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ABSTRACT

Emulating on earth the weightlessness of a manipulator free
floating in space requires knowledge of the manipulator's mass
properties. Knowing the manipulator's mass properties, the
gravitationally induced forces and moments can be estimated
and compensated. A method for calculating these properties by
measuring the reaction forces and moments at the base of the
manipulator is described. A manipulator is mounted on a six-
degree-of-freedom force sensor and the reaction forces and
moments at its base are measured for different positions of the
links of the manipulator as well as for different orientations of
its base. A procedure is developed to calculate from these
measurements some combinations of the mass properties of the
manipulator. The mass properties identified are not sufficiently
complete for computed torque and other dynamic control tech-
niques, but do allow compensation for the gravitational load on
the links of the manipulator, and for simulation of weightless
conditions on a space emulator. The algorithm has been ex-
perimentally demonstrated on a PUMA 260, and used to mea-
sure nine independent combinations of the sixteen mass param-
eters of the base and three proximal links of the manipulator.

I. INTRODUCTION

An experimental space emulator has been developed for emu-
lating space conditions in the laboratory. Using this system the
motion of a manipulator free floating in space, or attached to a
small satellite can be experimentally demonstrated. In order to
emulate space conditions the mass properties of the manipu-
lator must be known.

The space emulator operates under admittance control. A force
sensor measures the dynamic reaction forces at the base of the
manipulator, and using this measurement, the space emulator
controls the motion of the base to be the same as if the manipu-
lator were free floating in space. The force sensor measurement
is the sum of the gravitational and dynamic forces. As the posi-
tion of the links and the orientation of the base of the ma-
nipulator change, the gravitational load also changes. Knowing
the manipulator's mass properties, the gravitational forces can
be estimated and subtracted from the forces and moments mea-
sured at the base, so that any motions of the base will corre-

spond only to the dynamic forces that would exist in real space
conditions.

The space emulator can also be used to identify the mass
properties of a manipulator. Statically the gravitational forces
and moments at the base of the manipulator are measured and
the position of the links of the manipulator and the orientation
of the base of the manipulator to the vertical are known. Using
these measurements the mass properties of the manipulator can
be calculated.

! In this paper position implies position and orientation, and force implies both force and rorque.
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In general, estimation of the mass properties of the links of a
manipulator are needed for three broad classes of problems:

(a) Dynamic modelling of the inertial parameters of a ma-
nipulator for feedforward, computed torque and other
dynamic control algorithms.

(b) Static modelling of the mass properties of the links for
compensation of the gravitational load on the joints of
the manipulator.

(c) Static modelling of the mass properties of the links for
compensation of the gravitational load on the base of the
manipulator for space emulation systems.

Several methods have been developed for measurement of the
mass properties of a manipulator. The mass properties of the
load at the end effector can be measured by using a wrist
force/torque sensor [9]. Armstrong, Khatib and Burdick [4]
measured the mass properties of a PUMA 560 robot by counter-
balancing the disassembled parts; this method is tedious and the
cross terms of the inertia matrix cannot be obtained in this way.
Ann, Atkeson, and Hollerbach [2] and Atkeson, An, and
Hollerbach [3] developed an algorithm to determine the inertial
properties of a manipulator from measurement of the joint
force/torque! along with the joint position, velocity and
acceleration. Their method does not use any additional sensor
hardware (joint torque is estimated from measurement of the
motor current), but is limited to manipulators with low joint
friction such as direct drive arms. Slotine [10] developed an
adaptive control algorithm for the estimation of the mass
properties. These last two methods are unable to determine all
of the mass properties, but the missing terms have no effect on
the dynamic control of the arm.

The method presented in this paper calculates the mass proper-
ties of each of the links of a manipulator by measuring the re-
action forces at the base of the manipulator as the links are
moved. This method is being used for gravity compensation of
a manipulator mounted on a Space Vehicle Emulation System
[6]. Not all of the mass properties are identified, but the miss-
ing terms have no effect on the gravitational load on the emu-
lator force sensor. This method requires that the manipulator be
mounted on the six degree-of-freedom force sensor. This force
sensor is a necessary part of the Space Vehicle Emulation Sys-
tem.

II. THE SPACE VEHICLE EMULATION SYSTEM

In the future, robotic manipulators will be increasingly used in
applications in which the base of the manipulator is not fixed,
but is free floating [1]. Such applications include manipulators
carried by spacecraft for satellite repair. The case of the free
floating manipulator is essentially the special case of a
manipulator mounted on a compliant base in which the compli-
ance has become infinite. The control of such mobile manipu-




lators would be more difficult than that of industrial manipula-
tors, which are generally attached securely to relatively rigid
and stationary bases. Algorithms for the control of free floating
manipulators have been developed [7], [3], [13], [14], [15].
The Space Vehicle Emulation System has been built as a test
facility to demonstrate and experimentally evaluate these solu-
tions.

The Space Vehicle Emulation System consists of a manipulator
mounted on an emulator system [8], [11]. The experimental
manipulator is a PUMA 260 with a custom joint controller, and
the emulator system comprises a six degree of freedom Stewart
mechanism, six degree of freedom force sensor, and computer
controller. The experimental manipulator and the emulator sys-

tem are controlled by individual DEC PDP-11/73's, and can be
coordinated using a communication link between the two com-
puters. A sketch of the system is shown in Figure 1.

The Stewart mechanism and force sensor can, respectively,
move and measure forces in any of the three translational direc-
tions (x,y,z), and any of the the three rotational directions,
(8x,08y,8;) possible in general three dimensional space. The
platform stands approximately 3 feet of the ground in its home
position. The major hardware elements of the Space Vehicle
Emulation System are shown in Figure 2, and a photograph of
the System is shown in Figure 3.
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Figure 2. Mechanical Hardware Elements of Space Vehicle
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A micro-PDP11/73 is used for trajectory calculation, and also
to provide position commands to the analog joint controllers of
the Stewart mechanism. The microcomputer is also used to
subtract the calculated gravitational load of the manipulator
from the force measured by the force sensor for simulating
weightless conditions. In addition to trajectory calculation and
control, the computer performs a supervisory function checking
for approaching violations of the kinematic constraints, and
verifies that the joints are following the desired trajectory
within allowed error bounds.

The dynamic reaction forces at the base of the manipulator are
measured by the force sensor, and the motion of the base is
controlled by the emulator system admittance controller to be
the same as if the manipulator were free floating in space. The
structure of the admittance control mode is shown in Figure 4.
The output of the admittance model is integrated to give a series
of desired positions for the emulator platform, and then an in-
verse kinematic model is used to calculate corresponding leg
lengths of the Stewart mechanism.

The force sensor measures the sum of the dynamic reaction
forces and the gravitational reaction forces. As the position of
the links and the orientation of the base of the manipulator
change, the gravitational load also changes. This load must be
subtracted from the load measured by the force sensor to give
the dynamic reaction force at the base. The gravitational load of
the manipulator on the force sensor can be calculated from the
position of the links of the manipulator and the orientation of
the base of the manipulator to the vertical, which are known,
and the mass properties of the manipulator.

III. A ONE DEGREEE OF FREEDOM EXAMPLE

The method of calculating the mass properties of a manipulator
from measurement of base reaction forces will be developed
with reference to a simple one-degree-of-freedom example be-
fore the more general three-degree of freedom case is pre-
sented. The manipulator shown in Figure 5 is mounted on a
fixed force sensor and can rotate about its z; axis only. The
reference frame is attached to the center of the force sensor.

The moment measured by the force sensor is given by:

m=Nexf+mo )

where Nr is the position of the center of mass of the moving
link in the force sensor reference frame, f is the gravitational
load on the center of mass of the moving link, and mpg is the
moment at the force sensor due to the weight of the base of the
manipulator. The gravitational load on the link is given by the
product of the mass and the acceleration due to gravity:

where M is the mass of the link. The moment at the force sen-
sor consists of three terms:

mx
m
m, o)
1

m=

Nr, the posit{on of the center of mass in the Newtonian frame
can bq descnbed in terms of rj, the position of the center of
mass in the link frame using the transformation matrices, To,
Ti:

Ne=ToTip (4)

where T is given by:

1 0 0 0 7
0 0 1 loy

To<f o 1 0 ., )
] 0 0 1 J

and Ty is given by:
Ci -S; 0 0

T = S1 C 0 0

=l o 0 10 6)

0 0 0 |

Figure 5. Simple One-Degree-of-Freedom Manipulator
Mounted on a Force Sensor
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and 11 is given by:

Tix
riy

L= fz

(@)

Note that that the systems of frames shown in Figure 5 differ
from the standard Denavit-Hartenberg notation; frame i is at-
tached at joint i rather than at joint i+1. This notation is used to
simplify the analysis.

Expanding equation (1) gives:

mx mox (r1z + loy) M1 g
my | _| moy (-Cimnix+Si1ry) Mi g (8)
my =\ mo: 0

1 1 1

If the link is moved through two more positions, we get two
more sets of moments with their corresponding joint angles:

my mox (r1z + loy) M1 g

my _| moy (-Ci'nix + S1'riy) M1 g

m moz * 0 ©
1 1 1

my" mox (riz +loy) Mi g

my" _ | moy (-C1" rix + S1" r1y) M1 g

m;' | moz * 0 ao
1 I 1

The second rows of equations (8), (9) and (10) can be extracted
to give:

-Ct S1 1 rix Mi g my
-<Cyt St 1 rny Mi g =| my' (1)
-C1" S1" 1 moy my"

which can be solved for rix My, riy My, and moy. The product
of the mass of the link and the distance of the center of mass
from the joint is calculated but the mass of the link alone is not
determined. The r1; M{ component of the position of the center
of mass cannot be found from this set of simultaneous equations
because terms involving it remain constant throughout the pro-
cess of rotating the link. As long as the manipulator base re-
mains horizontal the moment about the z axis remains constant.
Hence the mass parameters that contribute to this moment can-
not be calculated, nor are they needed for compensation of the
gravitational load of the manipulator on the base.

By tilting the platform about the x axis, the mx component of

the reaction moment at the base can be varied, as illustrated in
Figure 6.

Figure 6. Simple Manipulator on a Tilted Platform
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For the platform tilted at an angle ¢ the gravitational load at the
center of mass is given by:

0
M sin
f= 1 g sind

=] M| gcoso an
1

and the resulting moment measured at the base of the manipu-
lator is:

mx (r1z+loy) Migcosd + (S1rix+Cir1y+loz) Migsing
m C -Sir1y) My g cosd
y . (Crrix-Siry g
= + B (13)
“i‘l mo (Cyrix - S1r1y) M1 g sing
1

where mo ' is the moment of the tilted base and is given by:

|

and o is the location of the center of mass of the base relative
to the force sensor frame.

-rox Mo g cosé

rox Mo g sin¢

roy Mo g coso - 1oz Mo g sind
a4

By measuring the moments for three different base angles the
mass parameters, rox Mo, roy Mo, and (ro Mo + (riz + loy) M1)
can be calculated. Since thé position of the center of mass of
link 1 cannot be varied in the direction parallel to the joint axis,
it is not possible to distinguish between the mass parameters of
the base and the link in this direction. However, since its is not
possible to determine these individual terms, either by moving
the link of the manipulator or its base, nor is it necessary to in
order to compensate for the gravitational load of the ma-
nipulator on the base.

IV. IDENTIFICATION OF MASS PROPERTIES

The method described in the previous section can be general-
ized to obtain all the mass properties necessary for gravity
compensation of a manipulator. The knowledge of these prop-
erties will allow the calculation of the gravitationally induced
moments that are transmitted to the base of the manipulator.
For a PUMA 260, the most important contributions to these
moments are due to the manipulator base and to its first three
links so the wrist position will remain fixed.

The moment vector m, with respect to the force sensor frame
N, is given by (N is dropped)

m= Miexg=MegFr (15)

where M is the total mass of the manipulator, g is the
acceleration of gravity, r is the position vector of the
manipulator center of mass (cm) with respect to Nand Fisa
matrix whose elements fi are the components of the unit vector
parallel to g in N.
M =Mo + M1 + M2+ M3 (16)
where Mg, M1, M2, and M3 are the masses of the base and the
first three links of the manipulator (the last link includes the
wrist and gripper).

Tx
L=| Ty
Iz

and,

0 f -fy
F= f2 0 fx
fy fx 0

an

(13)




Mg represents the weight of the manipulator which can be ob-
tained with one measurement. F can be readily obtained since
it is a function of the orientation (direction) cosines of the base.
So, in order to estimate the transmitted moments, two steps are
required: (a) express [ as a function of the unknown mass
properties and the base and links positions and, (b) estimate the
unknown parameters.

(a) Express r as a function of the mass properties and
the base and links positions. The base and links positions
can be expressed by the use of transformation matrices. The
link frames used in this paper to describe the position of the
manipulator are shown in Figure 7. Frame 0 is attached to the
manipulator base, which has mass Mg while its cm is at ro. In
the same way, frame i (i=1,2,3) is attached to link i with mass
mj and cm at ri. Note that again the frames are not defined
according to the usual Denavit-Hartenberg notation; frame iis
attached at joint i rather than at joint i+1. This notation
simplifies the subsequent analysis.

Figure 7. Link Frames

The Aj matrices transform position vectors r; in frame i to vec-
tors in frame i-1. Matrix Ag transforms position vectors in the
manipulator base frame to position vectors in the force sensor
frame N.

0 -1 0 X cr -s1 0 0
10 0Y s1 ¢ 0 0
Ao=| 9 0 1 z At=l 0 01 0
0 0 1 0 00 1
¢ -2 0 0 c3 -s3 0 lax
0 -1 0 s3 ¢z 0 lay
A=l 5 2 0 A=l g 91 0 (19
0 0 0 t 0 00 1

The next step is to formulate the manipulator T; matrices that
transform a position vector in frame i, in a position vector in
frame N. These are given by

To = Ao (20)
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-5 €1 0 X
- S 0 Y
Ty = ToA] = Cé 5(‘) 1z @n
0 0 0 1
-$1C2 SIS2 €1 X
-Cl1c2 €152 -s| Y
T2 = TiA2 = S 2 0 ez (22)
0 o 0 1
s1(s2s3-c2¢3) s1(c2s3+82¢3) €1 sis2lay-laxsica+ X
T3 = TaAy = | CL(253-€203) ca(e2s3+82c3) -1 -laxcicaecisalay+Y 3

-(52¢3+¢253) szs3-cac3 0 -s2lax-li-c2l2y+2
0 00 1

If we denote by r; the position vector of the i cm in frame i,
where:

Tix

tiy

L= (i=0.1,23) (24)

Tiz

1

then the position vector of the center of mass of the whole ma-
nipulator, f, can be expressed as:

3
1
E=ETL(i§,OMiT1Lx )

(25)
where:
1000
TL=[ 01 00 (26)
00 1 0

Tw is a 3x4 matrix that removes the last element from the 4x1
vectors in the summation. Combining equations (15) and (25)

gives an expression for the moments at the base of the manipu-
lator.

By varying the manipulator joint angles, using the VAL con-
troller of the PUMA, and varying the orientation of the base,
using the Space Vehicle Emulation System the mass properties
of the manipulator can be identified. Knowing these properties
permits the estimation of gravitational moments transmitted by

the manipulator to its base, once its joint angles and base ori-
entation are known.

Expanding eq. (25) reveals that all Mj's appear in products with
the components of ri's or with known lengths. Since these
lengths cannot be altered, it is not possible to estimate these
masses or lengths independently. Further, each mj Li term can
not be identified independently. This can be seen if eq. (25) is
written as follows,

Mo o
My
M2 2
M3 3

[=K‘4—[TL[ To Ti T2 T3 } an

1 .
=M TLT (MR)

TLT is a 3x16 matrix, while the unknowns vector (MRY) is
16x1, containing 12 unknowns. Unfortunately, some of the
columns of TLT are linearly dependent, because they are either
the same or they are the weighted sum of other columns. This
means that if one uses the above equation for identification, the
resulting matrix will always be singular and not invertible. The
result is that some unknowns can not be identified indepen-
dently.

In order to overcome this problem, all dependent columns of
TLT are removed, the remaining matrix being W, and the un-
known vector is modified accordingly and named p. Thus, ¢ is
now decomposed in a set of two new matrices, W and p- The
matrix W has the special property that the dimension of its col-
umn space is equal to the number of its columns. It turns out




that for the base and first three links of the PUMA p is a 9x!
vector. For each revolute link of a manipulator, only two mass
properties can be identified, the ones that correspond to dis-
tances normal to the axis of rotation. Since the link ¢m can not
move along its revolute joint axis, it is not possible to identify
the mass properties in the direction of that axis. Three more
mass properties are identifiable by rotating the base, these are
combinations of the mass properties of all three links and the
base. The 9 x 1 vector of measurable mass properties is given
by:

p1 m3r3x

p2 m3r3y

p3 marax + m3lax

pa maray + m3lay

ps |=| -mirly + m2raz + m3r3; (28)

P6 mirix

p7 mg(-rgy+X) + (my+m2+m3)X

P8 mo(-rox+Y) + (my+mz+m3)Y

P9 mo(-roz+Z) + (mi+m2+m3)Z - myryz -(mz+m3)ly
The moments equation (15) is then written as:
m=MgFr=gFWp (29)
where W given is given by:

[ si(s2s3-cac3) si(cas+sac3) -sic2 s1s2 ¢ sy 1 00
w =[ c1(s283-c2¢3) ci{cas3+s2c3) cic2 €152 s c1 0 1 O (30)

-(s2¢3+€283) s2s3¢2¢3 52 <2 0 0001

(b) Estimate the unknown parameters. So far, ¢ has been
expressed as a function of nine independent properties and of
the link positions. However, in order to use (29) to calculate the
moments, we must first estimate p. For each set of joint angles
and base orientation a set of three moments can be measured,
the components of m. Unfortunately, only two of the moments
vector m components are independent. This is due to the fact
that m, always belongs to a plane perpendicular to the accelera-
tion of gravity vector:
meg=Mi(gxg)-g=0 (€18}
The physical explanation of this problem is that the location of
the center of mass in the direction of the gravity vector can not

be determined since this distance does not affect the moment at
the base.

This condition leads to a non invertible F with rank 2; hence it
is not possible to completely determine the position of the cen-
ter of mass, r, with one set of moment measurements m.
Clearly, three sets of measurements of the moments m corre-
sponding to independent positions of the manipulator will not
result in nine independent equations; Only six equations will be
obtained. For this reason it will not be possible to invert the 9x9
matrix that would result from the three 3x9 FW matrices. A
solution to this problem can be obtained by a least-squares ap-
proach. The moment equations is written in the form:

mO = mgFHpd = gFOWOp (i=1,.,N) (32)
where the superscript i corresponds to the ith set of measure-
ments. If N sets of measurements are taken, then the above
equation, for i running from 1 to N, can be written as follows

m® F() 0 WD)
2 2) 2

- { n | F WO L eweg 33)
m) o) Fy AL wav

Since the dimension of the column space of W() is nine, by
taking measurements at independent sets of joint angles, the
rank of W* can always be made equal to nine. However, since
the rank of F(i) is only two, the rank of F* is at most 2N. In or-

R ol
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der to be possible to recover p, the product F*W* must have
rank 9, so the rank of F* must be at least 9. It follows that N
must be at least equal to 5 since
rank(F*W*) < rank(F*) < 2N (34)
This analysis suggests that one needs at least five independent
sets of measurements. This leads to a non-square (15x9) matrix
for F*W*, which is not invertible. Instead, a least squares in-
version can be employed as follows:

R= § (WTFTE W= 1F W @5
Provided that the matrix, F*W*, is of full row rank, which is
typically the case, the above formula will yield the true value
for p. Alternatively, one or two rows from each set of equation
(33) can be discarded to give a square F*W* matrix. However,
in general a redundancy of measurements reduces the estima-
tion errors, so all measurements were used.

An estimate of the magnitude of the error in p due to measure-
ment errors is given by the condition number of the matrix,
F*W=, It is known that if ||dm*|| is the magnitude of the error

vector corresponding to (lm*|l, then the error in ||p|| is bounded
according to:

18w
18Il < C ipll me

(36)
where C is the condition number of F*W*. The implication is
that if C is large, then some of the parameters in p may be af-
fected greatly by some minor errors in m*. It is desirable for C
to be as small as possible, ideally equal to 1. Matrices F* and
W* depend on the orientation of the base and on the joint
angles of the manipulator, solely, and hence the experiments
may be designed in such a way as to minimize C and thus
obtain a better estimate of p. As a rule of thumb, the condition
number is reduced by choosing angles that are different by as
close to 90° as possible, and taking more sets of measurements
than the required five.

V. EXPERIMENTAL RESULTS

The mass parameters of PUMA 260 robot were experimentally
measured using the Space Vehicle Emulation System described

in section II. The wrist is fixed with joint angles of 84=90°,

85=90°, B6=60°, as given by the VAL controller. During the
experiments, the three components F;of the force vector
(weight) and the three components of the moment vector, m ,
were measured. All measurements were relative to the force
sensor frame N. The joint angles of the manipulator were taken
from the VAL display. The elements of the F matrices were
obtained by measuring the three forces (Fj, i = x,y,z) transmit-
ted by the manipulator to its base:

f,=F|/\JFx2+Fy1+F22 = Fi/Mig (i=x,y,12)

Thirty sets of measurements were taken for different joint an-
gles and for two different manipulator base orientations.The
condition number of the resulting F*W* matrix was 10.8 which
was considered sufficiently low for our purposes. The condition
number could be further reduced by tilting the manipulator
more than the 25° y-axis tilt that was used during our experi-
ments, but was not tried for safety reasons. The basic geometric
parameters and total mass for our PUMA 260 are:

[€Xh]

z -0.036

= m
I = 0330 m
Iy = 0198 m
Iy = -0019 m
M; = 106 kg




The estimates of the mass properties of the manipulator were

calculated using the above analysis in section IV and found to
be:

pi = 0.158 Kgm
p2 = 0010 Kgm
p3 = 0382 Kgm
ps = -001S Kgm
ps = 0437 Kgm
ps = 0.008 Kgm
p7 = -0.050 Kgm
ps = 0275 Kgm
py = -2.445 Kgm

where the elements of p have been defined in equation (28).

Using these mass property values, the gravitational forces and
moments in the x and y directions and the force in the z direc-
tion were predicted to within an accuracy of 1% throughout the
workspace. The moment in the z direction was predicted to
within an accuracy of 10%. The accuracy of measurement of
the moment in the z direction was limited by the low signal to

noise ratio, and could be improved by increasing the angle of y-
axis tiit.

V. CONCLUSIONS

In the future, robotic manipulators will be increasingly used in
applications in which the base of the manipulator is not fixed
but is free floating in space. In order to develop algorithms for
the control of free floating manipulators, a Space Vehicle Em-
ulation System has been constructed. Emulation of space con-
ditions requires accurate compensation for the gravitational load
of the manipulator on the base of the emulator. A procedure has
been developed for calculating the mass properties of a manip-
ulator using measurements of the force and moments at the base
of the manipulator. As in other mass property measurement
techniques, not all of the mass properties are identified inde-
pendently. However, the mass properties are sufficiently deter-
mined to compensate for the gravitational load of the manipu-
lator on the Space Vehicle Emulation System. This procedure
has been used to calculate the mass properties of the PUMA
260, and has been used experimentally to predict the gravita-
tional load at the base of the manipulator.
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