
vs. Path

Fig. 11 shows that for a substantial part of the task, the
required torque from actuator 3 exceeds the maximum
available. Therefore, in the case where the desired end-
effector force is large, this method will fail to yield feasible
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posture histories. It should be noted that changing the
weights in Eq. (6) will not alleviate this problem;
increasing the weight on joint 3 will result in lower torques
for it, but then other joints will saturate.
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5 Conclusions
In this paper, we studied the problem of large force/torque
application using robotic systems with limited force/torque
actuators. For a given desired end-effector force/torque, there
exists a workspace with the property that if the end-effector
is in it, then the desired force/torque can be applied without
violating actuator constraints. Such a ‘force workspace’ is
larger for redundant systems than for non-redundant systems
with the same reachable workspace. To plan force tasks of
redundant manipulators, a new method based on a min-max

approach was proposed. For a given force task, the optimal
manipulator posture is computed by first finding the
maximum required normalized torque curve as a function of
redundant joint variables, and then by choosing these
variables such that the resulting normalized torque is
minimized. It is shown by examples how this method can
be applied in planning force tasks. Finally this new method
is compared to a widely used method based on minimization
of the sum of weighted squared forces/torques. It is shown
that such methods do not guarantee that actuator limits will
not be exceeded. In contrast, the min-max method
guarantees that all joint torques will not exceed their
maximum permitted values. In addition, the torque level of
the joint required to apply the largest normalized torque will
‘suffer’ the least possible, resulting in effective use of a
robotic system’s actuators.
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