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Abstract— This paper introduces a virtual gravity controller
for underactuated biped robots. A bio-inspired model of passive
bipedal walking is used as the basis for the controller’s design.
An analytical expression of the controller is obtained, allow-
ing on-line implementations of the developed control scheme.
Following a design modification tailored to the controller, the
robot is able to reproduce its passive gait even on level-ground.
The results are verified via independent high-fidelity physics
simulations of the real robot’s digital twin. The active robot
demonstrates significant dynamic convergence to the passive
model’s dynamics, with only minor motorization efforts. The
developed control scheme showcases robustness and energetic
efficiency, and leads the way to a design-oriented approach in
active biped locomotion.

I. INTRODUCTION

Bipedal robots have concentrated immense interest over
the past four decades. Bipedal locomotion has numerous
advantages over wheeled locomotion, including versatility
and adaptability to various terrains. Nevertheless, it poses
significant technical challenges, such as controller design and
energetic efficiency. In contrast to bipedal robots, bipeds oc-
curring in nature demonstrate extraordinary energy efficiency
due to their passive dynamics.

Several biped robot designs and controllers have focused
on the minimization of energy consumption. A common con-
clusion of these studies is that gravity is of great significance
in bipedal locomotion [1][2]. Passive models demonstrate
stable gait on negative slopes thanks to gravity torques
[3]1[4]1[5], while the energy lost at heel strike impacts is
restored through the biped’s descend in the gravitational
field [6]. However, these passive walkers’ motion is highly
dependent on the slope and their initial conditions.

In an effort to extend the passive walkers’ capabilities,
various controllers have been proposed. Each passive gait
corresponds to an energy level: some controllers attempt
to maintain the exact energy level required for a repeated
gait. As shown in [7], which introduces the notion of
controlled symmetry, there exist energy shaping controllers
that reproduce the gaits generated by passive walkers on any
slope [8]. However, these controllers require full actuation,
and are not easily applicable to real-world robots [8].

The Hybrid Zero Dynamics (HZD) approach is a popular
framework for designing feedback controllers, with various
applications in underactuated robots, that accomplishes stable
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dynamic walking, presented for the first time in [9]. The HZD
method has been successfully implemented in the RABBIT
[10] and MABEL robots [11]. This framework is computa-
tionally more intensive than model-based controllers, posing
a challenge when adaptability is required.

Virtual gravity control, which mimics the gravitational
effect to accomplish passive-like gait on different slopes
also poses several difficulties. Gravitational forces are field
forces, and accelerate each body of a multi-body system
independently. However motors that attempt to mimic these
gravitational forces in underactuated biped robots will gen-
erate equal and opposite forces between two bodies of the
system. This constraint may lead to dynamic divergence and
prohibit the exact replication of the passive gait.

This problem can be bypassed in fully actuated walking
models. In [7], a virtual gravity controller applies torques
equal to the gravitational terms in a biped without knees. A
similar approach has been followed for a fully actuated biped
with a torso [12]. However, the method requires full actuation
of the robots, which is not the case for biped walkers.

However, underactuated dynamics play an important role
in bipedal walking. Just like in nature, the upper body of
bipeds is often utilized as a floating base link, that receives
and counters the legs’ reaction torques. An example is
showcased in [13], where a PD controller is used to stabilize
the torso of a biped model. In another approach, an un-
deractuated biped model with semicircular feet and without
knees accomplishes stable gait with the implementation of a
passivity-inspired virtual gravity controller [14].

Motivated by the fact that gravity is the driving force
of passive walkers, in this paper the Underactuated Virtual
Gravity (UVG) controller is introduced and demonstrated
for the kneed biomimetic passive biped presented in [5].
To avoid the use of any PD-type controller, which would
introduce terms that would tamper with the passive dynamics
we wish to conserve, the passive walker model is redesigned
with the addition of a counterweight link, allowing a signif-
icant convergence of the active dynamics on level ground,
to the original passive dynamics on slope. This dynamic
similarity allows the underactuated biped to demonstrate a
very competitive Cost of Transport (COT).

This paper consists of five sections, including the intro-
duction. Section II analyses the development of the UVG
controller. In Section III, the analytically modeled system and
the application of the controller is validated via independent,
high-fidelity simulations of the real robot’s digital twin in
MSC ADAMS. Section IV presents the results and associated
discussion, while Section V concludes the paper.
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II. CONTROLLER DESIGN

A. The passive biped

The passive biped model to be controlled has been in-
troduced in [5] and is shown in Figure la. The model has
two identical legs: each leg is comprised of a femoral and
a tibial link, connected via a four-bar mechanism which
imitates the constraints imposed on the human knee by the
cruciate ligaments. Both knees are equipped with viscoelastic
kneecaps to prevent knee hyperextension during walking.
The two femoral links are connected through a revolute joint
at the hip position H. Each tibial link is rigidly connected
to the biped’s biomimetic feet, the geometry of which is
designed to mimic the human foot’s rollover shape [15]. The
feet are assumed to perform rolling without slipping during
their contact with the ground.

The design parameters used in this study are presented
in Table I, the footshape is defined in [15] while the 4-bar
knee’s parameters can be found in [5] along with a detailed
model description.

The biomimetic passive biped of Fig. 1(a) performs stable
passive gait in a range of negative slope angles a [5].
However, on level ground the unactuated model would fail to
maintain its passive repetitive walking motion, as the energy
lost with each impact would no longer be restored by the
biped’s descent within the gravitational field. The necessary
contribution of gravity in sustaining a repetitive gait may be
identified through the study of the system dynamics.

B. Dynamics of walking

The generalised coordinates of the passive model include
the Cartesian coordinates of the hip joint H, zp, yn, the
femoral angles 0;; and knee angles 6;, where j = 1,2
for each of the biped’s legs. They comprise the generalised
coordinates’ vector q:

a = [Th, Yn, 017, 01k, 0oy, O] (D

The system dynamics for some slope angle a are described
by the following set of differential and algebraic equations:

M(q)4 + C(q,q) + G(q,a) —f=u (2a)

s(q) =0 (2b)
where Mgye refers to the joint space inertia matrix and
depends solely on the biped’s configuration q, Cgyxy refers
to a vector that includes Coriolis, centrifugal, and kneecap

7/
(a) original biped, negative slope (b) counterweight biped, level ground

Fig. 1.
a negative slope a. (b) Biped redesign: addition of a counterweight to
accommodate the UVG control and achieve level-ground walking.

(a) Bio-inspired passive biped, introduced in [15] walks down

TABLE I
DESIGN PARAMETERS OF THE BIPED.
[ Parameter [ Value [[ Parameter | Value |

my 1.19 [kg] Iy 0.54 x10~2 [kg m?]
my 0.29 [kg] I; 0.65 x10—2 [kg m?]
Me 3.33 [ke] g 9.81 [m/s?]

lr 0.19 [m] rr 0.06 [m]

lt 0.36 [m] ¢ 0.17 [m]

le 0.03 [m] Te 0.03 [m]

viscoelastic terms, and depends on q, ¢, Ggx1 includes the
gravitational terms and depends on q as well as on the slope
a, and ugxy refers to the vector of any external forces and
torques applied to the biped. For the passive biped, u = 0.

The vector s introduces the vertical and horizontal kine-
matic constraints associated with the rolling motion of each
foot that touches the ground. Bipedal gait consists of two
phases: the single stance phase (SSP), when one only foot
touches the ground, and the double stance phase (DSP), when
both feet are in contact with the ground. Hence, the number
of constraints in s changes during gait: the size of s is (nx1),
where n = 2 in the SSP and n = 4 in the DSP.

Finally, the vector fgx1 introduces the generalized forces
originating from the legs’ interaction with the ground:

as\* .,
f= <) A= A(g)A 3)
9q

in which A refers to the vector of Lagrangian multipliers,
comprised of constraint forces in the direction of each
imposed constraint in s, and A is the constraint Jacobian.
The constraint forces in A constitute the Ground Reaction
Forces (GRF) acting on the biped. Due to their dependency
from s in (3), the size of A is (nx1), while A is (6xn).

Eq. (2) is a system of differential and algebraic equations,
with (6+n) equations and (6+n) unknowns (A, q), with n
depending on the gait phase as previously defined. It is
intuitive that the GRF are not independent of the biped’s
state, and therefore we seek to write A as a function of (q, 4)
to investigate this dependency.

Firstly, we perform a double differentiation of the con-
straint equations of the system in (2) which yields:

ATg+ATq=0 )
Next, we solve for ¢ in (2) and substitute in (4), which
allows the isolation of A:

A=—A[ATG+ ATM1(—C — G + u)] (52)
A= (ATM'A)? (5b)
As M is positive-definite and the Jacobian A has full
column rank, with rk(A) = n < 6, the matrix (ATM~1A)
is (nxn) positive-definite, hence invertible in both SSP and
DSP. Eq. (5) holds for both the SSP and the DSP: the size
of XA and A changes as defined, and the operational space
inertia matrix A is (nxn), changing in size during gait.
Eq. (5) may be used in (2) to solve for ¢ and obtain a
6x6 system of differential equations, having integrated the
algebraic constraints through the substitution of A.
Most importantly, (5) demonstrates the dependence of the
GRF on the model’s inertial properties, gravitational field,
and any input torques that may act on the biped.
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C. Compensating changes in gravity

As the biped passively and stably descends a downhill
slope a, the gravitational torques restore the energy lost by
the impacts at the heel and knee strikes [6]. For some a.,
the biped performs passive walking and u, = 0:

Mg+CH+ G — AN =0 (6)

To achieve the same walking patterns on a zero slope ag =

0, these gravitational torques must be artificially supplied

to the biped by an external torque vector ug. The model’s
dynamics for level-ground walking are written:

M('Zi+C+G0—AAO:uO (7)
where Ag is calculated from (5) using aq in the calculation
of G and Go = G(q,ap).

The goal is to find at least one ug that can drive the
biped to mimic its passive trajectory on negative slope, when
walking on level ground. To exactly replicate the passive
trajectory, q, q and g should be equal in (6) and (7).

Considering that the slope parameter a only affects the
gravity torque vector G, and that A is a function of G,
we find that the terms containing G and A would not be
eliminated when subtracting (6) from (7):

(Go — Gu) + A(A — o) = o ®)
Using (5) to substitute A and Ag in (8) leads to:
(I—AAAT™™MH)(T —ug) =0 (9a)

' =Gy — G, (9b)
in which gy is a gravitational supplement and Igxg is the
6x6 identity matrix.

Eq. (9) defines a relationship between ug and the grav-
itational terms one should supply to achieve level-ground
walking. It also involves the biped’s inertial properties and
constraint Jacobian.

The existence of a ug to satisfy (9) would guarantee a
passivity-inspired active gait for the biped on level ground.

D. Underactuation
Eq. (9) is of the general type:

Ax=0 (10
where:
Agxe = Igwe — AAATM 1 (11a)
Xe6x1 £T — Uo (11b)
The trivial solution of (10), x = 0 would imply:
u =T (12)

However, the biped studied here is underactuated, as there
is no way to actuate the linear DOF xj,, y;, of q in (1). This
means that ug must be of the form:

uo = [0,0, up1f, Uik, Ugayf, Up2k) " (13)

in which only the femoral and knee angles of the biped
can be actuated. However, I" is a 6x1 vector of non-zero
elements, as a. # ag; hence, the trivial solution in (12) is
not eligible for use in underactuated biped robots.

Eq. (10) may have other groups of solutions that lie in the
null-space of A, if A is not full rank.

It can be proven that tk(A) = (6 — n) depending on the
phase of the gait. (Proof: see the Appendix). Therefore A is
not full rank during the biped’s gait. In the passive trajectory
q(t) we wish to replicate there is no DSP due to the stiffness
of the legs, and therefore rk(A) = 4, null(A) = 2.

Let x; and x5 be two vectors that span the null space of
A. For x in (10) to belong in the null space of A, it must
be of the form: (14)

where k1 and ko are scaling parameters that can be arbitrarily
selected. This would translate to the following algebraic
system of 6 equations:

I — Ug = klxl + kzXz (15)
which has a total of 6 unknowns: the 4 elements of ug in
(13) and the 2 scaling parameters k; and ko. The solution of
(15) satisfies (9) and therefore, if ug is applied to the biped,
it will lead to a stable active gait on level ground, replicating
the passive trajectories of the biped on negative slope. As the
system is fully defined, ug is unique in achieving this gait on
level ground. Consequently, it would be impossible to satisfy
(15) if ug contained less than 4 independent elements, as this
would result in an over-defined system.

X = k1x1 + ngz

E. Biped redesign

The passive biped can achieve gait in a range of negative
slopes a.[5]. For the biped of Table I this range is a. €
[-0.95°,—0.45°], and here an intermediate value of a, =
—0.6° is chosen to demonstrate the controller.

The elements wugi s and ugoy of (13) are calculated using
(15) for every timestep of the biped’s recorded passive
trajectory, and shown in Fig. 2a.

A common approach in actuating biped robots is to use
a single actuator between the two femoral links [16]. Here,
this is not an option as w1y and ugoy would have to be of
equal magnitude and opposite sign. This is not the case, as
depicted in Fig. 2a. In fact, it has already been shown with
(15) that a gravity compensating control is not possible if
ug in (13) has less than 4 independent elements.

However, the negative sum of ugi; and ugoy

ue = —(ug1f + ugay) (16)
is observed to be almost constant throughout the biped’s gait,
see Fig. 2b. This leads to the redesign of the biped with the
addition of a counterweight (CW) link at the hip, that will
be used to mount the two independent femoral actuators.

of a
= swing Upeg
02 b e
=3 stance Yoot
= 14 .
0.4
04

u, [Nm)
o
&

0 02 04 06 08 1 1.2
t[s]

Fig. 2. (a) The femoral torques ugy s, ug2y required for level-ground
walking are not equal to each other. (b) The sum of reaction torques u. is
almost constant throughout the gait.
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The redesigned biped is shown in Fig. 1b; it is identical to
the passive biped with the sole addition of the CW. The newly
introduced CW will be subject to the sum of reaction torques
u. in (16), which does not exhibit significant fluctuation
throughout the desired trajectory as observed in Fig. 2b.

At the same time, the CW, featuring a point mass m, at
a length [, from the hip joint and positioned at a CW angle
6., is subject to the gravitational torque:

we = megle.cos(6,) (17

where g is the acceleration of gravity. The equation govern-
ing its motion can be appended to the system dynamics:

(I + mel®)0. + fa7 = ue — we (18)
where f); is the vector containing inertial terms that describe
the dynamic coupling of the CW with the rest of the
biped. Eq. (18) can be simplified by assuming fj; ~ 0, an
assumption that will be revisited during controller validation.

Ideally, to ensure that the CW does not accelerate and
that éc ~ 0 in (18), requires that w. ~ u.. For select m., (.,
this would translate to the biped maintaining a specific ..
throughout its gait, see Fig. 3a. As the CW angle is not
directly controlled, the value of u, will fluctuate and will
not be exactly equal to w,.

However, one may design the CW so that the dynamics of
its motion are stable. Specifically, by placing the CW in the
4*h quaternion as shown in Fig. 3b, if the CW rotates below
0.+, the decrease in cos(f.) will cause a drop in w,, see Fig.
3c. This will lead to w. < u. and therefore 96 > 0, causing
0. to increase and overpass 0., resulting in w, > u., see
Fig. 3d. In this way, the motion of the CW will always be
sustained within a small range of angles around 6.

F. Underactuated Virtual Gravity (UVG) controller

Following the calculation of the torques uy required
to drive the level-ground biped towards its passive slope
trajectory, and the subsequent redesign of the biped via
the addition of the CW link, the UVG controller under
development can be formulated and tested on the biped robot.

A summary of this controller is presented in Fig. 4. The
original biped dynamics model of (2) is used as the base of
the model-based controller. The difference between slope and

—— 0,/ (gm) B o0
'5—?'" I.cos(8,.) =w_./(gm,)
© Th

@) o. |

w6 ~0

ey === 14,/ (gM,,) O == 14,/ (gTM,)

oo we/ (gme)

-- ./ (gm,)

w>u,, . <0

Fig. 3.  CW design. (a) Ideal position of CW where gravity torque wc
equalizes the motor reaction torque u.. (b) Positioning of the CW in the
4th quaternion allows a stable CW trajectory demonstrated in (c) and (d).

‘With the use of the underactuated virtual gravity controller,
dynamic similarity is achieved between passive and active walking.

Passive walking
a=ax

Calculate Active walking
Gravity terms a=0

Original .
C terweight
Biped - (T-2,) € mull(A) geuumm et

Dynamics m— Biped Dynamics
Gy !
) u,

sk auad Calculate
e walking - .
H — Gravity terms
u | a=0
‘The original biped can only host 3 motors. uy The addition of the counterweight allows the use of 4 motors. The
can’t be generated with 3 motors

Fig. 4. Overview of the proposed UVG controller.

reaction torque u, will stabilize the counterweight.

level-ground dynamics can be pinpointed to the contribution
of gravitational torques: G, in the slope and Gg on level
ground. Their difference I' is a function of q. To provide this
gravitational supplement, the difference I' — ug should lie
in the null space of A in (10). From this, the 4 independent
non-zero torque elements of ug in (13) are calculated.

If the virtual gravity controller uy were supplied to the
original biped of Fig. la, the biped would indeed replicate
its passive trajectory on level ground. However, this biped
can only host 3 motors, as there are only 4 bodies that make
up the biped. Therefore, the 4 non-zero terms of uy cannot
be supplied to the original biped of Fig. la.

The addition of a CW link in Fig. 1b introduces a
fifth body and provides a means of hosting 4 independent
motors, to actuate the original 4 rotational DOFs according
to the virtual gravity requirements. The newly introduced
CW DOF is designed to inherently achieve stability, under
the combined effect of the femoral motor reaction torque u,.
and the gravitational terms w, that act on it.

The new system should demonstrate dynamic similarity to
the original passive biped under the drive of the underactu-
ated virtual gravity (UVG) controller, u7y; = [uOT,uC]T:

u = (0,0, ug1f, Usrk: Ug2s, o2k, — (o1 + tgag)]”  (19)

The UVG controller u is a model-based controller that
is analytically evaluated at each time instance, and only
requires an estimation of the model parameters and a state
feedback of the generalized coordinates q.

G. Controller validation

The analytical model of the CW biped, Fig. 1b, walking
on level ground and actuated by the UVG controller is nu-
merically simulated using Matlab. The biped converges to a
steady state walking pattern which is indefinitely maintained.

Fig. 5 presents the steady state trajectory of the femoral
angle of Leg 1, 6, ¢, for the active CW biped at level ground
a = 0, using a, = —0.6° in the UVG. The trajectory follows
a clockwise progression with time. The Heel-Strike (HS)
and Knee-Strike (KS) events for each of the biped’s legs
have been marked in the diagram. The repetitive trajectory
indicates that a limit cycle has been reached for the active
biped. The success of the UVG-actuated level-ground gait
validates the assumptions made in the CW design phase.

Fig. 5 also presents the original passive biped’s trajec-
tory on slope a.. The comparison reveals indistinguishable
responses of the passive and active bipeds: the UVG has
achieved the replication of the passive gait on level ground.
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Fig. 5. Dynamic similarity of passive (slope) and active (level-ground
trajectory), achieved by the UVG controller. The trajectories are almost
identical. HS: Heel-Strike, KS: Knee-Strike. Due to the biped’s stiffness,
the Toe-Off event of one leg coincides with the contralateral HS.

III. SYSTEM VALIDATION
A. Digital Twin

The preceding analysis concerned an analytical model
of the robot, simulated in Matlab. In fact, the model’s
parameters have been selected to match the geometric and
inertial characteristics of a real-world robot design.

Specifically, a detailed CAD of the active CW robot has
been designed in SolidWorks, based on the proposed biped
model. The model is quasi-symmetrical around the sagittal
plane, to minimize the impact of three-dimensional effects
and ensure similarity with the 2D dynamics model, see Fig.
6. Fig. 6a presents the modeled femoral and tibial links,
as well as the CW. The four-bar knees and biomimetic
footshape geometries are also fully modeled.

To validate the developed controller, the SolidWorks
model was imported in the physics simulation program MSC
Adams, see Fig. 6b. The geometric and inertial parameters
of the model were automatically imported from the detailed
SolidWorks model. The Adams biped is an active biped, a
digital twin of the real-world implementation of the biped
model similarly to [17]. The Adams robot is controlled using
the UVG controller detailed in Section II.

The simulations of the Adams robot are completely in-
dependent from the simulations of the Matlab model. As
such, they can be used to evaluate the controller’s design
and suitability for real-world applications.

Contrarily to the simplified analytical model of Matlab, the
Adams model incorporates distributed inertias and detailed
ground contact modeling. The Adams model also includes
the 4 motors required to control the biped’s joints as well as
the CW link. A tibial synchronization mechanism is added to
ensure that the outer tibiae are dynamically linked. Addition-

S

] = Femur 1
R | |

| Vi ﬂ

‘_':‘i — % Tibial connector

Tibia 1

AL - 5|5

Fig. 6. (a) Detailed CAD modeling of the active CW biped in SolidWorks.
(b) Physical simulations of the high-fidelity CAD model in MSC Adams.

¥ Counterweight

Femur 2

4-bar knees

Tibia 2

Femoral angle

ANNNNANNN

!¢ rad

— Active Matlab
Active Adams
Knee angle
-.::'D.Z

::‘-I D‘I .‘I‘ \ \ \ \ ‘ ‘q q
= 0 L{ ELA_;LA_LA_-L A ._.;.L..,.__}_A
0 2 4 6 8 10

t[s]

Fig. 7. Comparison of the Matlab and Adams simulations of the active
CW biped using UVG control. The gait exhibited by the two models is very
similar. Both models converge to a stable gait.

ally, while the Matlab model handles the four-bar knees as
kinematic constraints, the Adams model introduces a detailed
rigid-body dynamic representation of the mechanism. These
differences are expected to cause some degree of dynamic
divergence of the two models.

The controller has been designed based on the simplified
Matlab model: given the differences of the two models, its
successful use in the Adams model would indicate significant
dynamic robustness of the developed scheme.

B. Model validation

Using MSC Adams, the CAD model is simulated for its
level-ground walking using the developed UVG controller,
until its convergence to a stable gait. The initial conditions
provided to the Adams model are identical to the initial
conditions provided to the Matlab simulation. Fig. 7 presents
a comparison of the gait dynamics of the Matlab and Adams
active robots under UVG control, where the femoral and
tibial angles of the robots are plotted as a function of time.

The Adams model quickly converges to a stable walking
trajectory. This trajectory is very similar but not identical to
the one exhibited by the simplified Matlab model, which is
expected given the different level of modeling detail in the
two models. Notably, the Adams model exhibits a smaller
step period; however, the achievement of the Adams biped’s
periodic gait indicates that the designed controller is robust,
as it leads to a stable gait on level ground even with the
aforementioned differences in model structure.

IV. RESULTS AND DISCUSSION

The UVG controller has been shown to successfully lead
to a stable gait in both the simplified Matlab model and
the high-fidelity Adams model, indicating its robustness. An-
other significant expected advantage of the UVG controller
is the small amount of energy required to sustain gait, due to
the fact that it compliments a passive behavior of the robot.

Indeed, the virtual gravity controller has been designed
to imitate the effects of gravity in passive walking, and as
such to achieve a low energy-cost gait. In fact, the COT}, of
passively walking down a slope a, has been found in [6]:

COT, = |sin (a.)| (20)

which is very small for the selected slope a, = —0.6°,
COT, = 0.0105. In the active robot, using the UVG
controller, it is expected that COT, ~ COT,,.
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Fig. 8. Both Matlab and Adams active models converge towards the
theoretical passive COT using the UVG controller.

The COT, is calculated during the simulations as:
Ein

M-g-Ax

where E, is the mechanical energy supplied through the

motors, M is the total mass of the robot and Az is the

horizontal distance travelled during the gait.

As shown in Fig. 8, the COT, of the active Matlab model
under the virtual gravity controller quickly converges to the
theoretical passive COT,,. A slight increase of the Matlab
active robot’s COT, is due to the assumption that there is no
regenerative breaking in the motors, while the gravitational
field is conservative.

The same holds for the Adams model, where an additional
increase in the COT, is observed due to the dynamic
differences of the two models, as detailed in Section III.

Nevertheless, both active robots’ COT converge close to
the theoretical passive value COT}. The proposed UVG
controller is shown to be effective in generating a sustainable,
passivity-inspired stable gait in both models walking on level
ground, while achieving a very low COT, of under 0.011.

For the UVG controller to achieve this gait, the biped
must have the ability to perform passive walking on some
negative slope. This is highly dependent on design parame-
ters: it has been shown that there are several combinations
of parameters that lead to stable passive gaits in a range
of slope angles [18][19]. The smaller the passive walking
angle a,, the smaller the COT using the UVG controller:
bipeds that can passively walk down smaller slopes can also
walk more efficiently, highlighting the importance of design
optimization in walking robots. As there can be no passive
walking on level ground, the design optimization process
may lead to reduced COT,, but it will never reach zero.

Indeed, Fig. 9 presents the biped’s horizontal velocity x,
and COT, from (21), for various a,.. The biped can stably
walk on level ground using the UVG controller with a, €
[-0.95°,—0.45°]. The selection a, = —0.6° used in this
paper is highlighted in the diagram. For values of a, outside

(a) Level ground gait velocity

COT, = 21

(b) COT convergence

0.4 ® UVGwitha,
) () a, 0.6 coT
Bl © Unstable a
= 0.35 —
- T 0.015 COTD
= o001
£025

T 0.8 0.6 0.4
a. [deg]

1 0.8 0.6 -0.4

a. [deg]
Fig. 9. Correlation of the UVG slope parameter a, with (a) the achieved
horizontal velocity, and (b) the acheived COT,, for level-ground walking
using the UVG controller.

this range the biped cannot perform level-ground walking,
as no stable gait exists for the passive biped on these slopes.
However, it is shown that various values of a, lead to stable
gait on level ground, demonstrating the robustness of the
UVG controller.

The choice of a, has an important effect on the hor-
izontal velocity of the biped as shown in Fig. 9a. The
range of walking velocities for this biped using the UVG
controller is 2, € [0.25,0.42]m/s, which is significant for
a biped measuring 0.55m in height. Decreasing a, results
to higher achieved velocities, at the expense of increased
energy consumption, as shown in Fig. 9b. In all cases, the
measured COT, is slightly larger than the theoretical passive
COT,, plotted with a red line, presenting significant energetic
efficiency.

Overall, the proposed UVG controller has been shown to
be a robust, energy-efficient option for underactuated bipedal
locomotion on level ground. The same control scheme and
biped robot design may be further extended to achieve
an upheel gait with minor modifications. Furthermore, the
proposed scheme may be applied to more complex biped
robots and humanoids, as the upper body may substitute
this simple model’s CW. The study demonstrates the great
potential of leveraging the innate passive dynamics of biped
walkers in locomotive control design. Our upcoming work
focuses on the manufacture of the real-world biped robot, to
perform real-life experiments.

V. CONCLUSION

In this paper, a novel virtual gravity controller for underac-
tuated biped locomotion has been developed. The controller
was analytically derived using the dynamic model of a bio-
inspired biped robot, able of passive walking on slope. The
passive biped was redesigned to address the controller’s
stability requirements, without suppressing the passive dy-
namics of the walker. The method was validated using
independent, high-fidelity simulations of the real-robot’s dig-
ital twin. With the UVG controller, the robot demonstrated
stable, robust, and energetically efficient walking on level
ground.

APPENDIX

Here we prove that rk(A) = (6 —n) for A in (11a).

* Proof that rk(A) < (6 — n):

o By right-multiplying (11a) with A and using (5b):
AA=A—-AAA"I=0

o Neither A nor A are null matrices.

o A is full column rank and therefore the n indepen-
dent columns of A are in the null-space of A.

o Thus, null(A) > n or rk(A) < (6 —n).

* Proof that rk(A) > (6 — n):

o The product B = AAATM1! is rk(B) < n, as:
e A and M~ are positive-definite, and
e 1k(B) < min(rk(A), rk(M~1),1k(A)) = n.
o Rewriting (11a) as I = A + B:
¢ 6 =1k(I) <1k(A)+1k(B) <1k(A) +n
¢ Therefore, rk(A) > (6 — n).
* Consequently, rk(A) = (6 — n).
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