
 
 

 

  

Abstract. To accurately accomplish on-orbit tasks using 
Space Manipulator Systems (SMS), advanced model-based 
controllers, dependent on the knowledge of SMS parameters, 
can be employed. However, these parameters may change on 
orbit for several reasons. Also, during an SMS task, excitation 
of flexible appendages, such as solar panels, or fuel sloshing 
may introduce significant end-effector errors. Therefore, 
controllers robust to parametric uncertainty and disturbances 
are needed. A robust controller attractive due to its small 
computational effort is the Linear Parameter Varying (LPV) 
gain-scheduled controller. However, its design for spatial SMS 
is not trivial and has not been studied yet. Therefore, the aim of 
this work is to study and compare robust controllers and 
examine their applicability to SMS. An LPV plus  
controller is compared with a Model-Based PD, and a Model-
Based PD plus  controller, in the presence of parametric 
uncertainty, noisy measurements and disturbances, using a 
planar example. The criteria considered include: (i) Design 
Complexity, (ii) Trajectory Errors, (iii) Required Torques, and 
(iv) Computational Effort. 

I. INTRODUCTION 
Soon, on-orbit space manipulator systems (SMS), including 
a spacecraft (S/C) equipped with one or more robotic 
manipulators, will have a major impact on a wide variety of 
operations in space, see Fig. 1, [1]. 

 
Fig. 1. A space manipulator system (chaser) capturing space object (target). 

To accomplish tasks at high accuracy, advanced model-
based control strategies which require accurate knowledge of 
system parameters, can be employed, [2]. However, such 
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parameters may change on orbit for several reasons, such as 
fuel consumption, deployment of payload, docking to a S/C, 
or object capture. Robustness in operations, such as on-orbit 
assembly, maintenance, and repair, refueling, and deorbiting 
of space debris has always been of significant concern in the 
design of SMS control algorithms. The Linear Parameter 
Varying (LPV) gain-scheduled techniques provide a way to 
apply robust linear control techniques to nonlinear systems 
with theoretical guarantees of stability and performance. In 
the last decades, LPV has attracted attention in the fields of 
unmanned aerial vehicle control (UAVs) [3], and of 
spacecraft attitude control [4]. However, despite the large 
number of publications on LPV gain-scheduled methods in 
the above fields, little work exists on LPV techniques 
applied to robotic manipulators [5]-[6] and almost negligible 
number of publications on SMS control [7]. All existing 
works focus on planar manipulators and rely on certain 
assumptions to simplify the derivation of the LPV model, 
limiting their applications to real systems. 

In [7], the LPV gain-scheduled control method has been 
applied on a two-link SMS. A reduced-order LPV model 
using the parameter set mapping (PSM) algorithm, [6], was 
obtained, and a LPV state-feedback controller has been 
designed without considering the effects of parameter 
uncertainties and/ or disturbances caused by solar panel and 
slosh fuel motions. The studies focus on control design in 
the joint space, since in the operational space an increase in 
the number of scheduling parameters results (i.e., much 
more complex control design). The operational tasks control 
problem is addressed indirectly, i.e., using inverse 
kinematics and then applying joint space control. However, 
this approach results in large Cartesian errors in the presence 
of system parameter uncertainties. 

The design of LPV controllers for SMS is not a trivial 
task even for simple planar manipulators since there is no 
systematic approach for the selection of the appropriate 
scheduling parameters, limiting their application to real 
spatial SMS. Assuming a planar SMS, the aim of this work 
is to study the effectiveness and applicability to realistic 
systems of the LPV controller against alternative model-
based controllers. Therefore, in this paper, an LPV plus  
controller is compared to Model-Based PD and Model-Based 
PD plus  controllers considering their robustness to 
parametric uncertainty, noisy measurements, and 
disturbances due to solar panel and fuel sloshing. To this 
end, the criteria employed are: (i) Design Complexity, (ii) 
Trajectory Errors, (iii) Required Torques, and (iv) 
Computational Effort. 
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II. DYNAMICS OF FREE-FLOATING SMS 
Model-based controllers employ the rigid-body dynamics 
only, since the addition of flexible appendages (e.g., solar 
panels) and slosh fuel dynamics results in a very complex 
model not so useful for control. Moreover, to construct the 
flexible dynamics model, the estimation of unmeasured 
variables using nonlinear observers, which complicate the 
controller design, is required, [8]. Exploiting only the rigid 
body dynamics in the control design, the avoidance of the 
solar panels’ and/ or slosh fuel flexible modes can be 
achieved by guidance, providing a desired acceleration 
profile using pre-shaping techniques, and/ or by selecting 
appropriate controller gains to achieve a closed-loop 
response with bandwidth below the flexible appendage and 
slosh fuel natural frequencies. However, due to parameter 
uncertainties and the presence of nonlinearities, this may not 
always be feasible (i.e., some frequencies may be excited).  

This study considers an SMS in the free-floating mode of 
operation with non-zero angular momentum; this mode is 
critical in proximity/ capture on-orbit tasks. During this 
mode, the spacecraft attitude and position are uncontrolled 
since the spacecraft Attitude Determination and Control 
System (ADCS) is turned-off to avoid undesired interactions 
between the spacecraft and manipulator control systems, [9]. 
The desired manipulator configuration and/ or end-effector 
position and orientation is achieved by controlling the joint 
motors via the manipulator control system. 

Next, the equations of motion of a rigid-body free-
floating SMS (FFSMS) with N joints and non-zero angular 
momentum are presented briefly. The equations of motions 
are written in a form suitable for control purposes, [10]. 

II.1. Joint Space Dynamics 

Here, the FFSMS dynamics is written in a form suitable for 
Joint Space control where the task is to control manipulator 
joint angles  applying appropriate joint torques  via the 
manipulator control system. In this case, the dynamics is, 
[10] 
  (1) 
where  is the joint angles  vector, and the spacecraft 
attitude is defined by spacecraft Euler parameters . The 
column-vector  is the manipulator torque 
vector where  is the torque applied on the  joint. The 
matrix  is an  symmetric and positive definite 
matrix called the reduced system inertial matrix, the  
vector  contains the nonlinear Coriolis and centrifugal 
terms for a spatial FFSMS with non-zero angular momentum 

, and the vector  is due to the presence of angular 
momentum and does not vanish for zero joint rates , 
similarly to the gravity vector in fixed-base manipulators. 

II.2. Cartesian Space Dynamics 

Here, the dynamics is written in a form suitable for Cartesian 
Space control where the task is to control the manipulator 
end-effector pose (position/ attitude)  applying appropriate 

joint torques  via the manipulator control system. The 
FFSMS dynamics in Cartesian Space is given by, [10] 

  (2) 

where  is the system inertial matrix in Cartesian space, 
vector  contains the nonlinear Coriolis and centrifugal 
terms for a spatial FFSMS with non-zero angular momentum 

, the vector  is due to the angular momentum and 
  (3) 
where the matrix  is an appropriate Jacobian matrix. 

III. CONTROL STRATEGIES  
For the selection of the most effective control law under the 
existence of system parameter uncertainties and disturbances 
caused by solar panel and/ or slosh fuel motions, a 
comparison analysis, is performed. The following controllers 
are considered and compared: 

§ Model – based PD Controller 
§ Model – based PD plus  Controller 
§ Linear Parameter Varying (LPV) plus  Controller 
The most appropriate controller is selected considering 

the following criteria: 
§ Design Complexity 
§ Trajectory Errors 
§ Required Torques 
§ Computational Effort  
Next, the design of these controllers is presented briefly. 

III.1. Model-based PD Controller (MB-PD) 

A well-established technique for manipulator control is the 
model-based (or computed torque). It is based on the 
nominal dynamic model of the manipulator, and essentially 
it transforms the multivariable nonlinear plant into a set of 
decoupled linear equations. The model-based controller is 
attractive because of its simple and elegant mathematical 
derivation and for providing excellent control performance 
in the absence of modelling errors and external disturbances. 
Then, this control law is described by 
  (4) 
where  denotes the estimated value of  and  is a new 
control input to the system. 

In case of the model-based PD controller, the control 
input  has the form, 
  (5) 
where  denotes the desired value of variable .  

The controller gains  and  are positive definite 
diagonal matrices with elements  and , respectively, 
  (6) 
where  is the desired damping coefficient and  is the 
desired closed – loop system bandwidth. 

The closed – loop error dynamics is, 
  (7) 
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where  is the error in Joint Space, the term 
represents the disturbances due to the unmodelled flexible 

dynamics (e.g., solar panels, fuel sloshing, etc.) and 
  (8) 

is a term due to the parametric uncertainty and acts as a 
disturbance to the closed loop system formed by the model-
based controller.  

Moreover, since in practice the computation of the vector 
 contributes mostly to the controller computational effort, 

one can assume . This assumption contributes to the 
term  like parameter uncertainties. If we had perfect 
knowledge of the system parameters and dynamics, the term 

 would vanish. 
Note that if the controller gains selected are relatively 

large and the closed – loop system bandwidth  becomes 
comparable to the unmodelled flexible dynamics, then, an 
undesired oscillatory behavior may result leading even to 
system instability. To avoid such phenomena, the closed – 
loop system bandwidth  must be selected at least two 
times (ideally five times) below the lowest resonant 
frequency  of the system flexible dynamics, i.e., 
  (9) 

where 
  (10) 
where ,  are the lowest resonant frequencies due 
to panel and slosh fuel motions, respectively. 

Considering the beam theory for the solar panel motion, 
[11], and assuming a spring – damper model for the slosh 
fuel motion, these lowest resonant frequencies are given by, 

  (11) 

where E is Young's modulus of elasticity, I is the cross - 
sectional area moment of inertia, L is the length, σ is the 
mass density per length (kg/m) of the solar panel and , 

 are the slosh fuel mass and the slosh fuel equivalent 
spring constant, respectively. Note that one should consider 
that in practice, both frequencies are estimated with some 
uncertainty, [12]. 

Regarding the Cartesian Space control, the design 
procedure is similar to that of the Joint Space control 
considering the Cartesian Space dynamics, i.e., (2), instead 
of Joint Space dynamics, i.e., (1). 

III.2. Model-based PD Plus Controller (MB-PD/ ) 

In the presence of parameter uncertainty and nonlinearities, 
the avoidance of the excitation of solar panels and/or slosh 
fuel flexible modes, may not be feasible always (i.e., some 
frequencies may be excited), even if precautions such as the 
above are taken, especially since the lowest resonant 
frequency is subject to uncertainties. Therefore, parameter 
uncertainties and disturbances, caused by solar panel and 
slosh fuel motions, may degrade considerably the 
performance achievable by a model-based PD controller. 

Nevertheless, this can be overcome by adding a linear robust 
 action to the model-based PD. Then, the control law is 

given by, [13] 
  (12) 
where  is the  contribution to the controller and the 
input  is given by the (5). 

The design of the robust controller is performed in two 
steps. First, the model-based part of the controller is used to 
pre-compensate the dynamics of the nominal system. Then, 
the  controller is used to post-compensate the residual 
error which is not completely removed by the model-base 
part of the controller. 

In this case, the closed – loop system error dynamics is, 
  (13) 
where the diagonal elements of the controller gains  and 

 are given by (6). To avoid flexible modes excitation, the 
closed-loop system frequency  is selected by (9). 

It is desired that the right-hand side of (13) is zero. This 
is feasible if  cancels  for all time. 

To design the linear  control law, the terms  
are temporarily ignored and (13) is written as, 
  (14) 
The above equation can be represented in state - space as, 
  (15) 
and 
  (16) 
where 
  (17) 
and 

  (18) 

where  is the  zero matrix and  is the  
identity matrix. 

The design variables of the  controller are the 
matrices ,  and the  matrices 
 and  which are called weighting functions. 

Each one can be expressed as a diagonal matrix of transfer 
functions or static gains and has its own objective. 

The control weighting function  is applied to the 
control input. Typically, this is a high-pass filter applied to 
each input and used to reduce the control effort u. The 
performance weighting function  is applied to the 
error of the closed-loop system. It can be a mix of low-pass 
filters and static gains and is used to shape the system’s 
performance. Therefore, the main aim of the performance 
and control weighting functions is to shape the response so 
that the gain of the loop transfer function L=GK is high at a 
lower frequency range and low at a higher frequency range. 
The weighting function  is used to model the type of 
disturbances di (including those caused by system 
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uncertainties) and the function  is used to model the 
expected sensor noise n. Typically, functions  and 

 are diagonal matrices, with their diagonal elements 
represented by low-pass and high-pass filters, respectively. 
Some standard guidelines propose that matrices  and 

 may have the following form, [14], 

  (19) 

  (20) 

where  is the peak of the Sensitivity Function , 
 is the desired closed-loop bandwidth,  is the desired 

steady state error with respect to a step input,  is the 
maximum gain measured by ,  is the controller’s 
bandwidth,  is a small real number,  is a positive integer 
that determines the roll-off rate of the closed – loop system 
and  indicates the  norm of . 

Regarding the Cartesian Space control, the design 
procedure is similar to that of the Joint Space control 
considering the Cartesian Space dynamics, i.e., (2), instead 
of Joint Space dynamics, i.e., (1). 

III.3. LPV plus  Control Law (LPV/ ) 

In this section, the  approach for a LPV system is applied 
to the FFSMS described by (1). An LPV system can be 
described by the following state-space model in which the 
scheduling parameter vector  is a function of the state 
vector , named quasi-LPV representation, [6] 
  (21) 

  (22) 

The scheduling parameter vector  is assumed to 
be measurable and restricted to a set of admissible 
trajectories based on operating conditions of the system. 

Next, the nonlinear dynamics of the FFSMS can be 
represented as a quasi-LPV system. First, the equations of 
motion, (1), are written as: 
  (23) 
where 
  (24) 

Therefore, defining the state vector as, 
  (25) 
one can write, 

  (26) 

In case there is a scheduling parameter vector 
 which satisfies, 

  (27) 

then the FFSMS dynamics, described by (26), can be 
represented in the following quasi-LPV form: 

  (28) 
where 
  (29) 
and 

  (30) 

where  is the number of the scheduling parameters and  
is a constant matrix. 

The controller design requires off-line and on-line 
calculations. If the quasi-LPV form of system requires l 
scheduling parameters, there are 2l vertices  (i=1,.., 2l). 
For each of the vertices , a  control law i is designed 
off-line, i.e., 
  (31) 

  (32) 
where  is the controller input (e.g., joint error),  is the 
controller command, and  is the state vector that 
describes the controller dynamics. 

Each of the 2l controllers, can be written in the following 
compact form, 

  (33) 

The final controller is given by, 
  (34) 
  (35) 
where 

  (36) 

where the coefficients  results by on-line measurements 
(or estimation) of the parameters ρ(x), using the following 
equations, 
  (37) 
and 

  (38) 

The required joint torques are given by (24), i.e., 
  (39) 

Note that, contrary to the design of model-based PD and 
model-based PD plus  controllers, the design of an LPV 
controller in Cartesian Space is not straightforward and 
rather too complicated, since the Cartesian Space dynamics 
must be considered in the LPV representation given by (21). 

IV. CONTROL SCHEMES COMPARISON  
For the trade-off analysis, the controllers considered are 
applied to a planar space manipulator system with 2 joints, 
shown in Fig. 2. Here, the task is the accurate trajectory 
following of the manipulator angles in joint space despite 
possible parameter uncertainties, noisy measurements, and 
disturbances due to S/C solar panel and sloshing. The joint 
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measurements noise is defined according to [15] - [16]. The 
manipulator desired trajectories are given by, 
  (40) 
where ,  and  is the 
arc length parameterization of the path ( ), 
  (41) 
with initial and final values  and  respectively 
and zero initial and final velocities and accelerations. 

 
Fig. 2. A planar FFSMS as a SimScape model. 

The parameters of the system are presented in Table I. A 
solar panel is mounted on the S/C. The values of the solar 
panel parameters are displayed in Table II. The slosh fuel 
mass is , the slosh fuel equivalent spring 
constant and damping are and , 
respectively. 

TABLE I.  PARAMETERS OF THE FFSMS SHOWN IN FIG. 2. 

Body  (kg)  (m)  (m)  (kg m2) 
0 2000 1.5 - 2250 
1 50 1.0 1.0 16.66 
2 50 1.0 1.0 16.66 

TABLE II. PROPERTIES OF THE S/C SOLAR PANEL. 

E (N/m2) ρ (kg/m3) L (m) W (m) H (m) 
71*109 2700 7.5 1.5 0.04 

In Table II, ρ is the material density, W is the panel width 
and H is the panel thickness. Here, an uncertainty of the 
order of 20% in all SMS parameters is considered in the 
design of the controllers under consideration. 

IV.1. MB-PD Controller Design 

Since only the rigid-body dynamics is considered, the 
avoidance of solar panel and/or slosh fuel flexible modes 
excitation can be achieved by selecting appropriate 
controller gains with bandwidth  kept below the lowest 
estimated resonant frequency  of the system flexible 
dynamics, see (9). 

The lowest resonant frequencies ,  are given 
by (11), 
  (42) 

Therefore, (10) results in, 
  (43) 

Considering (9), we select, 

  (44) 

Considering a critically damping desired response, i.e., 
, the controller gains  and  are: 

  (45) 

IV.2. MB-PD/  Controller Design 

In case some frequencies are excited during the application 
of model-based PD controller, despite the design proposed 
above, an additional  controller term in the model-based 
PD formulation can be added to mitigate the effect of the 
controlled manipulator motion on flexible/oscillatory 
elements. The PD controller gains are designed as mentioned 
above. In practice, to avoid computational complexity, we 
assume  in (12). This assumption contributes to the 
term , and can be canceled using the  controller by 
the selection of appropriate weighting functions. The  
controller is designed using these weighting functions as 
inputs in Matlab function “hinfsyn”. For the  linear 
controller term the following weighting functions, 
corresponding to low and high pass filters, are selected by 
trade-off analysis, 

  (46) 

  (47) 

IV.3. LPV/  Controller Design 

Regarding the design of the LPV controller, it can be shown 
that the dynamics, i.e., (1) of a planar FFMS with two joints 
and non-zero angular momentum can be written in a quasi-
LPV form, i.e., (28), where: 

 (48) 

where the vector  of scheduling variables is 
function of state variables , whose 
expression is omitted here due to space constraints. 

A system reduction is required since for LPV controller 
design, as the number  of linear matrix inequalities 
(LMIs) to be solved increases exponentially with the number 

 of scheduling parameters according to . The 
system reduction may depend on the manipulator desired 
task. Thus, different controllers may be required for a set of 
desired trajectories making themselves hard to satisfy high 
performance requirements for SMS in multiple tasks. 
Here, the joint trajectories given by (40) are considered and 
a reduced-order LPV model using the parameter set mapping 
(PSM) algorithm, proposed in [6], is obtained. Then the 
singular values are obtained through following the process 
of LPV reduction and applying PSM to normalize a data 
matrix. The number of significant singular values is selected 
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as m = 4 by weighing the accuracy and complexity of 
reduced LPV model. The final weighting functions are 
selected by trade-off analysis and are given in (49). Note that 
during the design process, compromises are needed, and 
sometimes better solutions are obtained by selecting some 
non-dynamic weighting functions. To simplify the design, all 
of the 24  controllers are designed using these weighting 
functions as inputs in Matlab function “hinfgs”. 

  (49) 

IV.4. Results – Comparison 

Fig. 3a shows the commanded joint trajectories and the joint 
responses, when applying the MB- PD, the MB-PD/  and 
the LPV/  control laws. The MB-PD joint response 
differs significantly from the desired one due to parameter 
uncertainties and disturbances. Improved trajectory tracking 
is achieved using both the MB – PD/  and the 
LPV/ controllers, while the corresponding torques are at 
the same level in all three cases, see Fig. 3b. However, the 
torques generated by the LPV/  controller are much 
noisier than the others since the design of each of the 24  
controllers using the weighting functions given by (49) may 
not be suitable for all these controllers and therefore not be 
robust to noise rejection. To improve this, a redesign of each 

 controller is required making the design of the LPV/  
controller even more complex. The corresponding tracking 
error responses (noise not shown) of the MB-PD/  and 
the LPV/  are shown in Fig. 4. 

 
Fig. 3. (a) Desired and joint trajectories for (i) MB-PD Control, (ii) MB-

PD/  Control, (iii) LPV/  Control and (b) Required torques. 

 
Fig. 4. Error response (noise not shown) for (i) MB-PD/  and (ii) 

LPV/  Controllers. 

Also, the MB – PD/  response is better than the 
response of LPV/ , considering both the errors and the 

required joint torques, as can be seen in Fig. 3b and 4. Fig. 5 
shows some snapshots of the SMS motion in SimScape 
environment in case the MB – PD/  is applied. 

 
Fig. 5. Snapshots of the SMS in the Simscape© environment. (a) Initial, 
(b) Intermediate and (c) Final manipulator configuration. 

Due to implementation and real-time requirements, low 
computational complexity is needed for each controller. 
Table III, displays the mean value of the computational 
effort, as indicated by the time (ms) required to run a single 
control loop in a PC with 6-Core 3.59 GHz Processor and 
16.0 GB RAM; this time is of the same order for all three 
controllers. 

TABLE III. COMPUTATIONAL EFFORT OF CANDIDATE CONTROL LAWS. 

Candidate Controller MB- PD MB-PD/  LPV/  

Computational Effort (ms) 7.25 8.92 8.15 

In Table IV, an evaluation of the candidate controllers is 
presented, using the employed selection criteria. Considering 
the total performance, one can conclude that the model-
based MB-PD/  controller is the most promising. It is as 
effective as the LPV/  and its design can be extended 
easily to real spatial SMS; this is unlike the LPV design 
whose extension in real spatial SMS is not a trivial task. 

TABLE IV. CONTROL LAWS COMPARISON - SELECTION CRITERIA. 

Candidate Controller MB-PD MB-PD/  LPV/  

Design Complexity + + + - 
Trajectory Errors - + + +  + + 
Required Torques + + + + + 
Computational Effort + + + + + + 
Total Performance + + + + + + + + + + + + + + + + + 

V. CONCLUSION 
The design of LPV controllers for SMS is not a trivial task 
even for simple planar manipulators; no systematic approach 
exists for the selection of the appropriate scheduling 
parameters, limiting their application to real spatial SMS. In 
this work the effectiveness of the LPV controller against 
alternative model-based controllers was studied aiming at 
their applicability to realistic systems. An LPV plus  
controller is compared to Model-Based PD, and Model-
Based PD plus  controllers considering their robustness 
to parametric uncertainty, noisy measurements, and 
disturbances due to solar panel and fuel sloshing. The 
employed criteria included: (i) Design Complexity, (ii) 
Trajectory Errors, (iii) Required Torques, and (iv) 
Computational Effort. It was found that the Model – Based 
PD plus  controller is the most promising since it is as 
effective as the LPV/  control law, while its design can be 
extended easily to real spatial SMS. This is unlike the LPV 
control design whose extension in real spatial SMS is not 
straightforward. 
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