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ABSTRACT

This paper studies the coordinated control of space
manipulators and their spacecraft. The dynamics of free-
flying space robotic systems are written compactly as
functions of the system barycentric vectors.  A control
technique is developed that includes requirements on a
spacecraft’s position and orientation as well as on its
manipulator. A Transposed-Jacobian type controller with
inertial feedback is developed and an example is used to
demonstrate this technique.

I. INTRODUCTION

Free-flying space robotic systems have been proposed for
use in space in which a robotic manipulator is mounted on
a spacecraft with a reaction jet attitude control system
[1,2].  One control method for such systems calculates the
reaction jet forces required to keep the spacecraft stationary
while the manipulator achieves minimum time
performance [3].  Control schemes that allow the
spacecraft to be uncontrolled have been studied to
eliminate the use of reaction jet fuel [4-8].  Impacts
between the uncontrolled spacecraft and its environment
may limit such schemes.  Also, the workspace of such
systems is restricted due to the existence of dynamic
singularities [9].  To achieve an infinite workspace,
another control scheme switches between a free-floating
mode and one in which the system is treated as a redundant
manipulator with a pseudo-inverse Jacobian-based
controller [10].  In this scheme, the consumption of
reaction jet fuel remains a limitation.

This paper presents a method to control the position and
attitude of a system’s spacecraft in a coordinated way by
using the inherent redundancy in free-flying space robotic
systems.  The dynamic equations that describe the motion
of a rigid free-flying space robotic system are written in a
compact form using a Lagrangian formulation.  The
system center of mass (CM) is chosen to represent the
translational degrees-of-freedom (DOF) of the system;

barycentric vectors are chosen as kinematic variables.
This control scheme has the double advantage of allowing
a system’s motion to be planned to avoid impacts with its
environment, and of maintaining a favorable manipulator
configuration during the end-effector’s motion.  In
addition, since a system’s spacecraft can be moved, the
workspace of its manipulator becomes unlimited. An
example is implemented where a Transposed-Jacobian
controller with inertial feedback is used.

II. SYSTEM KINEMATICS

First the position and the velocity of an arbitrarily located
point of a space manipulator system, as the one shown in
Figure 1, are written in terms of the vectorial sums of a
minimum number of body-fixed vectors, called barycentric
vectors.  The body 0 in Figure 1 represents the spacecraft,
and the bodies k (k=1,…,N) represent the N manipulator
links.  The manipulator is in an open-chain configuration
so that a system with an N DOF manipulator will have in
total N+6 DOF, the additional 6 DOF corresponding to
the spacecraft’s position and attitude.
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Figure 1. A spatial free-flying manipulator
system.

A matrix representation of the kinematics and dynamics is
obtained by attaching a reference frame to each center of
mass with axes parallel to each body’s principal axes. The
body inertia matrix expressed in this frame is diagonal.



Left superscripts must be interpreted as “expressed in
frame;” a missing left superscript implies a column vector
expressed in the inertial frame.

It can be shown that the vector from the inertially fixed
origin O to an arbitrary point m on body k, Rk,m is given
by [11]:

Rk,m = rcm + ∑
i=0

N

 v i k , m (1)

where the vectors vik,m are given by [11]:

v ik,m ≡ vik + δimrk,m (2)

where δim is a Kronecker delta, and vik are barycentric
vectors defined by [9,11]:

v ik ≡
 



 

 r i

*   =   r i  -  c i               i < k  

 c i
*  = -  c i           i=k 

  l i
*   =   l i   -   c i               i > k  

(3a)

with:

ci = li  ∑
j=0

i-1

 
m j

M   +  ri  ( 1-∑
j=0

i

 
m j

M
 ) i = 0,…,N (3b)

where rcm, rk,m, li, ri, are defined in Figure 1, mi is the
mass of body i, and M is the total system mass.

The velocity of a point m in body k, Ṙk,m, is:

Ṙk,m = ṙcm - ∑
i=0

N

 (v ik,m)× 
w i (4)

where wi is the angular velocity of the ith body, and the (×)
denotes the cross-product skew-symmetric matrix, see
[13].  Equation (4) can be expressed as function of the
manipulator joint rates q̇ = d/dt[q1,q2,…,qN]T, by writing
the angular velocity of the kth body as:

wk = w0 + T0 0Fk q̇ k = 1,…,N (5)

where w0 is the spacecraft angular velocity, T0 is a 3×3
transformation matrix that describes the orientation Q of
the spacecraft frame with respect to the inertial frame and
0Fk is a 3×N matrix given by:

0Fk ≡ [0T1
1u1,…,0Tk 

kuk, 0 ] k = 1,…,N (6)

The vector iui is the unit column vector in frame i parallel
to the revolute axis through joint i, 0T i is a 3×3
transformation matrix that describes the orientation of the
ith frame with respect to the spacecraft frame, and 0 is a
3×(N-k) zero element matrix.

Based on Equations (4) and (5), the linear and angular
velocity of point m in body k, ẋk,m can be written as:

ẋk,m =
 



 

Ṙk.m 

 wk 

  =  Jk
+

,m ż0 (7)

where the independent system velocities ż0 are defined as:

ż0 ≡
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



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

0ṙcm

0
w0

q̇

(8)

The Jacobian Jk
+

,m is given by:

Jk
+

,m(Q,q) = diag(T0,T0) 
0Jk

+
,m(q) (9)

with:

0Jk
+

,m(q) =
 


 
 1    0 J 1 1 k . m    0 J 1 2 k . m  

  0     1    0J22k.m 

(10a)

0J11k,m ≡ -∑
i=0

N

 [0T i 
iv ik,m]×

0J12k,m ≡ -∑
i=1

N

 [0T i 
iv ik,m]× 0F i

0J22k,m ≡ 0Fk (10b)

where 1 is the unity 3×3 matrix and 0, the zero 3× 3
matrix.  0J11k,m is a 3×3 matrix, and 0J12k,m and 0J22k,m
are 3×N matrices.  All matrices in Equations (10) depend
on the system configuration q, only.  The size of 0Jk

+
,m is

6×(Ν+6), so even when N=6, it is a non-square matrix,
due to the redundant nature of the system.  Note that these
Jacobians are basic Jacobians, that is Jacobians
independent of the particular parameter set used to describe
the end-effector orientation [12].  Kinematic equations
related to the particular orientation representation also
must be used.  If the 321 sequence of Euler angles is used
to represent the orientation Qκ of the kth body, then the
following holds, [13]:

Q̇k = 
d
dt

 [θ1,k,θ2,k,θ3,k]T = S k
-1(Qk)wk k = 0,…,N (11)

where Sk is an invertible matrix except at some isolated
points and given by:

Sk(Qk) =

 



 

cosθ2kcosθ3k   -sinθ1 k     0

cosθ2ksinθ3k      cosθ 1 k     0

-sinθ2k       0     1
(12)

A four parameter representation of the orientation can be
used if representation singularities can be a problem, [13].
Equations similar to those above can be written for the
end-effector by noting that for the end-point, body k = N



and point m = E.  The subscripts N and E are dropped for
simplicity and the resulting expressions are written here
for future reference:

ẋ = J+ ż0  =  diag(T0,T0) 
 


 
 1     0 J 1 1    0 J 1 2  

  0     1    0J 2 2  

 ż0 (13)

Note that the rank of J+ and of Jk
+

,m is always six, because
its first six columns always contain six independent
column vectors.  This reflects the fact that any position or
orientation can be reached by moving the spacecraft alone.

III. SYSTEM DYNAMICS

Here the equations of motion for the system shown in
Fig. 1, are written using a Lagrangian approach.  The
potential energy due to gravity is zero and since the
system is assumed to be rigid, the potential energy due to
flexibility is also zero.  We just need an expression for its
kinetic energy, in order to form the system Lagrangian.  It
can be shown that the kinetic energy can be compactly
written in the form [11]:

T =
1
2  ż0

T H+(q) ż0 (14)

where H+(q) is a (N+6)×(N+6) positive definite symmetric
inertia matrix, given by:

H+(q) =  

 



 

  M 1     0     0  

  0   0D(q)  0Dq(q)

  0    0D q(q )T  0D qq(q )  
 (15)

where 1  is the unit 3×3 matrix, 0  a zero matrix of
appropriate size, and M is the total system mass.  0D is
the 3×3 system inertia matrix with respect to the system
CM, and as such it is a positive definite symmetric
matrix.  0Dq is a 3×N matrix and 0Dqq is an N×N matrix.
These are given by:

0Dj ≡ ∑
i=0

N

 0D i j (j = 0,…,N), 0D  ≡ ∑
j=0

N

 0D j (16a)

 
0Dq ≡ ∑

j=1

N

 0D j 
0F j,

0Dqq ≡ ∑
j=1

N

  0 F i
T  0D j 

0F j (16b)

where the inertia matrices 0D ij are functions of the
barycentric vectors [11]:

0D ij ≡

 



 



-M{(0l j
*T 0r i

* )1  - 0 l j
*0r i

*T}       i < j  

0Ii+∑
k=0

N

mk{(0vik
T0v ik)1-0v ik
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-M{(0r j
* T  0 l i

*)1  - 0r j
*0l i

*T}       i > j  

(17)

The generalized forces required in the Lagrangian approach
can be found using the principle of virtual work.  It can be

shown that if t is an N×1 torque vector acting at the
manipulator joints, and 0fk,m and 0nk,m are the force and
torque acting on point m of body k, as measured from the
spacecraft, and 0Jk

+
,mis a Jacobian given by Eq. (10), then

the (N+6)×1 vector of generalized forces, Q, is given by:

Q ≡
 


 


0
0
t

 + ∑
k=0

N

 ∑
m 

 
 { 0J k

+
,m(q)}

T

  
 



 

0fk.m

0nk.m

(18)

Since 0w0 are not proper generalized velocities, Lagrange’s
equations cannot be used readily to write the equations of
motion.  A quasi-Lagrangian approach, or a combination
of Lagrangian and momentum methods, can be used
[11,13].  The result is given here without proof, see [11]:

H+(q) ż̇ 0 + C+(q, 0w0, q̇)  =  Q (19)

where C+ contains the nonlinear terms of the equations of
motion.  Equation (19) represents N+6 equations that
describe the motion of a free-flying manipulator system
under the effect of external forces and torques and internal
actuator torques.  The generalized forces Q are decomposed
into the unknown disturbance forces, Qd, and the control
forces, Qc:

Q = Qc  +  Qd (20)

The control forces include the spacecraft’s thruster forces,
0fS, and torques, 0nS, and the manipulator’s joint torques,
t.  Forces can be generated by thruster actuators, while
torques on the spacecraft can be generated by thruster
actuators, momentum gyros or reaction wheels.  To
simplify the notation, the subscript S is used to represent
the CM of the spacecraft, which corresponds to k=0,
m=CM, see Equations (9), (10).  Then, the control forces
can be written as:

   Qc = Jq
T  

 



 



0fS
0nS

t

 = 

 





 



 1   0J 11.S  

0J 1 2 . S  

  0     1    0J22.S 

  0     0     1  

T

 



 



0fS
0nS

t

(21)

Note that Jq is square and always invertible.

IV. COORDINATED MOTION CONTROL

The similarity between Equation (19) and the equations of
motion that correspond to a fixed-based manipulator leads
to an investigation of whether control laws that are
applicable in the latter case also can be used in the control
of space robotic systems.  However, two differences
between the two situations must be pointed out.  The first
is that an appropriate representation of a spacecraft’s
attitude is needed, e.g. Euler angles, see Equation (11), or
Euler parameters.  The second difference is that, due to a
spacecraft’s mobility, a space robotic system is inherently
redundant.  This redundancy can be used to achieve



additional tasks;  here it is used to control a spacecraft’s
location and attitude by augmenting the system output.
This has the advantage that the location and attitude of the
spacecraft can be controlled to follow some prescribed
plan, and hence, impacts can be avoided.  In addition, by
planning a spacecraft’s motion, the end effector can reach a
point while its manipulator assumes some desired
configuration.  For example, this scheme may allow a
manipulator to be in a configuration suitable for applying
some forces or to avoid singularities.

To control both the spacecraft and the manipulator in a
coordinated way, a relation between the system
independent velocities,  ż0, and the output velocities is
needed.  To this end, Equation (7) is combined to Equation
(11) and written for the spacecraft’s CM, which
corresponds to k=0 and m=CM, see Equation (7).
Subsequently,  Equation (13) is combined to Equation (11)
as written for the end-effector, and the result is:

ż1 ≡ [ṙE
T,q̇E

T,ṘS
T,q̇S

T
 ]

T  =  Jz ż0 (22)

where ż1 is the output velocities vector and Jz is a 12×12
Jacobian matrix if N=6, given by:

Jz = diag(T0,S E
-1T0,T0,S S

-1T0)

 


 


1   0J 11  0J 12 

0   1   0J 22 

1  0J 11.S 0J 12.S 
0   1   0  

(23)

Note that ż1 contains the spacecraft and end-effector linear
velocity and orientation rates.  Neglecting the non-
physical representation singularities, Jz is an invertible
12×12 matrix, unless the manipulator is kinematically
singular.

The equations of motion (19) and the Jacobian given by
Equation (23) can be used to implement various motion
control techniques in a way similar to Khatib’s
“operational” approach, where a Jacobian relating
generalized joint velocities to operational velocities is used
to design controllers in the cartesian space [12].  Here, a
Transposed-Jacobian type controller with inertial feedback
is designed to demonstrate this approach.  The equations of
motion in the z1 domain can be found by substituting
Equation (22) into Equation (19) to obtain the form:

H~  ż̇ 1 + C~   =  (Jz
-1)T Qc (24)

where C~  contains the nonlinear terms and H~  is given by:

H~ = (Jz
-1)T

 H
+ Jz

- 1 (25)

This inertia matrix is positive definite if Jz is nonsingular.
An error e is defined as:

e ≡ z1,des - z1 (26)

where z1 is provided by inertial feedback, and z1,des is the
desired inertial point.  It is assumed here that inertial
measurements of the position and orientation of the
spacecraft and of the end-effector are available.  By taking
the input Qc to be:

Qc = Jz
T { H~  (Kpe + Kdė + ż̇ 1,des)  +  C~ } (27)

where Kp, and Kd are positive definite diagonal matrices,
the error dynamics become:

ė̇   +  Kd ė + Kpe   =  0 (28)

and therefore the error converges asymptotically to zero.
Equation (27) is a modification of the operational space
controller, [12].  If high enough gains are used, a simpler
Transposed Jacobian controller can be employed, [14]:

Qc = Jz
T (Kpe + Kdė) (29)

Note that if a singularity is encountered, the controllers
given by Equations (27) and (29) will result in errors but
will not fail computationally.  If some small disturbance
acts on the system, a small steady state error is expected,
because these controllers are basically PD controllers.
Finally, the reaction jet forces and torques and the joint
torques can be found by inverting Equation (21).
Assuming that Equation (29) is used, these are given by:

 



 



0fS
0nS

t

= (Jq
T )-1Jz

T (Kpe + Kdė ) (30)

The inversion of Jq is  possible since this Jacobian is
always nonsingular.  Equation (30) is the final result that
permits coordinated control of both the spacecraft and its
manipulator, based on inertial measurements of the
spacecraft and end-effector locations and orientations.  If no
such measurements are available, the error e can be
estimated by integrating the equations of motion in real
time, but then errors due to model uncertainties will be
introduced.  This method of motion control is
demonstrated with an example.

V. EXAMPLE

As an example of the algorithm outlined in the previous
section, a controller was designed that is capable of
simultaneously controlling a spacecraft’s motion as well
as its manipulator’s end-effector motion.  The example
system is planar and consists of a two DOF manipulator
on a three DOF spacecraft, see Figure 2.  Its kinematic,
mass and inertia properties are given in Table I.



Table I.  System parameters for the example.
Body li (m) ri (m) mi (Kg) Ii    (Kg m2)

0 .5 .5 40 6.667
1 .5 .5 4 0.333
2 .5 .5 3 0.250
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Figure 2. A two-DOF manipulator on a three-
DOF free-flying spacecraft.

The spacecraft is assumed to be equipped with reaction jets
that can provide forces and torques proportional to the
commanded control input.  In this case the independent
coordinates vector, z0, and the vector of coordinates to be
controlled, z1, are:

z0 = [0xcm,0ycm,θ,q1,q2]T,     z1 = [xS,yS,θ,xE,yE]T (31)

where 0xcm and 0ycm are the system CM coordinates with
respect to an inertia frame, θ is the spacecraft’s attitude,
q1,q2 are the manipulator joint angles, xS,yS are the
spacecraft’s CM coordinates and finally xE,yE are the end-
effector’s coordinates.  Jq is always nonsingular and in
this example, Jz is nonsingular unless sin(q2) = 0, which
corresponds to a kinematically singular manipulator.

The controller described by Equation (30) is used to
calculate the required reaction jet forces and torques, 0fS

and 0nS, and the manipulator joint torques, t.  It allows
the specification of a desired trajectory for both the
spacecraft and the manipulator.  Hence, the motion of the
whole system can be coordinated.  If the given trajectory is
not feasible, the desired motion will not be achieved, but
the controller will try instead to come as close as possible
to the specified trajectory.

In the simulations that follow, the inertially fixed frame is
set at the position of the system CM at the initial time,
when (θ,q1,q2) = (21°,-58°,60.3°) and the end-effector is at

(2.0, 0.0).  In this coordinate frame, the end-effector is
commanded to move to point (1.5, 1.5).  The spacecraft is
commanded to move to (θ,xS,yS) = (15°,0.5,0.5).  The
gains used are K p = diag(30,30,30,30,30) and K d =
diag(60,60,60,60,60).  Figure 3 shows the motion of the
system in inertial space.  The end-effector converges along
a straight line to the desired point, while the spacecraft as-
sumes the desired location and attitude.  Note that if the
spacecraft were fixed at its initial location, the end-effector
would have reached point B in an almost singular
configuration.  If the spacecraft were free-floating and its
reaction jets were turned off, then point B could not have
been reached from point A following the straight line
path, due to the existence of dynamic singularities, see
[9,11].  In contrast to these schemes, coordinated control
permits the end-effector to reach point B in a favorable
configuration, away from singularities.
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Figure 3. Coordinated spacecraft/manipulator
motion of the example system.

Figure 4 shows the error in the spacecraft’s position and
attitude during the end-effector motion.  These errors are
eliminated in about 12 sec.
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Figure 4.  Motion of the spacecraft during the
maneuver shown in Figure 3.

Figure 5 shows the reaction jet forces required to move the
spacecraft during the first five seconds of the maneuver.



Since the error converges asymptotically to zero and no
disturbances act on the system, the reaction jet forces
approach asymptotically to zero as soon as the motion
stops.
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Figure 5. Thruster forces required during the
maneuver shown in Figure 3.

VI. CONCLUSIONS

This paper presents the dynamics of free-flying space
robotic systems as compactly written functions of the
system’s barycentric vectors.  Coordinated control of both
a spacecraft and its manipulator is based on augmenting
the control requirements to include the location and
attitude of a system’s spacecraft.  This scheme can be used
to avoid impacts of a robotic system with its environment
or to maintain a favorable manipulator configuration. A
Transposed-Jacobian type controller with inertial feedback
demonstrates these techniques.
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