
  

  

Abstract— To control a free-floating robotic system with 
uncertain parameters in OOS tasks with high accuracy, a fast 
parameter identification method, previously developed by the 
authors, is enhanced further and used concurrently with a 
controller. The method provides accurate parameter estimates, 
without any prior knowledge of any system dynamic properties. 
This control scheme compensates for the accumulated angular 
momentum on the reaction wheels (RWs), which acts as a 
disturbance to the robotic servicer base. While any controller 
using parameter information can be used, a transposed 
Jacobian controller, modified to include RW angular 
momentum disturbance rejection, is employed here. Three-
dimensional simulations demonstrate the method’s validity. 

I. INTRODUCTION 
The proliferation of space orbital activities lead to tasks of 

increased complexity [1], and require the in-situ availability, 
not only of human operated systems, but also of autonomous 
robotic infrastructure. These robots must be capable of 
fulfilling tasks that fall under the theme of On-Orbit 
Servicing (OOS), including construction, maintenance and 
astronaut assistance, relieving them from dangerous Extra 
Vehicular Activities (EVA). Thus, in the last decades robotic 
OOS (see Figure 1) has been studied and many architectures 
have been proposed [2], [3]. 

To control safely an autonomous system in orbit in 
achieving successfully its mission, its dynamic properties 
need to be known quite accurately; this represents a constant 
issue in OOS missions [4]. However very often, these 
parameters may change for a number of reasons, such as fuel 
consumption, deployment of payload, docking to a spacecraft 
or object capture. 

Two main approaches exist in treating parametric 
uncertainty; robustness and adaptation. The nonlinear 
robustness and parameter sensitivity field is rather limited, 
[8], with most works relying on special features to prove 
stability under uncertainty (e.g. [9], [10]). Nonlinear Sliding 
Mode Control (SMC) [12] can be used, but it suffers from 
drawbacks such as excessive control effort [13], and state 
oscillation around the desired values; the later can be 
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mitigated by use of Higher Order SMC [14]. Linearization, 
when applicable, can be employed so as to use linear system 
robustness tools, in a more generic way [11]. 

In the adaptation approach, controller parameters are 
adapted so that the desired response is obtained despite 
parameter variations [12]. However, they are subject to 
limitations, especially in free-floating systems (i.e. inactive 
thrusters and reaction wheels, thus underactuated), in which 
classical adaptive control laws are not readily applicable. 
Thus, while adaptive control has been proposed for free-
flying robotic systems (active base actuators), [15]-[17], its 
use in free-floating ones is restricted. 

 
Figure 1. Concept of non-operational satellite handling, by a manipulator 

equipped free-floater, in a robotic OOS task.  

In some adaptive control approaches for free-floating 
systems, noisy acceleration measurements are required [18], 
which in general must be avoided in closed loop control. 
Adaptive control has been proposed for free-floating robotic 
systems handling a captured passive target, either using the 
base reaction to dampen vibrations [19], or generating 
reactionless manipulator motions not disturbing the SC 
attitude [20]. In both cases, all system parameters, except 
those for the captured target, are assumed known, while in 
[20] the unknown target initial angular momentum is 
assumed known. An adaptive controller for underactuated 
robots with parametric uncertainties was studied in [21]; 
however, it requires a 5-gain tuning process, while the 
method’s convergence rate and computational burden are not 
discussed. A task-space adaptive controller requires four 
adaptation laws simultaneously, while it requires an online 
solution of a differential equation [22]. 

Parameter identification methods can be used to estimate 
accurately system parameters, and concurrently be used in 
any stable non-linear controller; however, few studies exist in 
the literature. A method for concurrent parameter 
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identification and adaptive control was proposed for a 
simplified point-mass system [23]. Another parameter 
identification method used concurrently in adaptive 
reactionless control assumes only the last manipulator link 
(including the captured target) as unknown, while it also 
requires noisy acceleration measurements [24]. 

In free-flying systems, angular momentum on the servicer 
RWs may have accumulated from previous tasks. To enter 
the free-floating mode, the RW controller is switched off and 
then the magnitude of the RWs relative angular momentum 
remains constant. As the servicer base attitude changes, so 
does the RW angular momentum direction; then disturbance 
torques appear that need to be rejected by the controller. 
Despite this effect, in the literature, RWs are mainly treated 
as non-rotating parts of the servicer base [18]-[24]. 

The study of the disturbance of residual RW rotation is 
limited mostly to the case of passive target satellites [25]. The 
dynamics of residual RW rotation for a free-floating robotic 
servicer during passive satellite capture were derived [26]; 
however, a redundant manipulator is used to keep the servicer 
base attitude constant (thus no disturbance torque from RWs 
appears), while also performing the desired task. This scheme 
requires a redundant arm and perfect knowledge of servicer 
and serviced systems parameters, which often are unavailable 
or impractical. To the best of the authors knowledge, the 
effect of RW residual angular momentum as a disturbance 
has not been adequately addressed in the control literature of 
free-floating systems, either in joint or in Cartesian space. 
Hence, a major contribution of this work is the derivation of 
free-floating dynamics in the presence of RW residual 
angular momentum, and its effect as a system disturbance. 

In this paper, a fast, and reliable parameter identification 
method previously developed by the authors [27], is further 
enhanced, to identify all required parameters for the complete 
system dynamics reconstruction in Cartesian and joint space, 
and provide on-the-fly accurate parameter estimation for 
control. In contrast to other methods, which assume as 
unknown only the last link, i.e. the captured target, no prior 
knowledge of any subsystem dynamic properties is required 
by the proposed identification method. Moreover, the 
identification method does not require acceleration 
measurements, making it less sensitive to sensor noise, while 
it is also applicable to multiple manipulator servicers. Any 
control law requiring model information can be used with the 
developed identification method, resulting in a Self-Tuning 
Controller (STC) [12]. The one proposed here is the 
transposed Jacobian controller, adapted to include RW 
accumulated angular momentum disturbance rejection. A 3D 
example simulation demonstrates the method validity. 

II. ANGULAR MOMENTUM AND JOINT SPACE DYNAMICS  
Initially the robotic servicer angular momentum and its 
dynamics in joint space are derived. The robotic servicer 
consists of a spacecraft (SC) and its manipulator, see Figure 
2. A captured target is considered as part of its manipulator 
last link. In free-floating mode, the system center of mass 

(CM) remains fixed in inertial space. Thus, the inertial frame 
origin can be chosen to be at the system CM. In this paper, 
the left superscript on (•) indicates the frame in which (•) is 
expressed. No left superscript is used for the inertial frame. 

In free-floating operation, both thrusters and RWs are off. 
However, RWs may have accumulated angular momentum, 
which is given by  

  (1) 

where Nrw is the number of robotic servicer’s RWs, mrw,i is 
the ith RW’s mass,  are the position and velocity 
vectors of the ith RW’s CM, Irw,i is the ith RW’s moment of 
inertia,  is the spacecraft angular velocity, R0 is the 
rotation matrix between the SC frame and the inertial frame, 
expressed as a function of the Euler parameters ε, η. 0Rrw,i is 
the rotation matrix which represents the orientation of the ith 
RW’s frame with respect to the SC frame, see Figure 2, and 
thus it is constant over time, rw,izrw,i is the unit vector along 
the axis of the ith RW, and  is the ith RW’s joint rate. 
RWs joint rates remain constant as no torques are applied to 
the RWs in free-floating mode. 

 
Figure 2. Robotic servicer. 

Note that hrw includes three RW angular momentum terms; 
two due to the SC motion (i.e.  and ), 
and one due to the RW/ SC relative motion 

  (2) 

The robotic servicer angular momentum hrs expressed in 
the inertial frame is given by 
  (3) 

where  is the column vector which contains the 
manipulator joint rates. The inertia-type matrices 0D, 0Dq are 
given in [27] and and they include also the inertial 
parameters of the RWs as part of the SC inertial parameters.  

Hence the total system angular momentum htotal, 
containing that of the servicer and of the RWs relative 
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angular momentum with respect to the SC, is  
  (4) 

An important remark here is that htotal remains constant when 
the system including the robotic servicer and the constantly 
rotating RWs, is in free-floating mode, i.e no externals 
forces and moments act on it. Moreover, 0hrw/sc is known 
since RWs inertias are assumed to be known, and remains 
constant since the RWs are not actuated, see also (2) 
Therefore, solving (4) for hrs yields 
is  
  (5) 

By differentiating (5) the servicer dynamic equations are 
obtained 
  (6) 

where  
  (7) 

and (*)× is the cross-product matrix of vector (*). 
The left side of the servicer equations of motion (6) is 

derived in [28]; however in [28] the RWs are not rotating and 
therefore no disturbances act on the SC, i.e. gcm = 0. The 
reduced equations of motion of the free-floating servicer are 
[28] 

   (8) 

where the inertia-type matrices 0D, 0Dq, 0Dqq and the column 
vectors c1, c2 are as in [29] and τ is the vector of the 
manipulator joint torques. 

Since 0D is always invertible, solving (6) for  and 
substituting in (8) yields 

   (9) 

or, equivalently 

   (10) 

where 

   (11) 

   (12) 

III. DYNAMICS IN THE CARTESIAN SPACE 
The equations of motion in the joint space, given by (10), are 
transformed here in the Cartesian space. Assuming that the 
servicer Generalized Jacobian Matrix (GJM) Jq is invertible, 
the vector of joint acceleration can be written as in [30] 

  (13) 

where Jh is as in [30], and  is obtained by differentiating 
Eq. (5) 

   (14) 

where  is zero since, after the initial stabilization, no 
RW torques are applied and hence 0hrw/sc remains constant, 

while  is zero as htotal is constant. Moreover, 

  (15) 

with rΕ, ωΕ being the end-effector position vector and 
angular velocity respectively, expressed in the inertial frame. 
Substitution of (13) in (10) results in the equations of motion 
in the Cartesian space 
  (16) 

where 
  (17) 

  (18) 

  (19) 

Note that (19) is similar to the Cartesian dynamics in [30]. 
However, the influence of RW accumulated angular 
momentum is now included too. 

IV. CONTROL SCHEME 

A. Self-Tuning Control Law 
Many OOS tasks are carried out in Cartesian space where 
the end-effector is commanded to follow a Cartesian 
trajectory and specifically a desired position rE,d and a 
desired orientation expressed by the Euler parameters εE,d, 
ηE,d. In this case, to track a desired end-effector trajectory, 
the following transposed Jacobian STC controller with RW 
disturbance compensation is proposed 
  (20) 

where denotes an estimate of (*), and 

  (21) 

where 
  (22) 

  (23) 

where ωE,d is the end-effector desired angular velocity and 
Kd,p, Κp,p, Kd,o, Kp,o are positive definite, diagonal gain 
matrices. The end-effector position error ep and the end-
effector orientation errors eω, eε are  
  (24) 

  (25) 

  (26) 

where Re is the rotation matrix that describes the orientation 
of the end-effector, Rd is the rotation matrix that describes 
the desired orientation of the end-effector and  is the 
vector part of the unit quaternion that can be extracted from 
the rotation matrix  defined by the following equation 

  (27) 
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Substituting (20) in (16), yields the error dynamics 
  (28) 

  (29) 

where 

  (30) 

Note that in general, when the system motion is 
sufficiently rich, the estimated parameters converge to the 
actual parameter values through the parameter identification 
process [31]. Then, cp= 0, cω= 0 and (28) is exponentially 
stable for appropriate choice of positive definite gain 
matrices Kd,p, Κp,p, and tracking of end-effector rE,d and is 
ensured, [31]. Since the error system (29) is nonlinear, a 
Lyapunov argument is employed. For appropriate choice of 
positive definite gain matrices Kd,o, Kp,o the tracking of Rd 
and ωd is ensured, see for details in [31]. 

Furthermore, since the servicer is underactuated and only 
the manipulator joints are controlled, the resulting SC angular 
motion is examined. Solving (3) for 0ω0 yields 

   (31) 

where R0, D, Dq are bounded, containing trigonometric 
functions only. The hrs is bounded also as can be seen from 
(5).The manipulator joint rates  are expressed as  

   (32) 

where Jq and Jh contain trigonometric functions and vE is 
bounded since the proposed controller ensures the zero 
steady state Cartesian error. 

Hence, the angular motion of SC is bounded during the 
application of the proposed STC controller. 

B. Parameter Identification Law 
A parameter identification method that identifies a minimal 
vector of parameters π, rendering the system’s free-floating 
dynamics in joint space known, has been proposed [27]. 
However, for tasks carried out in Cartesian space, accurate 
knowledge of the dynamics in Cartesian space is required. 
A comparison shows that the two corresponding parameter 
sets are not identical. 

In particular, for the purpose of reconstructing the 
dynamics in Cartesian space, the required parameters are 
those that can reconstruct Hx and bx or, equivalently, 
reconstruct matrices H, c and Jq (see (18) and (19)). The 
vector of parameters π identified in [27] can render H and c 
known, but not Jq; therefore, additional parameters must be 
estimated. Specifically, for knowing GJM Jq, in addition to π, 
an vector of additional parameters φ must be identified. Thus, 
the proposed identification law employs two sets of 
equations. The angular momentum equation is used to 
identify π and the kinematic equation based on Jacobian-type 
matrices is used to identify φ. 

1) Estimation based on the Angular Momentum Principles 
To use equation reference goes here for parameter 
estimation, the angular momentum hrs must be expressed 
linearly with respect to the parameter vector π. This 
procedure is described in detail in [27]. Thus, the servicer 
angular momentum is obtained as 
  (33) 

where the 3×k matrix Yh is the regressor matrix and k is the 
dimension of π. The key feature of this regressor is that it 
does not require acceleration measurements which are noisy. 

To solve (33) for π, hrs must be known, which in turn 
requires htotal, see (5). Since htotal from (4) remains constant 
  (34) 

where (*)in is the initial value of (*). (R0)in and (ω0)in can be 
measured as discussed later. Without loss of generality, we 
assume that (ω0)in = 0, i.e. that the system is initially 
stabilized, e.g. after the capturing of a tumbling target to be 
serviced. Thus, (3) yields (hrs)in = 0 since the manipulator 
joints are also initially at rest. Hence, applying (4) yields 

   (35) 

where 0hrw/sc is also constant since, after the initial 
stabilization (prior to our scenario) no RW torques are 
applied. Thus, (34) and (35) provide the required htotal. 

Assuming N measurements of the variables ( ), and 
ε, η are obtained at time instants t1, t2, …, tN during the task, 
(33) and (3) result in the following system of equations 

  (36) 

The number of measurements N should satisfy the 
condition described in [27]. Measurement of RWs joint rates 
is also required before the servicing task to calulate htotal, see 
(35). Measurements of RWs joint rates during the servicing 
task are not required since they remain constant. 
Nevertheless, all required quantities, can be obtained directly 
or indirectly by available sensors. The required joint angles 
q are obtained directly by the joint motor encoders, while 
their differentiation provides the joint rates . RW rates 

 are obtained by differentiating qrw, obtained directly 
from the corresponding encoders. The orientation of the 
servicer base, and thus the corresponding Euler parameters ε, 
η, are obtained directly using star or sun trackers, while ω0 is 
provided by on board IMUs. 

The system of equations given by (36), is over-determined 
and either recursive or non-recursive methods (e.g. least 
squares) can be used for solving it (not in the scope of this 
paper). The estimated regressor matrix must be of full rank 
for (36) to be solved for π, which in turn requires for π to be 
a minimal parameter set, obtained as in [27]. 
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2) Estimation based on Kinematics 
To estimate the vector of parameters φ, a kinematic equation 
that includes the Jacobian-type matrices J11, J12 is used. 
Thus, the linear velocity of the observation point E at the 
end-effector of the servicer manipulator, see Figure 2, can be 
related to the generalized speeds through the Jacobian-type 
matrices J11, J12 [30] 
  (37) 

where  is the linear velocity of the robotic servicer CM. 
The right-hand side of (37) can be formulated as 

  (38) 

where YJ contains measurable variables,  is the 
known position vector from manipulator’s last joint to the 
tracked point E expressed in the last link’s body-fixed {N} 
frame, see Figure 2, and x contains measurable and known 
quantities. For the free-floating servicer, the robotic system 
CM linear velocity remains constant. Without loss of 
generality and for practical reasons, zero is assumed, 
yielding from (38) 
  (39) 

where the 3×l matrix YJ is the regressor matrix. The same 
key requirements as before apply to this regressor too; also, 
its structure does not require acceleration measurements. 

Obtaining again N measurements of ( ), and ε, η 
at time instants t1, t2, …, tN during the on-orbit servicing 
task, results in the following system of equations 

  (40) 

The number of the measurements N must satisfy both 
conditions described in [27] and (41) for spatial space robots 
  (41) 

The required linear velocity of observation point E at the 
end-effector can be obtained as the sum of the SC linear 
velocity and the relative linear velocity between point E and 
the SC. Apart from the already mentioned SC angular 
velocity, SC linear velocity can be obtained indirectly form 
the integral of linear acceleration measured by IMUs or the 
differentiation of GNSS position measurements. The point 
E/SC relative velocity can be obtained either by use of the 
measured manipulator joint rates and known manipulator link 
lengths (from joint to joint), or, if the manipulator link 
lengths are also unknown, by the use of cameras on-board the 
base, observing point E. 

The system of equations (40) is over-determined; again it 
can be solved by typical recursive or non-recursive methods. 
Moreover, φ is again required to be a minimal parameter set, 
so the corresponding regressor matix is of full rank. 

V. SIMULATION RESULTS 
The proposed STC is illustrated by a spatial servicer with a 

3-DOF manipulator. The kinematic and dynamic parameters 
of the servicer are given in Table I.  

TABLE I. PARAMETERS OF THE SYSTEM UNDER STUDY. 

i 
li 

(m) 
ri 

(m) 
mi 

(kg) 
Ixx 

(kg m2) 
Iyy 

(kg m2) 
Izz 

(kg m2) 
0 - [0.5,0.5,1]T 2000 1500 1500 1500 
1 0.25 0.25 50 0.1 11 11 
2 1.0 1.0 100 0.1 33 33 
3 1.0 1.0 500 400 300 350 
 
The joint-space minimum set of parameters of the simulated 
servicer, i.e. the elements of vector π, are as in [27]. The 
elements of vector φ for the simulated servicer, are 

  (42) 

where all the symbols in the right-hand side of (42) are 
described in [27].  

The RW motion relative to the servicer base, expressed in 
SC frame, is 0hrw/sc = [10 10 10]T Nms. The initial SC attitude 
is [εinΤ, ηin]T = [0 0 0.5 0.75]Τ. The initial joint angles are qin = 
[0.14 1.04 0.5 -2.33]Τ rad. Τhe SC and the manipulator joints 
are initially at rest. The vector m. The 
desired trajectory for the end-effector is a motion from point 
A = (0.2781, 0.6875, 0.3) m to point B = (0.3969, 0.35, 0.6) 
m, constrained on a spherical surface with radius R = 0.8 m, 
described in more details in [30]. The motion duration is 7 s. 
The actuator torque limits for all manipulator joints are set to 
be at 100 Nm. The sampling time is 2 ms. The system 
parameters (i.e. vectors π and φ) are identified by the non-
recursive least squares solution of (36) and (40), with a 
moving window of 200 measurements. The gain matrices are 
selected to be Kp,p = diag(1.44, 1.44, 1.44) and Kd,p = 
diag(2.4, 2.4, 2.4). The initial parameters are taken as 70% of 
the real parameters. 

Figure 3a shows the response of the end-effector position 
compared to the desired end-effector trajectory, while Figure 
3b shows the end-effector position relative tracking error eE. 
In both figures, it can be seen that the end-effector follows 
the desired path quite accurately. In Figure 4a, the joint 
torques required for this end-effector motion are shown. 
Figure 4b shows the SC angular velocity 0ω0, demonstrating 
a smooth, bounded motion.  

Figure 5 shows the relative error of the estimated 
parameters. Note that at the beginning, the algorithm requires 
some time to obtain the required measurements and estimate 
accurately the system parameters. Nevertheless, within 270 
ms the identification error is less than 3%. This fast 
convergence demonstrates that the method can be used on-
line, even for constantly changing inertia parameters, as long 
as there exists some minimal motion, even a quite slow one. 
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To further demonstrate the improvement of the system 
response due to the integration of the parameter 
identification process in the control scheme, the same 
controller for the same desired trajectory and with the same 
gains is used, without, though, tuning through identification, 
using constantly the initial and inaccurate system parameters 
knowledge. Figures 6 and 7 show the same variables as 
Figure 3 and Figure 4 respectively, but for the untuned 
controller. Comparing Figure 3b to Figure 6b shows that use 
of the parameter identification results in a significant 
improvement on the relative tracking errors for more than an 
order of magnitude. 

 
Figure 3. (a) End-effector simulated actual and desired trajectory and (b) 

end-effector tracking errors, due to the proposed STC. 

 
Figure 4. (a) Manipulator joint torques and (b) SC angular velocity, due to 

the proposed STC. 

 
Figure 5. Parameter identification relative errors. 

Besides the relative tracking error of the end-effector 
motion, the absolute error is also very important. For tasks 
such as probe-drogue docking, an end-effector position error 
of a few centimeters may cause docking failure [34]. Figure 8 
demonstrates the end-effector absolute tracking errors, when 
(a) using the STC and (b) an untuned controller. As can be 

seen, parameter adaptation through the identification process 
results in maximum tracking errors of less than 1.5 mm 
(Figure 8a), as opposed to the 20 times larger maximum 
tracking errors of about 3 cm for the case without adaptation 
(Figure 8b). 

 
Figure 6. (a) End-effector simulated actual and desired trajectory and (b) 

end-effector tracking errors, due to an untuned controller. 

 
Figure 7. (a) Manipulator joint torques and (b) SC angular velocity due to 

an untuned controller. 

 
Figure 8. (a) End-effector absolute tracking errors of an untuned controller 

and (b) of the proposed STC. 

VI. CONCLUSION 
To control a free-floating robotic system with uncertain 
parameters that span the full system dynamics, a fast, and 
reliable parameter identification method, previously 
developed by the authors, is further enhanced and used 
concurrently with a controller. Any control scheme that 
requires system parameter information can be used. The one 
employed here is a transposed Jacobian controller adapted to 
include rejection of disturbances resulting from previously 
accumulated RW angular momentum. Thus, a complete 
approach on the control of a free-floating robotic servicer, 
with unknown system parameters, is proposed. Three 
dimensional simulations demonstrated the validity of the 
method, as shown by very small tracking errors, while 
simultaneously identifying the actual system parameters, 
resulting in smooth performance. 
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