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Abstract— Space manipulator system (SMS) maneuvers can 
excite flexible appendages, while fuel sloshing effects impact its 
dynamics and performance. To predict this behavior and 
control such systems, sloshing and flexible appendages are 
modeled. A novel system identification scheme is developed, 
which identifies all parameters required for the reconstruction 
of system dynamics despite unmeasurable sloshing and modal 
states. This is achieved by two identification experiments. In 
Exp.1 all unmeasurable states are eliminated, while in Exp.2 
the unmeasurable sloshing states are eliminated, and a novel 
estimator is used for the unmeasurable modal states. The 
significance of accurate SYSID in controller design and 
performance is demonstrated by simulating a 3D SMS 
controlled by model-based and robust controllers. In both 
cases, using the identified parameters results in significant 
robust control performance enhancement. 

I. INTRODUCTION 
Accurate Space Manipulator System (SMS) maneuvering, 
tracking, and reduced control effort, require good knowledge 
of system properties. These may not be available always, 
due to inaccurate modelling, fuel sloshing or flexible 
appendage effects, [1], [2], [6], [8], [15]. Fuel consumption 
changes spacecraft (S/C) parameters significantly, while 
flexible appendage properties vary with temperature, both 
introducing uncertainties. Methods have been proposed to 
mitigate uncertainty (e.g., [3]) but cannot eliminate it. 
Accurate sloshing and appendage models coupled with S/C 
dynamics and accurate parameters are needed for control; 
their lack results in poor performance or instabilities [4], [8]. 

Fluid behavior as a function of acceleration is complex, 
making accurate fluid motion modeling in zero-gravity very 
difficult. To avoid the high computational demands of 
approaches such as Computational Fluid Dynamics (CFD) 
[5]-[9], which are unsuitable for system stability analysis and 
on-board control design, [7], [10], simplified slosh models 
that reasonably describe sloshing effects are often used for 
control design purposes [10]-[13], [17]-[20]. Of these, the 
adopted here mass-spring-damper (MSD) is most suitable [6]. 

Among the various models for flexible bodies, the Euler-
Bernoulli beam theory is adopted here. The approach 
developed herein can be adapted for different models if 
kinematics and kinetics separability in time and space holds.  

Very few works have focused on SMS System 
Identification (SYSID), considering also fuel sloshing and 
flexible appendages. In [14], the SMS manipulator 
parameters are assumed known, while the flexible appendage 
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is modeled as a lumped system; the sloshing effect is 
modeled as a pendulum, which is adequate during the orbital 
boost phase [16]. An MSD sloshing model parameter 
identification in zero-gravity using available measurements, 
was reported [6]. However, no methodologies exist to 
identify the SMS inertial parameters in the presence of both 
sloshing fuel and flexible appendages, while also identifying 
their parameters, including the authors’ preliminary past 
work, e.g., [2], [6]; previously, S/Cs only with fuel sloshing 
[6], [13] or only with an appendage [8], have been studied, or 
the manipulator parameters were assumed to be known [14]. 

The performance of advanced model-based controllers can 
be improved by SYSID by providing more accurate models. 
Also, SYSID is useful in control design, both by not exciting 
system natural frequencies, and by allowing the design of 
robust controllers to compensate for parametric uncertainty.  

This work focuses on the identification of a system 
including a S/C, its manipulator(s), sloshing effects modeled 
as a 3D MSD, and a flexible appendage modeled as a Euler-
Bernoulli beam, see Figure 1. A novel SYSID scheme is 
developed, which identifies all parameters required for the 
reconstruction of the full system dynamics despite the 
unmeasurable sloshing and modal states. This is resolved 
using two experiments. In Experiment 1, all sloshing model 
parameters and the SMS base mass are identified, while 
modal analysis identifies the required modal parameters. In 
Experiment 2, all SMS inertial parameters are identified. The 
parameters obtained can predict system behavior fully and 
the developed scheme is validated by simulation. A Model-
based PD controller combined with H∞, provides a robust 
controller, similar to the one in [19], but for a spatial system. 
For the first time, the performance of this controller is shown 
to be significantly enhanced because of the SYSID output. 

 

Figure 1. SMS with a 3D sloshing model and flexible solar panels. 

II. SYSTEM DYNAMICS 
The dynamics of the system under study are outlined here. 
The system consists of a S/C equipped with Nrw reaction 
wheels (RWs), n rigid manipulators with the mth manipulator 
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consisting of Nm links, a flexible appendage A, and a fuel 
tank exhibiting sloshing, Figure 1. To study the sloshing 
effect, a 3D mechanical equivalent MSD sloshing model is 
employed, [6]. To derive the dynamics compactly, the base 
consists of the S/C, the stationary fuel mass part and the 
RWs, with the sloshing fuel mass part and the flexible 
appendage excluded, and the space manipulator system is 
defined as consisting of the base and all manipulators. 

A body frame Fb  is attached at the base 
Center of Mass (CM). A feature point P on the S/C is 
tracked, and an observation frame Fp  also is 
attached to it, with same orientation to that of Fb. A frame 

 is attached to the SMS ith link of the 
mth manipulator using the modified Denavit-Hartenberg 
convention, and a reference frame for the mth manipulator 

 is considered. Frame FI  is 
a local frame with orbital speed. For short experiment times 
and neglecting microgravity and orbital mechanics effects as 
small compared to the control forces, FI is an inertial frame. 
A connection point C between the base and the flexible 
appendage is considered and body frame Fa  is 
attached to point C, rigidly fixed to the undeformed 
appendage. The  denotes a column vector in frame FI. A 
missing overbar indicates a column vector in frame Fb. 

The sloshing fuel oscillation is represented by a 3D MSD 
mechanical equivalent, with spring ks,x, ks,y, ks,z and damper 
constants bs,x, bs,y, bs,z along the Fb axes. The sloshing mass 
position rs and velocity vs ,with respect to the FI origin are 
  (1) 
  (2) 
where rb gives the base CM position, cs is the sloshing mass 
equilibrium position with respect to the base CM, ρs is the 
displacement of the sloshing mass from its equilibrium 
point, vb is the base CM inertial linear velocity and ωb is the 
angular velocity of Fb, all expressed in Fb; and  indicates 
a skew-symmetric matrix obtained from column vector . 

The CM position of the ith link of the mth manipulator with 
respect to the origin of FI,  is given by 

  (3) 

where  is a body-fixed vector for the position of point 
R(m) with respect to the base CM, and ,  are body-
fixed vectors locating frames  and , from the ith 
link CM, see Figure 1. The linear velocity of the ith link CM 
of the mth manipulator with respect to the FI origin is 

  (4) 

where  is the ith link/mth manipulator angular velocity. 
It can be shown that the inertial CM position of the 

deformed appendage  is 
  (5) 
where is the CM position of the undeformed appendage 
with respect to base CM,  is the appendage mass,  is 
the translational modal participation matrix calculated at C, 

and  is the vector of modal coordinates consisting of the 
time amplitudes associated to the appendage mode shapes. 
A. System CM and Momentum Equations 
The position of the system CM, rcm, is related to rs and ra as 

  (6) 

where mb is the mass of the base,  is the mass of the 
SMS ith link of the mth manipulator, ms is the sloshing point 
mass, and M is the total mass, i.e., M = mb+mr+ms+ma, where 
mr is the manipulator(s) total mass. The rotation matrix Rb 
describes frame Fb orientation with respect to frame FI. 

The system linear momentum p is the sum of the linear 
momenta of the base pb, all SMS links, sloshing mass ps and 
flexible appendage pa 

  (7) 

where is the linear momentum of the SMS ith link of the 
mth manipulator, vcm is the velocity of the system CM. The 
system angular momentum h with respect to the FI origin, is 
the sum of the angular momenta of the base hb, all SMS 
links, the sloshing mass , and the flexible appendage ha 

 (8) 

where the base angular momentum hb and the SMS ith link of 
the mth manipulator angular momentum are as in [6]. 
Also, the ha is given by  

  (9) 

where  is the rotational modal participation matrix 
calculated at point C. 
B. System Equations of Motion 
The system equations of motion are derived using a 
Lagrangian approach, with T the system kinetic energy, V its 
potential energy and  a dissipation function [23] 

  (10) 

  (11) 

  (12) 

  (13) 

  (14) 

  (15) 

where fe is the resulting external force applied on the S/C by 
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its thrusters and ne is the associated moment. and 
are spring and damping matrices for sloshing and the 

appendage, qr,  are the SMS joint angles and rates, 
respectively, and τr, τrw are the torques applied on the 
manipulator joints and RWs, respectively. 

III. SYSTEM IDENTIFICATION METHOD 
The main challenge for the parameter identification of an 
SMS with sloshing and flexible appendage(s) stems from the 
fact that sloshing, and modal (flexible) states are both 
unmeasurable, e.g., the velocity or acceleration of ms cannot 
be measured. To perform parametric SYSID using a 
regressor formulation (Yπ=b; Y: regressor, π: parameter 
vector, b: inputs), the selected equations must be expressed 
linearly with respect to the unknowns. For the system under 
study, if its equations are written in such form, the 
coefficients of the unknown parameters are functions not 
only of the measurable quantities, such as S/C states but also 
of unmeasurable quantities, such as sloshing and modal 
states. This is tackled next by employing two experiments. 
A. System identification Exp. 1 
In Exp. 1, the S/C orientation is kept constant; only net 
forces are applied to it, resulting in pure translation. Modal 
analysis is performed to identify the modal parameters of the 
flexible appendage(s), using Covariance based Stochastic 
Subspace Identification (SSI-COV). The measurements used 
are the accelerations of flexible appendage’s tracked points 
i.e., those whose motion is measured by a sensor mounted on 
them. Moreover, the pure translational motion allows one to 
eliminate the unmeasurable sloshing and modal states from 
the equation that yields the regressor, while also decoupling 
the sloshing identification from the modal parameter 
identification, lowering the complexity of the process, and 
avoiding possible error propagation issues; then, only 
measurable S/C and joint states are required. During this 
experiment, the manipulator(s) joints are locked, and thus 
the SMS behaves as a rigid body. With this experiment, all 
sloshing parameters and the SMS base mass are identified.  

Using (10) and (12) with zero ωb, , and setting the base 
inertial linear acceleration as ab, the required system 
equations of motion for translation are 
  (16) 
  (17) 
where mass mr = M - ms, and as is the inertial linear 
acceleration of the sloshing point mass 
  (18) 
Equations (16) and (17) include the unmeasurable sloshing 
and modal states, which must be eliminated. For ease, this is 
done via a Laplace transformation. Considering the scalar 
form of (16) and (17) for axis i, (i = x, y, z), and sloshing 
fuel initially at rest, use of the Laplace transform yields 
  (19) 

  (20) 
where all variables are in the Laplace domain. Solving (20) 
for rs,i (s), substituting in (19), and considering the base CM 

velocity as the output, the transfer function Gs (s) for axis i is  

 (21) 
Then, inverse Laplace is employed to relate vb,i  to fi*  in a 
differential equation. The base inertial linear acceleration ab,i 
is a measurable state; double integration is performed to 
avoid noisy differentiations: 

  (22) 

Since the rigid system just translates in Exp. 1 and assuming 
no traction or y-bending in the flexible appendage, i.e.,  
  (23) 
it can be shown that (22), yields equations for i = x, y that can 
be written linearly with respect to the parameters π = πG,i 

  (24) 

With regressor Υ=ΥG,i (t) and inputs b= bG,i (t) as 

  (25) 

  (26) 
where ΥG,i are of full rank by design, and are obtained 
numerically using ode45 in Matlab/Simulink. For i = z, and 
in the presence of z-bending, the same procedure results in 

  (27) 

where ρ is the appendage linear average density, while YG,z is 
a function of ab,z, fe,z and the acceleration, velocity, position 
of flexible appendage(s) tracked points, and bG,z is as in (26). 

Taking N measurements of accelerations ab,i and of the 
appendage accelerometers, and computing numerically their 
first and double integrals at times t1, t2, …, tN, an 
overdetermined system of equations is obtained for each axis 
i which can be solved to yield πG,i. For i = x, y, the 4 
unknown parameters M, ms, ks,i, bs,i are found, while for i = z 
the same parameters as well as ρ and mr are identified. 

All required measurements are provided by an IMU sensor 
mounted at some point P on the S/C, with the IMU providing 
the linear acceleration ap of point P, equal to that of the base 
ab, and by accelerometers on flexible appendage tracked 
points. The first and double integrals of the accelerations are 
calculated with zero initial conditions, and with the origin of 
FI taken at the initial location of point P. 
B. System identification Exp. 2 
In Exp. 2, the system is in the free-floating mode with zero 
initial momentum, i.e., no external forces/ moments act on it; 
only RWs and manipulator(s) motors are active, applying 
internal torques. In these conditions, the system CM remains 
fixed in FI, [24]. Exp. 2 and associated method are designed 
to bypass the need for unmeasurable sloshing states, and an 
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estimator is developed for the unmeasurable modal states.  
Identification equation 
The system is in free-floating mode and its inertial angular 
momentum  is conserved to its initial value hin, 

  (28) 

Elimination of sloshing states 
Note that (28) cannot be directly used for identification since 
the sloshing mass inertial position rs and velocity vs are 
functions of the unmeasurable sloshing states ρs, . 

To tackle this shortcoming, the conservation of system 
linear momentum and the system CM equations are 
employed. Specifically, the system linear momentum  
projected in frame FI, is conserved in the free-floating mode, 
and assuming zero system initial linear momentum, it yields 

  (29) 

Solving (6) for msrs and substituting it in (8), along with vs 
from (29), ha from (9), and hb, as given in [6], a model 
set results, which contains only the S/C and the modal states, 
while the sloshing states are no longer required. Note that, 
since is zero, is a constant vector, which can be treated 
as a constant unknown parameter to be estimated.  

Moreover, the base CM inertial position rb and velocity vb 
in hb (see [6]) can be substituted by kinematic equations: 

  (30) 

where rp, vp, are the inertial position and linear velocity 
respectively, of the tracked point P on the S/C i.e., where the 
IMU sensor is mounted, and rp/b is the position vector of 
point P, with respect to the base CM. Vector rp/b is considered 
as unknown parameter to be estimated by the identification 
scheme; once estimated, it renders the base CM known. 
Modal states estimator 
To implement the developed approach which eliminates 
unmeasurable sloshing states, the unmeasurable modal 
states must be estimated. It can be 
shown that, by taking Na measurements from Na 
accelerometers on the flexible panel, then 

  (31) 

where Φ* is a function of the mode shapes, identified from 
Exp. 1, while matrices A, B and C are functions of the 
identified modal shapes, and the SMS base linear and 
angular acceleration and angular velocity, and of the panel 
accelerometer measurements, all of which are available. 
Then, the modal states z can be estimated at time step k by 
  (32) 
where  is the sampling time. 
Two steps of regressor formulation 
A two-step scheme is devised i.e., Step A and Step B, and 
thus two distinct regressor formulations result. In Step A, the 
constant location of the system CM  is estimated. In Step 

B, the SMS inertial parameters are estimated, knowing M, 
ms, and  from Exp. 1 and Step A of Exp. 2, respectively. 

In Step A, the linear velocity vp is written as a function of 
the CM inertial position , estimated based on the position 
and velocity barycentric analysis in [21], extended here to 
include the sloshing and modal effect 

  (33) 

where  is the unit vector along the axis of rotation of the 
ith joint of the mth manipulator. Eq. (33) can be written 
linearly with respect to the unknown parameters,  
  (34) 
where vector πr,cm includes SMS inertial parameters. Note 
that in (34) the sloshing state has been neglected 
since is in general small and the total mass M very large; 
this was also validated in a simulation study. The Yr,cm also 
requires the mass M, estimated in Exp. 1, while the modal 
state rates are estimated by the presented estimator in (32). 

Hence, the unknown parameters set a vector π = πcm, with 
regressor Y = Ycm (t) and b = bcm (t) where 
  (35) 

  (36) 

  (37) 

Taking N measurements of the variables rp, vp, ωb, (also 
used to obtain Rb), and qr, , at time instances t1, t2, …, tN 
during Exp. 2, results in an overdetermined system of 
equations, which is solvable using the Total Least Squares 
(TLS) algorithm [25] to yield πcm and, thus, . 

In Step B, h and thus, also hin, in (28), are written linearly 
with respect to the SMS inertial parameters, grouped in a 
reduced vector π = πm,  
  (38) 
which can be further written as 
  (39) 

where the vector bm requires knowledge of masses M, ms and 
RWs moment of inertia Irw; M, ms were estimated in Exp. 1, 
and Irw was assumed to be known. Taking measurements of 
the variables rp, vp, ωb, (again also used to obtain Rb), and 
qr, , at N times t1, t2, …, tN, yields an overdetermined 
system of equations, which is solved using the TLS 
algorithm yielding πm. In this scheme, propagating the 
identification relative errors of the parameters M, ms and 

, identified already with very small relative errors from 
Exp. 1 and Exp. 2 – Step A, respectively (see Section V), 
does not distort the identified πm, while the other already 
identified parameters are not used in and do not affect the 
identification of πm. 

Therefore, all SMS inertial parameters are identified while 
no unmeasurable sloshing/ modal states are needed. By 
employing the developed methodology and recursive TLS, 
previously known parameters can be used as an initial guess. 
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IV. MODEL-BASED PD AUGMENTED BY H∞ CONTROL 
The contribution of an accurate SYSID campaign on the 
control of an SMS, is demonstrated here using the identified 
inertial, sloshing, and modal parameters in a Model-based 
PD (MBPD) controller, without and with a robustness term 
developed by an H∞ control scheme. A simultaneous control 
of both the manipulator and the SMS base attitude (thrusters 
assumed deactivated, e.g., for safety) is opted, while, without 
loss of generality, joint-space manipulator control is studied. 

With negligible gravitational forces and other external 
disturbances, the reduced equations of motion of the 3D SMS 
in the joint space are derived from (10), (11), (14) and (15), 
without including the effects of fuel sloshing and flexible 
appendage directly in the model based part of the controller, 
but rather letting them act as disturbances. Thus, after some 
algebraic manipulations, the SMS joint-space reduced 
equations of motion, take the form 
  (40) 
where H and c are the system inertia matrix and the 
nonlinear Coriolis/ centrifugal terms vector respectively, Jc 
is a Jacobian matrix, and 
  (41) 

  (42) 
with qb, qm being the vectors of the SMS base Euler Angles 
and the manipulator joint angles respectively, while Qc is the 
control torques vector, i.e., RW torques τRW (rendered to the 
base-frame axes) and manipulator joint torques τ. 

Then, a MBPD controller takes the form 
  (43) 

where qd denotes the desired trajectory of q, e = qd – q, and 
KP, KD are control gain matrices. The term refers to an 
element obtained by use of the uncertain system parameters. 
Substituting Qc from (43) into (40), yields 
  (44) 
where du is a function of the uncertainties and measurement 
noise and acts as a disturbance to the MBPD controller. 
Also, since (40) is not based on the complete system 
dynamics (fuel sloshing and flexible appendage(s) are not 
considered) as it is used to design the MBPD controller, 
substitution of Qc in (43) in the complete system dynamics 
derived by the complete set of (10) to (15), will result in the 
system error dynamics as 
  (45) 
where dd is due to the fuel sloshing and the flexible 
appendage vibrations. If the disturbance term dtot is 
relatively small, then it is quite possible that the MBPD 
controller of (43) will compensate for it, and perform as 
designed, with acceptable errors. Otherwise, an additional 
H∞ control term can be added to (43), yielding 
  (46) 

adding further robustness to the controller (MBPD+H∞). 
Then, the system error dynamics become 
  (47) 

The H∞ term u∞ can be a linear H∞ controller, designed for 
the linearized left-hand side of (45) to compensate on the 
effect of dtot, similarly to the one presented in [19], but for a 
spatial system instead of a planar one. 

V. SIMULATION STUDY 
The developed method is applicable to multi-arm SMS; here 
it is illustrated by a spatial 3-DOF-arm, free-floating SMS. 
The kinematic and inertia parameters of the SMS are as in 
Table 1. The studied S/C is assumed to have 3 RWs in an 
orthogonal configuration, with Irw,i=0.159 kgm2. The 
position vector of the tracked point P on the base with 
respect to the base CM is rp/b=[0.5,1.5,0.6]T m. The fuel CM 
(at rest) is at cs=[0.03,-0.04, 0.05]T m, with respect to the 
base CM. The sloshing model parameters are shown in the 
True Value column of Table 2. The flexible appendage is 
modeled as a thin plate of size 6m x 3m x 0.003m, mounted 
at rc/b = [1.5, 0, 0] with respect to the base CM. 

 

TABLE 1. PARAMETERS OF THE SMS IN THE SIMULATION STUDY. 

i li 
(m) 

ri 
(m) 

mi 
(kg) 

Ixx 
(kg m2) 

Iyy 
(kg m2) 

Izz 
(kg m2) 

0 - [-1,-1,1]T 2000 1500 1500 1500 

1 0.25 0.25 10 0.21 0.21 0.01 

2 1.0 1.0 50 0.05 16.69 16.69 

3 1.0 1.0 50 0.05 16.69 16.69 

To obtain data for the SYSID, in Exp. 1 thrusters and RWs 
are employed, applying a net force and zero net moment. The 
applied force along S/C body frame axis  is given by 

  (48) 

where the duration tf  of Exp. 1 is 120 s. 
In Exp. 2, only RWs and manipulator(s) are employed 

since the system operates in free-floating mode. The SMS is 
initially at rest. The system’s angular momentum hin is zero. 
The exciting torques applied by RWs, and manipulator 
motors are truncated Fourier series [26]. The Exp. 2 duration 
tf is 80 s. The total duration for Exp. 1 and 2 is 200 s. In 
Matlab, the SYSID requires 7s, including signal processing; 
it will require much less with compiled code. IMU sensor and 
motor encoder realistic models, as in [6], are employed. IIR 
low-pass filters were used on the noisy measurements. 
Simulation Results 
Indicative simulated inputs and outputs for Exp. 1 and. 2 are 
shown in Figure 2. The SYSID results using noisy and 
filtered measurements for both Exp. 1 and 2 are displayed in 
Table 2 (using as ground truth a CFD-computed mass-
spring-damper sloshing model and parameters) and Table 3, 
respectively. For brevity, only the four parameters with the 
two smallest and largest relative errors (%) are shown in 
Table 3. For Exp. 1, (24)-(26) were used, while for Exp. 2, 
(35)-(37) (Step A) and (39) (Step B) were employed. Only 
the relative errors of the estimated sloshing model damping 
coefficients bs,i are relatively large. However, the effect of 
these errors on S/C response prediction is negligible [6]. 
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Figure 2. Top: Base x-axis linear acceleration for Exp. 1. Bottom: (a) RWs 
input torques, (b) SMS joint rates (output), for Exp. 2. 

Overall, the system identification scheme developed 
computes all required parameters successfully, see Table 2 
and Table 3. To demonstrate the importance of SYSID in the 
controlled system performance, simultaneous control of base 
attitude and manipulator in joint-space, is simulated, for the 
same SMS. Both MBPD (Eq. (43)) and MBPD+H∞ (Eq. (46)) 
controllers are tested, with nominal MBPD control gains as 
KP = KD = diag(4,4,4). To demonstrate the importance of 
accurate knowledge of sloshing and flexible parameters, and 
specifically the natural frequencies of the corresponding 
elements, a different set of control gains is set, i.e., KP = 
diag(.64,.64,.64), KD = diag(1.6,1.6,1.6), that excite the third 
bending natural frequency of the flexible appendage. The H∞ 
part of MBPD+H∞ is designed for 5% parametric uncertainty 
levels, while simulations are run for various levels of 
parametric uncertainty in the controller model-based part. 

TABLE 2. EXP. 1 TLS/ SSI-COV SYSID RESULTS (SI UNITS). 
 True Value Estimated Value Rel. Error (%) 

T
L

S  

M 2256.8 2155.9 0.04 
ms 49.6 49.9 0.6 
ks,i 0.41 0.407 0.78 
bs,i 0.02 - >> 
ρ 2700 2761.17 2.266 

SS
I-

C
O

V
 

Be
n d

in
g 

na
tu

ra
l 

fr
eq

.  

1st 0.046 0.0459 0.114 
2nd  0.286 0.287 0.354 
3rd  0.801 0.800 0.245 

TABLE 3. EXP. 2 TLS SYSID RESULTS (MAX. AND MIN. ERRORS - SI UNITS). 
 True Value Estimated Value Rel. Error (%) 

 336028.408 335988.01 0.01 

 3373.48 3374.04 0.02 

 -1.06 -1.11 -4.80 

 837.41 799.92 4.48 

The desired trajectory for the SMS base attitude is to 
remain stationary. A desired trapezoidal profile for the three 
joint-angle velocities is used, with a0 = 0.001 rad/s2 for 20 s, 
then constant angular velocity for another 20 s, then a 
constant angular deceleration of -a0 for another 20 s, and 

finally stationary desired angle for another 20 s. The same 
noise models in the measurements as before were used. 

The maximum angle tracking errors eb and ei during the 
simulated control experiments in the presence of parametric 
uncertainties and measurement noise, are shown in Table 4. 
Case (C) with 5% uncertainty corresponds to the uncertainty 
levels for which the H∞ weighting matrices are designed. 

As shown in Table 4, the more uncertain our estimation is 
regarding the system parameters, the larger the maximum 
relative error is, and even more so in case we accidentally 
excite one of the uncertain system natural frequencies. 
Moreover, it can be seen that a properly tuned H∞ 
augmentation of the MBPD, results in better performance, 
compared to the use of a bare MBPD. However, even in this 
case, a prior SYSID campaign resulting in parametric 
uncertainty within the tuned H∞ specifications and in 
knowledge of the system natural frequencies (so as not to 
exciting them), further increases the controller performance. 
Thus, 12.4% and 21.1% lower relative tracking errors for 
SMS base and joint angles respectively, are observed 
between cases (D) with SYSID use and (B) with 20% 
uncertainty, when using MBPD, while 5.2% and 15.2% are 
observed when using MBPD+H∞. The improvement rises to 
87.9% and 86.7% when using MBPD and 14% and 22.2% 
when using MBPD+H∞, when comparing case (D) with 
SYSID use, to case (A) with 20% uncertainty and accidental 
excitation of one of the systems’ natural frequencies.  

TABLE 4. TRACKING ERRORS WITH VARIOUS LEVELS OF UNCERTAINTY 
Gains Uncertainty Controller eb ei 

KP,i = KD,i = 4 
(no natural freq. 

excited) 

(D) 
SYSID 

 

MBPD 1.70*10-4 5.60*10-3 

MBPD+H∞ 2.75*10-5 1.23*10-3 

(C) 
5% 

MBPD 1.78*10-4 5.87*10-3 

MBPD+H∞ 2.85*10-5 1.28*10-3 

(B) 
20% 

(No SYSID) 

MBPD 1.94*10-4 7.10*10-3 

MBPD+H∞ 2.90*10-5 1.45*10-3 
KP,i = 0.64 
KD,i = 1.6 

(3rd bending freq. 
excited) 

(A) 
20 % 

(No SYSID) 

MBPD 1.41*10-3 4.2*10-2 

MBPD+H∞ 3.2*10-5 1.58*10-3 

VI. CONCLUSION 
This paper focused first on the identification of the 
parameters of a SMS including its sloshing and flexible 
appendage effects. Fuel sloshing was represented by a 3D 
MSD due to its suitability for control purposes. A novel 
system identification scheme, which identifies all system 
parameters in the presence of the unmeasurable sloshing and 
modal states, was developed. To bypass the need for the 
unmeasurable states, two identification experiments were 
designed. The significance of an accurate SYSID in the 
design and performance of a controller, was demonstrated by 
simulating a 3D SMS controlled by MBPD and MBPD+H∞ 
controllers, for enhanced robustness characteristics. In both 
cases, the use of the identified parameters and of control 
gains that do not excite the identified system natural 
frequencies, resulted in significant system performance 
improvements, while use of the uncertainty levels in the H∞ 
design further improved the system performance. 
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