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ABSTRACT

This paper strongly suggests that nearly any control algorithm that
can be used for fixed-base manipulators can be also employed in the
control of free-floating space systems, with a few weak additional
conditions, based on the structural similarities between the kine-
matic and dynamic equations of a free-floating space system and the
equations for the same manipulator with a fixed base. Barycenters
are used to formulate efficiently the kinematic and dynamic equa-
tions of free-floating space manipulators. A control algorithm for
a space manipulator system is designed to demonstrate the value of
the analysis. The results obtained should encourage the develop-
ment of a wide variety of control algorithms for free-floating space
manipulator systems.

I. INTRODUCTION

The planning and control of the robotic manipulators expected to
play important roles in future space missions, pose some prob-
lems not found in fixed-base manipulators due to the dynamic
coupling between space manipulators and their spacecraft. A
number of control techniques for such systems have been pro-
posed. These schemes can be classified in three categories. In
the first, reaction jets control spacecraft position and attitude,
compensating for any manipulator dynamic forces exerted on the
spacecraft. Control laws for earth-bound manipulators can be
used in this case, but their utility may be limited because ma-
nipulator motions can saturate a reaction jet system. Reaction
jets also may consume relatively large amounts of attitude con-
trol fuel, limiting the useful life of the system [1,2]. In the sec-
ond category, reaction wheels or jets control a spacecraft’s atti-
tude but not its translation [3,4]. The control of these systems is
somewhat more complicated than for the first category, although
a technique called the Virtual Manipulator (VM) method can be
used to simplify the problem [4-6]. In the third category, free-
floating systems have been proposed in order to conserve fuel or
electrical power [5-9]. These permit the manipulator’s space-
craft to move freely in response to the manipulator motions.
These too can be modeled using the VM approach [5,6]. Past
control algorithms for free-floating systems have been proposed
and their validity demonstrated only on a case by case basis [7-
10]. Algorithms for such systems which ignore the kinematics
or dynamics of the spacecraft in their formulation have been
found to have problems [9,10]. These problems may be at-
tributed to dynamic singularities which are not found in earth
bound manipulators [11,12].

This paper takes a more fundamental approach to the ques-
tion of what the characteristics of control algorithms are which
may be applied to the motion control of free-floating space ma-
nipulators. The results obtained show that nearly any algorithm
which can be applied to conventional fixed-base manipulators
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can be directly applied to free-floating manipulators, with a few
weak additional conditions. These results should encourage the
development of a wide range of control algorithms for free-
floating space manipulator systems.

II. DYNAMICS OF FREE-FLOATING SYSTEMS

This section develops the dynamic equations of a rigid free-
floating manipulator system (see Figure 1) using a Lagrangian
approach. First, the system kinetic energy is expressed asa
function of the generalized coordinates and their velocities.

The body 0 in Figure 1 represents the spacecraft; the bodies
k (k=1,...,N) represent the N manipulator links. The manipula-
tor joint angles and velocities are represented by the Nx1 column
vectors q and q. The spacecraft can translate and rotate in re-
sponse to the arm movements. The manipulator is assumed to
have revolute joints and an open chain kinematic configuration
so that, in a system with an N degree-of-freedom (DOF) ma-
nipulator, there will be 6+N DOF.

Manipulator

Body or Link 1

End-Effector

Spacecraft
(body 0) © Denotes body center of mass

Figure 1. A free-floating space manipulator system.

In the absence of external forces, the system center of mass
(CM) will be fixed in inertial space and the inertial origin, O, can
be chosen to be the CM. The system kinetic energy, T, can be
written as:

N
T=2 > {0 Leog+m peope} O
k=0

where m, is the mass of the k™ body I is its inertia dyadic
with respect to its center of mass, and py and @, are its linear
and angular inertial velocities. |

It can be shown that T can be written in a more compact
form as a function of the N+1 angular velocities as [11,12]:
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where the D;; terms are inertia dyadics that are functions of the

mass and inertia distribution of the space manipulator system,
and are given by [11,12]:
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In the above equation, M is the total system mass, 1 is the unit
dyadic. The vectors ¥ y (i,k=0,...,N), r;"and 1;" (i=0,...,N)
are defined by the barycenters (BC) [13,14] of the i body.
First, the body fixed vector ¢ ; is defined as referring to the loca-
tion of the i body's barycenter with respect to the body's CM.
Itcan be shown that ¢ is equal to:

€= L+ (I-p) i=0,..,N @)
where 4; represents the mass distribution given by:
0 1.:=70
i-1
=y D M i= LN ®)
0
1 i=N+1

Ttmight be noted that the barycenter of the i body can be found
equivalently by adding a point mass equal to My, to joint i, and a
.point mass equal to M(1-;,,) to joint i+1, forming an aug-
mented body [13,14]. The barycenter is then the center of mass
of the augmented body (see Figure 2). Figure 2 also shows the
body-fixed vectors r;” and 1 ;" required by Equation (3) and the
yetor ¢;", which can be written as:

et =-¢; (6a)
r'=r;-c; (6b)
Il <y (6¢c)

Joint i+1

G Body i Center of Mass
@ Body i Barycenter

-

Figure 2. Definition of vectors r;", 1%, ¢;".

Finally, the vectors v, in Equation (3) are defined by:

g 3 i<k
Y=\ e k=i @
A i>k

Equation (2) is a compact representation of the system’s ki-
netic energy, but it is convenient to work with a scalar (matrix)
form of the equation, using the following notation. Bold lower
case symbols represent column vectors; bold upper case sym-
bols represent matrices. Right superscripts are interpreted as
“with respect to,” left superscripts as “expressed in frame.” A
missing left superscript implies a column vector expressed in the
inertial frame. In addition, we introduce N+1 reference frames,
each one attached to the CM of each body, with axes parallel to
the body's principal axes. Hence, the body inertia matrix ex-
pressed in this frame is diagonal.

The system kinetic energy is written in matrix form as fol-
lows. The inertial angular velocity of body j, expressed by the
vector ;, can be written as the sum of the inertial angular veloc-
ity of the spacecraft, wy, and the inertial angular velocity of body
j relative to the spacecraft, @:

o; = 0+ o) a1t i (B)

The angular velocity w‘j’ can be expressed as a function of the
joint angles, q. This i§ accomplished by defining a 3x3 trans-
formation matrix "!A;(q;) (i=1,...,N), which is a function of g;
(the i relative joint angle), which transforms a column vector
expressed in frame i to a column vector expressed in frame i-1.
An additional transformation matrix can be defined as:

OT; (qy,- @) = °Ay(qy)-. 1 Ay(q)) i=1.,N 9

0T, transforms a column vector expressed in frame i to a column
vector in frame 0. Finally, T is the transformation matrix from
the spacecraft frame to the inertial frame and is a function of the
spacecraft’s attitude, expressed by the Euler parameters € and 1,
Ty =Ty(e, M), see [15]. Using these transformation matrices,
the inertial velocity m? of link j relative to the spacecraft can be
written as:

0)? = Toi OTi iui (.li = TOOFJ(.I _] = l....,N (10)
i=1
where iu; is the unit column vector in frame i parallel to the axis

of revolution through joint i, and °Fj is a 3xN matrix, function
of the joint angles q only and given by:

OFi(q) = [°T,'uy, OT3 2u,,..., °Tju;, 0] j = 1,..,N (11)
where 0 is a 3x(N-j) zero element matrix. Itis easy to show that
the inertia matrices Djj that correspond to the inertia dyadics
given by equation (3) can be expressed with respect to the space-
craft frame of reference as:

D;; = Ty ’D;; T " i jie LN ((12)

°Dij is formed according to Equation (3) with all vectors ex-
pressed in the base frame. This proves that °Dij is a function of

q only. Also due to Equation (3), °D;; = °D;;T. For conve-
nience define:
N N
;= 3 °D;; j=0,..N D=3 °D; (13)
i=0 =0
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where all the above are functions of q only. The terms in Equa-
tion (13b) depend upon the manipulator mass and inertia proper-
ties, while the terms in equation (13a), in addition depend upon
the spacecraft inertia.

Using Equations (8-13), the matrix form of Equation (2) can
be written as:

T = 5 %)," °D %0, + %OmoT D,q +

(ST N 1 P

'TOD To

q (14)

1. .
@o+ 54" Dgq @
where %y, is the spacecraft angular velocity expressed in its
frame. Note that T is a function of © @, q and q only. This ob-
servation suggests that if 0wy can be expressed as a function of
qand q only, then the spacecraft attitude coordinates are ignor-
able, that is they do not appear in the expression for T, see [16].
This is exactly the case with free-floating space manipulators.

The system angular momentum can be written as [11,12]:

N N
m=TOZ ZOD

0 i=0

In the absence of external torques, the system angular momen-
tum is constant. The first two terms in Equation (14) vanish as-
suming that the system initial angular momentum is zero.
Equation (15) then yields the spacecraft inertial angular velocity
as a function of the inertial angular velocities relative to the
spacecraft frame:

Omo = -OD-l ODq ('l

i 00, =To°D %0y + D q)  (15)

(16)

Note that inversion of °D is always possible because it is a
symmetric positive definite matrix that represents the inertia of
the free-floating system about its CM. Substituting owo in
Equation (9) and after some algebraic manipulation, T results in:

T=3d"H'@4a an

where H'(q) is the system inertia matrix, given by:
H'(q) = 0D - °DqT Op-1 °Dq (18)
Again, the fact that °D;; °D was used. The expression for T

given by Equation (f7) is ldentlcally equal to the system
Routhian, see [16], and is thus the appropriate Lagrangian for
this system. Equatlon (17) shows that T is a function of (q, q),
the manipulator joint angles and velocities.

It is easy to show that the system inertia matrix, H", is an
NxN positive definite symmetric inertia matrix, which depends
on q and the system properties. All elements of H" are func-
tions of the manipulator joint angles q; (i=1,....N) onlyd since
the total system mcma with respect to its CM D, and "D; are
functions of only the g;’s and not of the spacecraft attitude. "I‘hns
proves that the system inertia matrix H" has the same structural
properties as the inertia matrices that correspond to fixed-base
manipulators.

The above equations are important because they show how
to construct the system inertia matrix H" efficiently. The steps
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needed to accomplish this task are: first, compute all the %y
vectors accordlng to Equanons (4)-(7) and (9). Second, com-
pute the °D;: inertia matrices, according to Equauon (3), using
the %v, in lﬂe place of the vy Third, find the °F; mamc&sw
cording to Equation (11) and ﬁnally, find the inertia matrix H',
Equanons (17) and (18) are very useful in understanding thedy«
namics of free-floating systems and we will refer to them again.

In the absence of gravity, the potential energy of a rigid sys-
tem is zero, and the system’s dynamic equations are given by:

dt{g }

where 7 is the generalized force vector which, in this case, is
equal to the torque vector [ Ty, Ty, ..., Ty I©°

Applying Equation (19) to the kinetic energy given by Equi-
tion (17) results in a set of N dynamic equations of the form:

(19)

H'@q+ C(qqq=r1 (20)
where H'( (q), is the system inertia matrix defined by Equation
(18) and C'(q, q) q contains the nonlinear Coriolis and cen-
trifugal terms. Note that the system dynamic equation is a func-
tion only of the joint variables, and not of the spacecraft attitude
or position variables. This results from the fact that the system
kinetic energy does not depend on spacecraft attitude nor onits
angular or linear velocity, when the initial angular momentumis
zero and the system is free of external torques. The spacecraft’s
contribution to the s%stem s kinetic energy, T, enters in through
the inertia matrices “Dyy; (i=0,...,N), which depend on its mass
my and inertia I,

III. THE NATURE OF CONTROL ALGORITHMS
FOR FREE-FLOATING SYSTEMS

It is well known that one needs three basic elements (or some
combination of them) in order generally to control a fixed-base
manipulator. These are, first, an invertible representation of
manipulator kinematics, which can be in the form of a closure
equation or a Jacobian. Most control algorithms use the latter.
Second, one needs a set of dynamic equations which describe
the response of manipulator joint angles to actuator torques or
forces. Third, a control algorithm must use sensory information
and calculate the required torques or forces to achieve a desired
task.

l

It is clear, that if a free-floating space manipulator and a
fixed-base manipulator have the same dynamic equation and Ja-
cobian structures, then a control law which can be used for that
fixed-base manipulator is suitable for the space manipulator,
with a few mild limitations discussed later. By structure we
mean that the matrices of the dynamic equations and the Jacobian
of the two manipulators have the same order and symmetry and
depend upon the same variables. Further, the inertia matrices of
the two systems have the same positive definite character. Of
course, the numerical values of the elements of the matrices of
the free-floating space system will have different values. For
example, the elements of the dynamic matrices H® and C”, will
be different from those of the similar matnces of the fixed-base
manipulator, H and C, since H* and C* depend in part on a
spacecraft’s mass properties. As a result, the same torque vector
t will produce different joint accelerations in the two systems.
However, we are interested here in the structure of the dynamic
equations and not in numerical values of the inertia matrix ele-
ments. Also, since the applicability of fixed-base controllers



does not depend upon the existence of gravity, it can be ne-
glected for the purposes of this comparison.

We will compare the structures of the dynamic and kinematic
equations of free-floating manipulators to the ones for fixed-base
manipulators and show that based on the above argument it
should be possible to develop a free-floating space manipulator
control algorithm based on nearly any algorithm used for fixed-
base manipulators, provided that some weak conditions hold.
Two types of motion control will be considered. The first,
called Spacecraft End-Point Motion Control, is the form of con-
trol in which the manipulator end-point is commanded to move
10 a location fixed to its own spacecraft, or when a simple joint
motion is commanded, such as when the manipulator is to be
driven at its stowed position. The second, called Inertial End-
Point Motion Control, is when the manipulator end-point is
commanded to move with respect to inertial space.

A. Spacecraft End-Point Motion Control.

The comparison between this form of control for a free-floating
manipulator and a fixed-base manipulator is rather straightfor-
ward. It has been shown, see Equation (20), that the minimum
number of equations describing the dynamics of the N+6 DOF
space system is N for an N DOF manipulator, the same as for a
fixed-base N DOF manipulator. It is also been proven above
that the space system inertia matrix, H", depends only on the
manipulator’s joint variables, q, and is a symmetric matrix.
These are also the properties of the inertia matrix for the fixed-
base system. It can be shown also that the H is _positivc defi-
nite, as H. Finally, since C* is derived from H", it will have
the same form as the fixed-base C which is derived from H.
Hence, the dynamic equations of both systems have the same
structure as defined above.

If the spacecraft becomes very large, mg and I, approach in-
finity, and H" and C" converge to H and C. This should be ex-
pected, because a very large spacecraft will not react to the ma-
nipulator’s motions and the system will behave essentially as a
fixed-base system. Also, the order of the system remains fixed,
equal to N, irrespective of the size of mg and I. Finally, since
the motion of the space manipulator is controlled with respect to
its own base, then the Jacobian relating its joint angle and the
end-effector velocities is identical to that of the fixed-base ma-
nipulator, called J. The above observations hold equally for the
simple joint control problem where a J is not required.

Thus we conclude that nearly any control algorithm that can
be used for fixed-base manipulators can also be used for space
manipulator systems under Spacecraft End-Point or joint con-
trol. Of course, since the system matrices are different, the con-
ol gain matrices may be different in the two cases.

B, Inertial End-Point Motion Control.

References [11,12] show that the inertial end-point position and
orientation, X, are not unique functions of the manipulator joint
angles, q, because of the effect of a spacecraft’s orientation and
position. A free-floating space manipulator system is an under-
constrained redundant system where the spacecraft final attitude
depends upon the path taken by the manipulator in joint space.
However, these references further show that it is still possible to
construct a system Jacobian that relates joint motions q to end-
point velocities X in the form:

@1

x = [rg, 051" =J"q

J* = diag(Ty, To) %" (q) (22)

where iy, is the end-point inertial velocity, g is the end-point in-
ertial angular velocity, and 9J*(q) is a 6xN Jacobian which is a
function of both the manipulator configuration, q, and of the
system mass and inertia properties. If N=6, then °J*(q) be-
comes a square matrix. T, depends on the spacecraft attitude,
which can be measured or estimated as shown in [11]. It is un-
necessary to use spacecraft attitude where the inertial motion is
measured with respect to the spacecraft frame, such as in refer-
ences [7,8]. In that case the Jacobian required in equation (21)
is simply %J*(q).

It is well known that the Jacobian, J, of a fixed-base ma-
nipulator is a 6xN matrix that depends on q and the link lengths
of the manipulator. J* or °J*(q) has the same dimensions as J
and also depends on q as well as on the %, vectors, scaled by
the °Dij (i,j=0,...,N) inertia matrices. This means that the free-
floating system differential kinematics, although complicated,
have the same structure as the kinematics of the same manipula-
tor with a fixed base, as defined above. Indeed, if a spacecraft‘s
mass and inertia, m and Ty, are large, Ty approaches a constant
matrix and diag(T, Ty) 0J%(q) results in the normal fixed base
manipulator Jacobian. Mass and inertia dependencies vanish.

However, one important difference is that the workspace of
the free-floating system is reduced compared to that of the fixed-
base manipulator [4,6]. In addition, the free-floating system
workspace can be divided in two regions, the Path Independent
Workspace (PIW) and the Path Dependent Workspace (PDW)
[11,12]. If the end-point path has points in the PDW, the ma-
nipulator may become dynamically singular, i.e., its Jacobian J*
or °J*(q) becomes singular, although it may not be kinematically
singular, meaning alignment of axes or points at the workspace
boundaries. A workspace location may be singular or not de-
pending on the path or history of the motion. If the end-point
path belongs entirely in the PIW, no dynamic singularities oc-
cur. This leads to the additional condition that the controller
must be able to overcome or avoid these singularities.

From the above discussion we concluded that the structure
of the kinematics of a free-floating manipulator under Inertial
End-Point Control are the same to the fixed-base manipulator
case, with the additional conditions that the spacecraft attitude
may need to be estimated or measured and dynamic singularities
must be avoided. Further, since the dynamics for this case are
identical to those discussed above for Spacecraft End-Point Con-
trol, they have the same structure as a fixed-base system. Thus
it follows that nearly any control algorithm that can be used for
fixed-base manipulators can also be used for space manipulator
systems under Inertial End-Point Control, provided, of course,
that the appropriate matrices are used. For example, laws like
resolved rate, resolved acceleration, impedance control or com-
puted torque can be used in space if one uses the appropriate Ja-
cobian and inertia matrix. If these matrices are exactly known,
then, as in the fixed-base manipulator case, there is no need for
end-point sensing control. The controller can rely entirely upon
information provided internally by the system. However, end-
point sensing may be needed for space manipulator systems
when the uncertainty in the system parameters is so large that the
resulting real-time errors are unacceptable. This is also true for
fixed-base systems.

C. Differences Between free-floating and fixed-base
manipulators.

So far, we have focused our analysis on the similarities between
fixed-base and free-floating systems and have shown that it is
possible to develop space control algorithms based on nearly any
algorithm used for fixed-base manipulators. Now we discuss
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some of the practical implementation points of space manipulator
control.

1. Terrestrial fixed-base manipulator Jacobians depend on the
joint angles q, only. In space, the system Jacobians also
depend on spacecraft orientation, see Equation (22). This
orientation can be calculated, as shown in [11,12], or mea-
sured on-line by additional sensors. No such procedure is
needed for fixed-base systems.

. In general, the knowledge of kinematic parameters, such as
link lengths, is enough for fixed-base manipulator control
purposes. In space, this is not true. The Jacobian of free-
floating space system depends on its dynamic properties,
such as the masses and inertias of its spacecraft, and on its
manipulator’s link lengths. In addition, system dynamics
are more complicated and depend on products of inertias
which increase the error in obtaining the mass matrix.
External sensing or on or off-line parameter identification,
can be very important for space systems.

. Singularities are functions of the kinematic structure of the
terrestrial fixed-base manipulator only. In space, dynamic
singularities exist that depend on the mass and inertia distri-
bution [11,12]. A point in the space system workspace can
be singular or not depending on the path taken to reach it.
These singularities represent physical limitations and must be
avoided. Terrestrial and space workspace sizes and struc-
tures are not the same.

. Itis not possible to map desired Cartesian workspace points
to a unique set of desired joint angles q for free-floating
systems in space, as can be done for fixed-base manipulators
because infinite sets of joint angles correspond, in general,
to any workspace point. Which of these sets of joint angles
will actually result when the end-point reaches the desired
workspace point depends on the path taken to reach this
point. This characteristic of space systems excludes one
early manipulator control algorithm, the *“point to point”
control, see [17].

The above analysis confirms that, with some weak condi-
tions, nearly any control algorithm that can be used in fixed-base
systems, can also be used in free-floating systems. This is
demonstrated below by applying a control algorithm developed
for fixed based manipulators to a space system under inertial
end-point control.

IV. A PLANAR EXAMPLE

Here the relatively simple, fixed-base algorithm called the
Transpose Jacobian Control by Craig [18], is applied to the sim-
ple, planar, free-floating space manipulator system shown in
Figure 3, whose parameters are given in Table I. As shown in
[13], the system Jacobian in Equation (22) is given by:

0) -sin(0
i [cos( ) -sin( )] 05 (@) @30
sin(0) cos(0)
where
93°(q) =
1 -(Bs;+ys12)Dg Bs1Dy-512(Dp+Dy)
D (23b)
-o(Dy+Dy)+(Be; +ye 2)Dg -(a+Bey )Dy+ye 5 (Do +Dy)

and s; = sin(q,), ¢, = cos(q,+q,) etc. The inertia scalar sums
D, Dy, Dband bz are defined in the Appendix by Equation (A8)
and & =ry", B='r," and y=%c," + r,. The lengths o, B, ¥
are manipulator link lengths scaled by the mass ratios (m;/M).
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Since each D; and D are functions of q, the Jacobian ele
are more complicated functions of the q than their fixed-bas
counterparts. This Jacobian, J*, should be compared (o i
fixed-base manipulator Jacobian J which is given by:

-(12+r2)s|2

-(ll+rl)sl-(l2+r2)sn ]
(12+r2)012

(l 1 +T, )C 1 +(12+r2)012

J(@) = [

It can be seen that J* and J have the same structure.

2 DOF Manipulator

Spacecraft

Figure 3. A planar free-floating manipulator system.

Table I. The system parameters.

[ Body T; (m) L | m; Kg |I (Kgm)
0 D 35 40 6.667
1 55 &) 4 0.333
2 o) .5 3 0.250

The system inertia matrix is found according to the analysis
presented above (see Appendix A for details). The resultis:

(D,+D,)? Dy(D;+Dy)
0d1+2%2+%d 52— %d12+%dgy- 23

H* =
D,(D;+D,) D,?
0dy,+%dp-—+ 3 %55
(25)

The system inertia matrix, H", is a 2x2 symmetric matrix
whose elements are functions of the joint angles q; and g,.
Note that D represents the inertia of the whole system with re-
spect to its CM and thus, is always a positive number. The
above matrix can be seen to have the same structure as the fixed-
base inertia matrix H, whose elements are given by:

hy; hyg
H = (26a)
hi; hy

h 13 N I 1+m1 1 12+m2(ll +rl )2+2m212(1 1 +rl )COS(qZ)+12+m2]22
hl2 - h2| = mzlz(ll"'l’l )cos(q2)+12+m2l2z
h22 = I2+m2122 (26b)

At the limit, when both my and I approach infinity, it is
easy to see that B—1;+r;, y—=ly+1,, i.e., they approach the ma-
nipulator link lengths, mg/M—1, m;/M—0, my/M—0,
Dy/D—1, D,/D—0 and D,/D—0; T becomes a constant trans-
formation from the manipulator base frame to the inertial frame,
usually the unit matrix; and finally, J*—J, the fixed-base ma-



nipulator Jacobian, and H*—H, the mass matrix of the fixed-
base manipulator, as given by Equations (24) and (26).

One can select any control algorithm that can be used for
fixed-base manipulators, using the two matrices H" and J*, de-
pending on the manipulator task. In this case, the Transpose Ja-
cobian Control was used, augmented by a velocity feedback
term for increased stability margins. The end-point position and
velocity, x and X, can be calculated or measured directly. As-
suming we measure x and X, the control law is:

T'= J.T { Kp (Xdes -X) - Kd X } 27)
where X4 is the inertial desired point location. The matrices

and K4 are diagonal. Note that this algorithm drives the end-
point to the desired location, but does not specify a path. If the
control gains are large enough, then the motion of the end-point
will be a straight line. The torque vector is non-zero till the (Xges
-x) and X are zero, or till the vector in the brackets in Equation
(27) is in the null space of J*T. For the purpose of this example,
the end-point path will be restricted to the PIW part of the
workspace, and hence dynamic singularities will be avoided.

Figure 4 shows the motion of the end-point from the initial
location (1,0) to the final (0.8,0.8). The control gain matrices
are K, = diag(5,5) and K4 = diag(15,15). The end-point path,
shown with a heavy line, is almost a straight line and converges
to the desired location. Shown also is the end-point path that re-
sults when the control law given by Equation (27) uses the
fixed-base Jacobian given by Equation (24). In this case, the
end-point diverges from the straight line because it does not re-
solve the error term correctly. Depending on the situation, the
use of the fixed-base Jacobian can create stability problems [9].
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Figure 4. The end-point path in inertial space, using J* and J.

Figure 5 shows the spacecraft attitude 6 and the joint angles
as a function of time, during the end-point motion depicted in
Figure 4, when J” is used. Note that although the spacecraft
attitude changes for about 35°, the manipulator end-point con-
ve:rgeis_1 l(;dthe desired inertial location as it would do if its base
were fixed.

We have assumed that the end-point position and velocity are
measured. However, if we know the system parameters ex-
actly, they can both be calculated. To do this, one has to mea-
sure the joint angles q and calculate the spacecraft attitude using
the conservation of momentum equation [11]. Then the manipu-
lator would rely entirely on internally provided information and
would not need end-point sensing. However, it may be very
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difficult to obtain the correct values for all the system dynamic
parameters and any errors will be magnified due to the products
involved in the computations. Thus, it is not the physics of the
problem that forces the use of end-point control, but rather the
incomplete information about the dynamics of the plant. This
fact is also true for fixed-base manipulators, although in this
case the uncertainty is less severe because the system matrices
depend on fewer parameters.

200

q2

et e e 81

0
\

q,

=100

8, 9, q, (degrees)

-200 : :
s 10
Time (s)

Figure 5. The spacecraft attitude 6 and the joint angles q; and
q, as a function of time.

Following the above procedure, any control algorithm that
employs the system H" and J* can be designed. However,
control methods that depend on the cancellation of terms, like the
computed torque methods, require the exact system inertia ma-
trix H, and thus emphasis must be placed in its computation.

V. CONCLUSIONS

A fundamental study has been performed of the characteristics of
control algorithms which may be applied to the motion control of
space manipulators. The results obtained show that nearly any
control algorithm which can be applied to conventional terrestrial
fixed-base manipulators, with a few additional conditions, can
be directly applied to free-floating space manipulators. We hope
that the results encourage the development of more effective
control algorithms for free-floating space manipulator systems.
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APPENDIX A

For the planar two link system, shown in Figure 3, the two co-
ordinates of the end-effector, x and y, are assumed to be con-
trolled by the two manipulator joint angles, q, and q,. The end-
effector orientation is not controlled for this two DOF system
(N=2), hence Equation (21) for this system is simply:

k= p=aylT=04 (A1)

where J* is given by Equation (23).

In the following, the construction of the system inertia ma-
trix will be demonstrated. First express all vy in Equation (7) in
the frame of the i body, according to Equations (4), (5) and
(6). For the sake of simplicity assume that all r; and I; are paral-
lel to the x axis of the i frame. Hence, only the X-component
of the vy is non-zero and given by:

Il

1
M Tpmy

1
- ¥ Fo(my +my)

O = - ﬁfo(ml"'m?) -1p

In" = % {r1(mg+my)+1m, }

le," = ﬁ(l,mo-r,mz)

3 P ﬁ {1,(m;+my)+r;m, }

2pp = —hl—d-lz(mo+m,) +1,

%," = i lmgtmy)

2" = - 4 lm, )

where the total mass of the system, M, is given by:

M = mj+m; +m,

For this example, the transformation matrix from the spa
frame to the inertial frame, T, is given by:

cos(0) -sin(0)
Ty(6) = Rot(8) = (A9
sin(0) cos(0)

where 6 denotes the spacecraft attitude, as shown in Figure 3.
Only the planar sub-part of the transformation matrices is used
for simplicity. The transformation matrices °T; are found using
Equation (9):

T, = Rot(q;) T, = Rot(q;) Rot(gy)  (A5)
For the planar case, the inertia matrices °Dij which correspond
to Equations (3) and (12) reduce to the scalars Odij, given by:

my+m,)
odOO = Io.,.ﬂ(_h}r_z_,oz

m
%y = % {1 @my+my) + rym; feos(ay) =%y
m

%dyg = E“g‘d‘lrolzcos(m'*%) =g,

odll = Il + m(&‘d‘n] 112 + mlhldnz r12+ m(&nz (I‘+rx)2
m;m m

%y = { Frink+ m—gm‘l 1p(1y+y) } cos(ay) ="y,

my(mg+m,

%y, = L+ ¢ M )122 (A6)
Both 'y, (i=1,2) in Equation (11) are equal to [0 0 1]T; the °F,
matrices reduce to:

OF, = [1 0] OF,=[1 1] (A7)
For simplicity, drop the left superscripts from D; and set:
2
D= 3 %; j=0,12 D= Dy+D;+D, (A
1=0

The system inertia matrix is assembled using Equations (A6),
(A7), (A8) and reduces to the following:

I D.D.
H'(Q) = Y, Y °FT (%d; - =) OF; (A9)
i=1 j=1

Its explicit form is given as Equation (25).
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