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ABSTRACT
In a number of industrial, space, or mobile systems applica-
tions, reaction forces and moments transmitted by a
manipulator to its base are undesirable. Based on force and
moment transmission analysis, a three DOF redundant
manipulator design is selected aiming at reactionless
motions. Dynamic reaction forces are eliminated by using
force balancing. Reaction moments are eliminated by
following reactionless paths, whose planning is simplified
by rendering the dynamics of the system decoupled and
invariant. The value of the synergy between design and
planning is demonstrated by example cases. An additional
advantage of this design is that the manipulator can be used
either as a redundant system, or as a two DOF reactionless
system.

I. INTRODUCTION
In many applications of advanced robotic systems, reaction
forces transmitted by a manipulator to its base are highly
undesirable. In an industrial setting, the accuracy of a
rapidly accelerating manipulator will be degraded by
vibrations induced by the transmission of large reaction
forces to its mounts [1]. In space, dynamic forces due to the
accelerating links of a manipulator will disturb the position
and orientation of the satellite it may be mounted on [2,3].
If allowed to transmit reaction forces, manipulators
operating in a micro-gravity environment will induce
adverse effects on it [4]. Manipulators mounted on
compliant mobile bases, be it a truck, a Mars rover, or the
Shuttle Canadarm, will inevitably excite the base dynamics
and result in poor dynamic performance and accuracy [5,6].

Moving a manipulator slowly is the simplest way to re-
duce the reactions to within acceptable levels. Reducing ma-
nipulator reactions by cost function minimization applied
to redundant manipulators was proposed in [7]. Complete
shaking force elimination can be achieved by fixing the cen-
ter of gravity of the manipulator; this is accomplished by
the addition of counterweights or by relocating the support
point of the manipulator [1,8,9,10,11]. Minimization of
the rocking moment can be accomplished by introducing
counteracting torques. This is normally done using addi-
tional actuators with a preset inertia, along with a suitable
controller [1]. However, these actuators cannot be used to
enhance the system manipulative capabilities. In space, ma-

nipulator paths exist that will result in zero orientation
disturbance for its free-floating (uncontrolled) spacecraft.
However, following such paths will not eliminate reaction
forces, i.e. the spacecraft will still translate. Use of such
paths may also require relocating the spacecraft to some
favorable initial position [5].

In this paper we analyze the problem of force and
moment transmission by manipulators, and propose a
number of guidelines that can result in reactionless
motions. A three Degree-of-Freedom (DOF) nine link
redundant manipulator design is selected with its three direct
drive actuators base-mounted and sharing a common axis;
with this configuration, reaction moments can be canceled
if the actuators rotate in roughly opposite directions. The
system Center of Mass (CM) is fixed by force balancing,
and the dynamics of the system are decoupled and rendered
invariant by adopting a parallel manipulator structure. This
invariance feature simplifies the planning of reactionless
paths, by requiring such paths to lie in fixed orientation
joint space planes. With the restrictions on the trajectory, at
least 3 DOF are required for a zero-reaction in-plane
positioning task. The results show that motions planned in
such a way result in minimal reactions, whereas non-
reactionless motions are shown to transmit significant
moments and forces. An advantage of this design is that the
manipulator can be used either for tasks that require three
DOF, or as a two DOF reactionless system.

II. FORCES AND MOMENTS
Consider a manipulator as an articulated mechanism to
which its base applies a force f and a moment n, see Fig. 1.
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In the presence of gravity, the manipulator’s weight is
applied at its CM. If no other contact forces or moments are
applied to the system, the following equation holds

f + Mg = f
ext

 = M r
 ..

c m
(1)

where M is the total manipulator mass, g  is the
acceleration of gravity, and r

..
cm

 is the acceleration of the
system CM. Therefore, the force at the base is given by

f = M r
 ..

cm
 - Mg (2)

and has a dynamic component, M r
 ..

c m
, and a static

component, -Mg. Note that the latter is zero in space. The
concern here is to eliminate the dynamic components of
base reactions, since these are responsible for vibration and
disturbances.

The dynamic components in Eq. (2) are zero if the
system CM does not accelerate

r
 ..

c m
= 0 (3)

Equation (3) can be integrated twice with respect to time.
Assuming zero initial velocity r

 ..
cm

, Eq. (3) is equivalent
to r

cm
 = constant, in other words, for zero dynamic forces,

the manipulator’s CM has to be fixed with respect to the
base frame. In principle, this condition can be achieved by
design. The options includemanipulator force balancing, or
the use of additional base masses moving so as to cancel
manipulator reaction forces. Although the second option is
in principle feasible, the first one is more attractive due to
its simplicity and will be employed here. Note that if the
first joint is prismatic, a constant (or zero) reaction force
would require either a non-actuated joint, or multiple
manipulator actuators at the base moving in opposite
directions. Both requirements are difficult to implement
from a design point of view. On the other hand, if the first
joint is rotary, dynamic reaction forces can be eliminated by
the addition of counterweights.

The case of base moments is more complicated. Since
the gravity force has no moment with respect to the system
CM, the base moment, n, is given by

n = r
cm

×
 
f + 

d
dt

{∑
k=1

L
 (I

k
•w

k 
+ m

k 
r

k
×r

.
k
)} (4)

where L is the number of links, I
k
 is the kth link inertia,

w

k
 its inertial angular velocity, m

k
 its mass, and r

k
 the

vector from the system CM to the link CM, see Fig. 1. It
can be recognized that the sum in Eq. (4) represents the
angular momentum of the manipulator with respect to its
CM [3]. Assuming that r

cm
 is set equal to zero by design,

then, for the base moment to cancel, Eq. (4) requires that
this angular momentum is also zero, i.e. that

∑
k=0

N
 { I

k
•w

k + m
k 
r

k × 
r

.
k } = 0 (5)

where it was assumed that the initial angular momentum is
zero. In general, unlike the linear momentum, the angular
momentum cannot be integrated analytically to yield
geometric conditions for n = 0. Special trajectories that
satisfy Eq. (4) could be found, but with great computational
burden. However as shown in this paper, finding such
trajectories can be simplified by proper manipulator design.
Note that zero base reaction moments can be achieved by
using additional base actuators like reaction wheels. This
method is employed in space [2,3], and was used in the
design of a high-acceleration minipositioner [1]. However,
these additional actuators cannot be used to increase the
DOFs of the manipulator. If no wheels are used and the first
joint is revolute, n = 0 would require that either the first
joint is not actuated, or that multiple actuators are located at
the base and move in such way that n  = 0. The latter
method is employed here. A design based on the former
method is currently under study.

From the above analysis, the following design
guidelines emerge

(a) Force balance the manipulator to avoid dynamic base
forces.

(b) To allow for the possibility of canceling base
moments in some given direction, mount manipulator
actuators at the base so that their common axis is in
this direction.

(c) Use special planning techniques to maintain zero
angular momentum. Since this step introduces an
additional constraint, a task-redundant manipulator
design should be used.

These guidelines are implemented on a 3 DOF parallel
redundant planar manipulator having all revolute joints and
with its three actuators mounted at the base and acting
along the same axis. To maintain planar operation, the
manipulator is assumed to be symmetric with respect to its
plane of action.

III. MANIPULATOR DESIGN
This section focuses on the design of the 3 DOF parallel
manipulator with nine mobile links shown in Fig. 2. This
manipulator is redundant in terms of in-plane positioning,
and was proposed as a finger for a mechanical hand [12]. As
shown below, a certain combination of the manipulator’s
physical parameters, along with proper motion planning,
results in zero-reactions transmitted to the base during
motion.

As depicted in Fig. 2, the manipulator is composed of
three parallel mechanisms; links 1-4-6 are always mutually
parallel, and so are 2-5-8 and 3-7-9. Each set of parallel
links can be made to rotate while the other links are either
stationary or translating. The driving links, (1, 2, & 3), and
their direct drive actuators are on the base; this characteristic



3

simplifies the decoupling of the manipulator’s mass matrix
and results in simpler dynamic equations [13]. As evident
from Fig. 2, the following sets of links share common
lengths: l
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F i g . 2 . A 3 DOF 9-link parallel manipulator.

The dynamic equations for this manipulator are

t = H(q) q̇̇ + V(q,q̇) + G(q) (6)

where q  = [q
1
, q

2
, q

3
]T is the vector of generalized

coordinates (link absolute angles), t = [t
1
, t

2
, t

3
]T the

vector of actuator torques, H(q) is the 3×3 manipulator
mass matrix, V (q ,q̇) = [v

1
,v

2
,v

3
]T is the vector of

centripetal forces, and G(q) = [g
1
,g

2
,g

3
]T is the gravity

vector. Detailed expressions for V  and G  are given in
Appendix A.

Since all three joint actuators share the same axis, the
total moment applied to the base is given by

n
B

= -n = - (τ
1
 + τ

2
 + τ

3
)k (7)

where k is the unit z-axis vector. When the manipulator is
not moving, then Eqs. (4) and (7) result in

n = r
cm

×
 
f = r

cm
×

 
Mg = (g

1
 + g

2
 + g

3
)k (8)

Eq. (8) shows that static balancing of the manipulator, (by
setting all g

i
 = 0), results in r

cm
 = 0 . As discussed in

Section II, a zero r
cm

 has the effect of eliminating the base
dynamic forces. Setting the g

i
 equal to zero yields three

algebraic equations in terms of the geometric properties of
the links, and the configuration q, see Eq. (A3).

When the manipulator is moving, setting n = 0 in Eq.
(4) results in a complex equation relating accelerations,
velocities and generalized coordinates. If r

cm
 = 0, then Eq.

(5) results in a constraint equation among velocities. In
general, this equation cannot be integrated analytically to
yield a relationship between the generalized coordinates, q,
useful for planning reaction-free trajectories. However, if H
is made invariant, then V in Eq. (6) is zero, and Eq. (7) can
be integrated twice as long as r

cm
 = 0. Since the diagonal

terms of H are constant, see Eq. (A1), it suffices to set the

non-diagonal terms of H, namely h
12

, h
13

, and h
23

, equal to
zero. Three additional algebraic equations are obtained and
must be satisfied simultaneously with the ones for the g

i
’s.

Then, the dynamic equations given by Eq. (6) become

 





 



t

1

t
2

t
3

=

 


 


h
11

0 0

0 h
22

0

0 0 h
33

 

 


 


q̇̇
1

q̇̇
2

q̇̇
3

(9)

Next, the locations of the CMs of the nine links are chosen
as the unknown design parameters. The six design
constraint equations for g

1
, g

2
, g

3
, h

12
, h

13
 and h

23
, are

written as

m1 0 0 m4 0 m6 0 0 0

0 m2 0 0 −m5 0 0 −m8 0

0 0 m3 0 0 0 m7 0 −m9

0 0 0 m4
l2
l1

−m5 0 0 −m8 0

0 0 0 0 0 m6
l3
l1

m7 0 −m9

0 0 0 0 0 0 0 −m8
l3
l5

m9


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




=

=

−(m5 + m7 + m8 + m9 ) l1

m9l5 − m4l2

−(m8 + m6 ) l3

m9l5

−m8l3

0





























(10)

where m
i
 (i=1,…,9) are link masses, l

i
 (i=1,…,9) are link

lengths, and l
ci 

(i=1,…,9) are distances of link CMs from
points shown in Fig. 2. Using a weighted minimum norm
method, this system of equations is solved, and the final
manipulator geometric parameters are displayed in Table I.

Table I. Manipulator Parameters

i l
i
 (m) m

i
 (kg) I

i
 (kgm2) l

ci
 (m)

1 0.50 7.00 0.2501 -0.2214
2 0.18 1.45 0.0025 -0.1111
3 0.20 2.00 0.0180 -0.1605
4 0.50 1.50 0.0199  0.2016
5 0.46 0.70 0.0215 -0.0110
6 0.50 1.50 0.0419 -0.0349
7 0.20 1.15 0.0143 -0.0682
8 0.46 0.50 0.0162  0.0032
9 0.30 0.25 0.0058  0.0027
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IV. REACTIONLESS TRAJECTORY
PLANNING
According to Eqs. (7) and (9), the base reaction moment is

n
B

= - (h
11

q ˙˙
1
 + h

2 2
q ˙˙

2
 +

 
h

33
q ˙˙

3
)k (11)

If the reaction moment is to be eliminated then the
following equation must hold

q ˙˙
1
 + l2 q ˙˙

2
 +

 
l3 q ˙˙

3
= 0 (12)

where l2 = h
22

/h
11

 and l3 = h
33

/h
11

 are constants. Eq. (12)
is integrated to yield a constraint in terms of the link angles
q. With zero initial conditions for the rates, the integration
results in

q̇
1
 + l2q̇

2
 +

 
l3q̇

3
= 0 (13)

which is a manifestation of the zero angular momentum,
see Eq. (5). Physically, this equation suggests that
reactionless motion requires at least one joint to move
opposite some other one. Since l2 and l3 are constants, the
equation can be integrated again to yield

q
1
 + l2q2

 +
 
l3q3

= b (14)

where the constant b is called here the pose constant,
because it depends on the initial set of link angles. Equation
(14) represents a plane in the space of q

1
-q

2
-q

3
, with l =

[1, l 2, l3]T its normal vector. Moving in a reactionless
path requires Eq. (14) to be satisfied. Furthermore, for a
given initial configuration q, the pose constant is set, and
all via points and the target must be on the same plane in
the q space. Since a redundant manipulator can reach points
in its workspace in more than one pose, it follows from Eq.
(14) that a single x-y coordinate can have a range of b
constants associated with it. Each of these b constants
defines a different plane, but since the normal vector l is
fixed for a given manipulator, all these planes are parallel.

Given a point in the x-y plane, the range of pose
constants b which correspond to it can be found using
inverse kinematic relationships similar to those in [12]. A
plot of feasible q

1
 angles versus the pose constant b for two

(x, y) points, is depicted in Fig. 3. This figure can also be
used to determine if two points can be joined by a
reactionless path. To this end, it suffices to have some plot
overlap, such as the one shown in Fig. 3. For example,
point (0.50, 0.50) is reachable from (0.55, 0.90) if the
initial angle q

1
 is between 1.6 and 1.9 rad.

Path planning can be facilitated if the set of points that
can be accessed by a reactionless path from some initial
configuration is known. To find this react ionless
workspace, it is assumed that the first joint can rotate
freely, while the relative joint angles a

1
 and a

2
, comply

with some given joint limits. From Fig. 2, a
1
 and a

2
, are

given as

a
1

= q
2
 - q

1
(15a)

a
2

= q
3
 - q

2 
+ p (15b)
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The forward kinematic equations for this manipulator are,
see Fig. 2

x = l
1
cos(q

1
) - l

5
cos(q

2
) - l

9
cos(q

3
) (16a)

y = l
1
sin(q

1
) - l

5
sin(q

2
) - l

9
sin(q

3
) (16b)

Substituting Eq. (15) in Eqs. (16), and writing the result in
matrix form, results in

 



 

x

y
 = 

 



 

cos(q

1
) -sin(q

1
)

sin(q
1
) cos(q

1
)  




 

l

1
-l

5
cos(a

1
)+l

9
cos(a1+a

2
)

 -l
5
sin(a

1
)+l

9
sin(a

1
+a

2
)

(17)

Furthermore, using Eqs. (14) and (15), q
1
 itself can be

expressed as

q
1
 = 

b
1+l2+l3

 + 
l3(p-a

2
)-a

1
(l2+l3)

1+l2+l3
 = b* + φ(a

1
,a

2
) (18)

where b* = b/(1+l2+l3) is a constant, and φ an angle
function of a

1
 and a

2
. Substituting Eq. (18) in Eq. (17)

yields

 



 

x

y
=
 



 

c(b*) -s(b*)

s(b*)  c(b*)  



 

c(φ)  -s(φ)

s(φ)  c(φ)  



 

l

1
-l

5
c(a

1
)+l

9
c(a

1
+a

2
)

-l
5
s(a

1
)+l

9
s(a

1
+a

2
)

(19)

where c(), s() denote the cosine and the sin of an angle. For
a given initial pose, b and therefore b*, are fixed. Hence, all
the points that can be accessed starting from an initial pose
can be found by varying the relative joint angles in the
allowed range given by

lowlim 
i

≤ a
i ≤ uprlim 

i
i = 1, 2 (20)

Since the pose constant only appears in the first rotation
matrix in Eq. (19), the shape of the reactionless workspace
is independent of this constant. However, its orientation on
the Cartesian plane depends on it. The reactionless
workspace can be plotted in the Cartesian plane using Eq.
(19) above, with a

i
 varying in the range given by Eq. (20).

One such plot is shown in Fig. 4; any two points in this
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workspace, shown as the dark gray region, can be connected
by a reactionless path.
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F i g . 4 . Reactionless workspace for b = 2.4 rad.

V. SIMULATION RESULTS & DISCUSSION
The dynamic equations of the 3 DOF parallel manipulator,
shown in Appendix A, were programmed into MATLAB.
The linear system of Eq. (10) was used to compute the
physical parameters of the manipulator, required for reac-
tionless motions. These parameters result in a manipulator
which transmits zero dynamic forces at the base.

To calculate the reaction moments at the base, an initial
and final point A and B were chosen from one reactionless
region as follows: (xA, yA) = (0.50, 0.50) and (xB, yB) =
(0.55, 0.90). The corresponding pose constant was b = 2.4
rad, and the travel time was set at 1.5 s. To test the effect of
different paths on the total base reactions, the following
three paths were chosen

1. A path planned in Cartesian space, independent of any
reactionless requirements.

2. A path planned in the configuration q space; the path
did not adhere to any reactionless plane.

3. A reactionless path. In Cartesian space, the path was
identical to that in case 2 above. The x-y pairs along
with the b constant determine the initial and final
angles of the manipulator, q

A
 and q

B
, see Eqs. (14) and

(16). The path was a straight line in joint space
connecting q

A
 and q

B
, both lying on the plane defined

by Eq. (14).

Quintic polynomial trajectories were used in the simula-
tion in order to have continuous joint velocity and accelera-
tion profiles. A computed torque control scheme was em-
ployed to determine the motor torques required, and the con-
trol gains were kept the same in all three cases. The required
actuator torques τ

1
, τ

2
, and τ

3
, as well as the resultant base

reaction are shown in Fig. 5. Snapshots of the correspond-
ing motion sequences of links 1, 5 and 9 are also shown.
As depicted in Figs. 5 (a) and (b), the resulting moment is

relatively high for cases 1 and 2 since no reactionless plane
is adhered to. For case 3, Fig 5 (c) shows that throughout
the reactionless trajectory the base moment is zero.

 

A

B

 

-1.5

- 1

-0.5

0

0 .5

1

1 .5

0 0 .5 1 1 .5 2

T
or

q
u

e 
(N

m
)

Time (s)

Net base torque
t

t

t

1

2

3

(a) Case 1

A

B

 

-0.6

-0.4

-0.2

0

0 .2

0 .4

0 .6

0 .8

0 0 .5 1 1 .5 2

T
or

q
u

e 
(N

m
)

Time (s)

t

t

1

2
t

3

Net base torque

(b) Case 2

A

B

 

-0.8

-0.6

-0.4

-0.2

0

0 .2

0 .4

0 .6

0 .8

0 0 .5 1 1 .5 2

T
or

q
u

e 
(N

m
)

Time (s)

Net base torque

t

t

1

2

t
3

(c) Case 3
F i g . 5 . Manipulator snapshots and correspond-

ing torque profiles. (a) Path planned in
Cartesian space, (b) Path planned in
joint space, (c) Reactionless path.

Although the above analysis indicates zero base reactions,
small deviations from the ideal zero reaction case may occur
in practice. Sources of such deviations include manufactur-
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ing errors, neglected small unbalanced friction in the direct
drive actuators, and manipulator unbalance due to a payload.
However, in all these cases the proposed design will elimi-
nate the most significant base reactions which are due to
manipulator accelerating links.

Finally, note that in principle higher DOF spatial reac-
tionless manipulators can be constructed using as building
blocks two or three DOF reactionless manipulators. This
combination is possible, since a manipulator which
transmits zero dynamic forces and moments to its base is
dynamically equivalent to a point mass. Serially connecting
two reactionless planar manipulators, is equivalent to
adding a point mass to the last link of the first manipulator,
and this can be compensated for by designing appropriately
the first manipulator. Since the second manipulator’s base
motor axes orientation can be arbitrary, choosing a suitable
orientation can result in reactionless trajectories in three-
dimensional space. However, the design of such
manipulator would be far from trivial.

VI. CONCLUSIONS
Based on analysis of the force and moment transmission
problem by manipulators, a three DOF redundant
manipulator design was selected aiming at reactionless
motions. The system center of mass was fixed by static
balancing, and the dynamics of the system were decoupled
and rendered invariant. The latter feature simplified the
planning of reactionless paths, by requiring that such paths
belong in fixed orientation planes in the joint space.
Motions planned in such a way result in minimal reactions,
whereas non-reactionless motions are shown to transmit
significant reactions. An additional advantage of this design
is that the manipulator can be used either as a redundant
system, or as a two DOF reactionless system.
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APPENDIX A
For the 3 DOF manipulator in Fig. 2, the components of
the mass matrix H are

h11 = I1 + I4 + I6 + m1lc1
2 + m4lc4

2 + m6lc6
2 + (m5 + m7 + m8 + m9 )l1

2

h12 = (m4l2lc4 − m5l1lc5 − m8l1lc8 − m9l1l5 ) cos(q1 − q2 )

h13 = (m6l3lc6 + m7l1lc7 + m8l1l7 − m9l1lc9 ) cos(q1 − q3 )

h22 = I2 + I5 + I8 + m2lc2
2 + m5lc5

2 + m8lc8
2 + m4l2

2 + m9l5
2

h23 = (m9l5lc9 − m8l7lc8 ) cos(q2 − q3 )

h33 = I3 + I7 + I9 + m3lc3
2 + m7lc7

2 + m9lc9
2 + m6l3

2 + m8l7
2(A1)

The components of the V and G vectors in Eq. (6) are

v1 = (m4l2lc4 − m5l1lc5 − m8l1lc8 − m9l1l5 )sin(q1 − q2 )q̇2
2

+ (m6l3lc6 + m7l1lc7 + m8l1l7 − m9l1lc9 )sin(q1 − q3 )q̇3
2 (A2)

v2 = (−m4l2lc4 + m5l1lc5 + m8l1lc8 + m9l1l5 )sin(q1 − q2 )q̇1
2

− (m8l7lc8 + m9l5lc9 )sin(q2 − q3 )q̇3
2

v3 = (−m6l3lc6 − m7l1lc7 − m8l1l7 + m9l1lc9 )sin(q1 − q3 )q̇1
2

+ (m8l7lc8 − m9l5lc9 )sin(q2 − q3 )q̇2
2

g1 = (m1lc1 + m4lc4 + m6lc6 + (m5 + m7 + m8 + m9 )l1 ) g cos(q1 )
g2 = (m2lc2 + m4l2 − m5lc5 − m8lc8 − m9l5 ) g cos(q2 )

g3 = (m3lc3 + m6l3 + m7lc7 + m8l7 − m9lc9 ) g cos(q3 ) (A3)


